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ABSTRACT

Gene expression is influenced by both genetic variants and the environment. As individuals age, changes in
gene expression may be associated with decline in physical and cognitive abilities. We measured transcriptome-
wide expression levels in lymphoblastoid cell lines derived from members of the Lothian Birth Cohort 1936 at
mean ages 70 and 76 years. Changes in gene expression levels were identified for 1,741 transcripts in 434
individuals. Gene Ontology enrichment analysis indicated an enrichment of biological processes involved in the
immune system. Transcriptome-wide association analysis was performed for eleven cognitive, fitness, and
biomedical aging-related traits at age 70 years (N=665 to 781) and with mortality. Transcripts for genes (F2RL3,
EMILIN1 and CDC42BPA) previously identified as being differentially methylated or expressed in smoking or
smoking-related cancers were overexpressed in smokers compared to non-smokers and the expression of
transcripts for genes (HERPUD1, GAB2, FAM167A and GLS) previously associated with stress response,
autoimmune disease and cancer were associated with telomere length. No associations between expression
levels and other traits, or mortality were identified.
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INTRODUCTION

This study investigates how gene expression levels 1)
change within older age and 2) are associated with age-
related physical, cognitive, and biochemical traits.
Gene expression levels are influenced by both multiple
genetic variants and the environment. They influence
most human traits and may provide insight into the
biological mechanisms responsible for individual
differences. The focus of the present study is on age-
related differences.

The UK population is rapidly aging. However, little is
known about the molecular mechanisms responsible for
individual differences in age-related physical and
cognitive traits [1]. As individuals age, many physical
traits decline. Decreases in lung function, muscle
strength, and gait speed are particularly common, and
are associated with morbidity and mortality [2-8]. Age-
related cognitive decline is one of the most feared
aspects of growing older, and it is highly predictive of
dementia, morbidity and mortality [9].

Many physical traits that decline with age are heritable.
Twin-based heritability of lung function is estimated to
be between 39 and 54% in adults [10, 11], muscle
strength between 40 and 65% in older adults [12, 13],
and gait speed between 15 and 51% in older women
[14, 15]. Recent genome-wide association (GWA)
studies have identified genomic regions associated with
lung function [16, 17] and grip strength (a commonly
used measure of muscle strength) [18]. A GWA study
of gait speed did not identify any genome-wide
significant signals [19].

Twin based heritability studies estimate the heritability
of cognitive function to be greater than 50%, increasing
from ~50% in childhood to as high as ~80% in middle
adulthood and older age [20]. SNP based heritability
was shown to be ~30% in individuals aged over 40
years [21, 22], and a study based on 1,900 members of
the Lothian Birth Cohorts of 1921 and 1936 and the
Aberdeen Birth Cohort of 1936 estimated SNP based
heritability of cognitive decline, between the ages of 11
and 64-79 years, to be ~24% [23]. GWA studies
indicate that both cognitive decline and cognitive ability
are highly polygenic traits [21-25].

Oxidative stress is hypothesised to contribute to age-
related physical and cognitive decline, possibly through
increased inflammation [26] resulting in shortening of
telomeres [27]. This may be compounded by smoking
[28]. Telomere length is reported to decrease with age
[29, 30] and to be influenced by smoking [28], social
status and psychological stress [31], although its use as

a biological marker of cognitive and physical aging is
equivocal [30, 32, 33].

As indicated above, many age-related traits are
heritable; however, they are also polygenic, with few
specific genetic variants significantly contributing to
individual differences. Moreover, they are also
influenced by environmental and life-style factors. As
well as trying to detect these many small and interacting
influences per se, an attractive option is to measure an
entity that is a summary outcome of their combined
effects, and which might have both a more-detectable
association with aging and be an indicator of the causal
pathways involved. To gain further insight into the
mechanisms leading to physical and cognitive aging,
researchers are starting to investigate associations
between aging-related traits and genome-wide gene
expression levels; these are influenced by multiple
genetic variants, methylation status, the environment,
and gene x gene and gene x environment interactions.
Therefore, gene expression levels capture the net
influences on transcription and are more likely to be
associated with age-related and other traits than are
individual genetic variants. A meta-analysis of 7,781
individuals aged 20-104 years, from four cohorts,
identified 221 differentially expressed genes associated
with muscle strength [34]. Differential gene expression
has also been identified in smokers versus never
smokers in a meta-analysis of 10,233 individuals from
six cohorts [35], which may in turn influence aging. To
the best of our knowledge, genome-wide expression
levels have not been investigated for other aging traits.

In the present study, we measured transcriptome-wide
gene expression levels, using the Illumina HumanHT-
12v4 Expression BeadChip, in lymphoblastoid cell lines
derived from ~800 members of the Lothian Birth
Cohort 1936 (LBC1936) at age ~70 years and from
~400 of the same individuals at age ~76 years. As far as
we are aware, this is the first study to investigate
changes in gene expression levels within older age.
We next investigated the association of gene
expression levels with eleven cognitive, fitness, and
biomedical aging-related traits at age 70 years, and
with mortality.

RESULTS

Descriptive statistics for a general fluid cognitive factor
(gf), childhood-to-older-age 1Q change, time taken to
walk six metres, grip strength, forced expiratory volume
from the lungs in one second (FEV1), C-reactive
protein (CRP), fibrinogen, Glycohemoglobin (HbAlc),
smoking status, telomere length, and mortality status are
shown in Table 1. Individuals for whom expression data
were available at age 70 years differed very little from
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the whole cohort, in all measures, at age 70 years.
Individuals for whom expression data were available at
ages 70 and 76 years had higher general cognitive
function, a faster walk time, greater grip strength, better

Table 1. Summary descriptive data for LBC1936.

lung function, lower levels of fibrinogen, were less
likely to have acute levels of CRP, and were less likely
to smoke at age 70 years than those for whom only age
70 expression data were available.

Full sample Individuals with age 70 expression | Individuals with age 70 and 76
data expression data
Variable Mean (SD, range) N Mean (SD, range) N Mean (SD, range) N
Age (years) 69.5 (0.8, 67.6-71.3) | 1091 69.5 (0.8, 67.6-71.3) | 781 69.5 (0.8, 67.6- 434
71.3)
of 0.0 (1.0, -3.5-2.9) 1072 -0.005 (0.1, -3.0-2.9) | 767 0.1 (0.1, -3.0-2.9) 429
IQ change 0.006 (0.9, -5.6-4.4) 1016 0.005 (1.0, -5.6-4.4) 726 0.05(0.9,-4.0-4.4) | 404
6m walk time (s) 3.8(1.1,1.1-11.0) 1084 3.8(1.1, 1.1-10.9) 778 3.7(0.9, 1.1-8.8) 433
Grip strength (Kg) 29.0 (10.2, 2-60) 1066 29.4 (10.2, 4-60) 768 30.2(10.0, 11-60) | 427
FEV1 (L) 2.4(0.7,0.5-5.1) 1085 2.4(0.7,0.5-5.1) 780 2.5(0.7,0.7-4.3) 434
Fibrinogen (g/L) 3.3(0.6, 1.6-6.2) 1052 3.3(0.6, 1.6-6.2) 769 3.2 (0.6, 1.6-5.9) 428
HbAlc (% total) 5.9(0.7,4.5-11.6) 1060 5.9(0.7,4.5-11.6) 776 5.9(0.7,4.5-11.6) | 431
Telomere length (kb) | 4.2 (0.6,2.7-7.1) 1070 4.2(0.5,2.8-7.1) 781 4.2 (0.6,2.8-7.1) 434
Sex Male 548 (50%) 400 (51%) 230 (53%)
Female 543 (50%) 381 (49%) 204 (47%)
CRP Normal (0.3 mg/L) 535 (51%) 401 (52%) 244 (57%)
Elevated (4-10 mg/L) | 399 (38%) 294 (38%) 154 (36%)
Acute (>10 mg/L) 120 (11%) 80 (10%) 34 (8%)
Smoking status Current smoker 125 (12%) 92 (12%) 33 (8%)
Past smoker 465 (43%) 325 (42%) 182 (42%)
Never smoker 501 (46%) 364 (47%) 219 (51%)
Mortality status Alive 868 (80%) 627 (80%) 398 (92%)
Dead 223 (20%) 154 (20%) 36 (8%)
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Expression change between ages 70 and 76 years

A significant difference in expression levels between
ages 70 and 76 years was identified for 1,741
transcripts, with a negative T value indicating an
increase in expression level. 874 showed an increase in
expression and 867 a decrease in expression (Figure 1a,
Supplementary Table 1). Figure 1b shows a density plot
of transcript (Pearson) correlations between ages 70 and
76 years for all transcripts and for Bonferroni corrected
significant transcripts only. The correlations are listed in
Supplementary Table 1. Correlations for control
samples were all > 0.95 within plates and > 0.90
between plates. The expression of the 1,323 probes
significantly differentially expressed and successfully
mapped to a gene is illustrated in Figure 2, along with
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the results of the cluster analysis. Cluster analysis
separated the genes into those that increase in
expression (cluster 1) and those that decrease in
expression (cluster 2) between waves 1 and 3. After
correction for 13,142 Gene Ontology (GO) terms used
in the analysis, GO enrichment analysis using all genes
(those showing increased and decreased expression,
ranked by p value) indicated enrichment for six bio-
logical processes (Supplementary Table 2). The most
significant of these were the immune system (p=3.0x10
%), defense response (p=1.8x107), and positive
regulation of the immune system (p=5.7x10'7) process-
ses. After correction for 10,471 GO terms, enrichment
analysis using genes that showed increased expression
indicated enrichment for protein heterotetramerization
(p=3.4x10") (Supplementary Table 3). After correction

8 % MR-, .
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20

Transcript correlation between ages 70 and 76 years

Figure 1. (a) Transcriptome-Wide Association Study Manhattan Plot of the paired t-test T-statistic for difference in expression at age 70
and age 76. (b) Density Plot of transcript (Pearson) correlations between ages 70 and 76. The red curve is the correlation distribution for the
Bonferroni corrected significant transcripts that either increase or decrease in expression levels with age; the black curve is for all transcripts.
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for 11,220 GO terms, enrichment analysis using genes
that showed decreased expression indicated enrichment
for five biological processes (Supplementary Table 4).
The most significant of these were the defense response
(p=2.3x107"), inflammatory response (p=7.2x107), and

cluster1

cluster2

cytokine-mediated signalling pathway (p=1.1x10)
processes. As expected, there was a bias towards genes
linked to heterodimerization in cluster 1 and a bias
towards genes linked to defense response in cluster 2
(Figure 2).

expression Wave

W4 B w1

- w2 B w3
* 0

H-2
~ E-4
~— Heterotetramerization
No
M Yes
— Immune process
No
I Yes
Defense response
- No
B Yes

Immune process
Defense response

Heterotetramerization

Figure 2. Heatmap of gene expression profiles across individuals. Rows are probes and columns are individuals with the red/blue bar
along the top indicating to which wave the column corresponds. Genes linked to the top term identified in each GO analysis are shown.

Table 2. Transcriptome-wide significant genes for current versus never smokers.

Probe Gene symbol Chr Beta St. Err P
ILMN_ 2127298 F2RL3 19 0.11 0.019 1.57E-08
ILMN_2390946 NA NA 0.076 0.015 2.51E-07
ILMN 1711439 EMILINI 2 0.095 0.019 1.30E-06
ILMN_ 1781472 CDC42BPA 1 0.14 0.029 2.16E-06
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Comparison with a previously published cross-
sectional study of genes differentially expressed with
age

Of the 1,323 differentially expressed probes mapped to
a gene, 1,130 were assigned a unique gene symbol. 907
of these genes were previously reported in a cross-
sectional study that identified 1,497 genes differentially
expressed with age in the whole blood of 14,983
individuals [36]. 244 of the 907 genes were differential-
ly expressed in this previous study (p<4.2x10°), of
which 113 were differentially expressed in the same
direction (Supplementary Table 5).
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Transcriptome-wide analyses

For the transcriptome-wide association analyses with a
sample size of 665 (the smallest N used), we have 80%
power (alpha=0.05, two-sided) to detect a correlation of
0.11. Transcriptome-wide association analysis of
current smoker versus never smoker identified four
transcripts associated with smoking status (Figure 3a,
Table 2). Three of the transcripts were annotated to
genes: F2RL3 on chromosome 19 (p=1.57x10"),
EMILINI on chromosome 2 (p=1.30x10°) and
CDC42BPA on chromosome 1 (p=2.16x10°). None of
these genes were identified as being differentially ex-
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Figure 3. Manhattan plot of the P-values of the transcriptome-wide association analyses for (a) smoking status (current
versus never) and (b) telomere length. The red line indicates the threshold for transcriptome-wide significance (P<2.17x10’6).

Table 3. Transcriptome-wide significant genes for telomere length.

Probe Gene symbol Chr Beta St. Err P

ILMN 2374159 HERPUDI 16 0.00015 2.98E-05 7.32E-07

ILMN 1665964 GAB2 11 7.35E-05 1.49E-05 9.81E-07

ILMN 3248511 FAMI167A4 8 0.00012 2.53E-05 1.86E-06

ILMN 2188722 GLS 2 0.00010 2.14E-05 1.92E-06

ILMN 1687213 FAMI1674 8 0.00011 2.39E-05 1.95E-06
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pressed in a large (10,233 participants) whole-blood
transcriptome meta-analysis of current versus never
smokers [35]. Seven of the top 10 genes in the Huan et
al. 2016 study [35] were represented by transcripts in
this study, of which one (PYHINI, p=0.03) was
nominally significantly (p<0.05) associated with smok-
ing status, but in the opposite direction (Supplementary
Table 14). No transcripts for the top gene (LRRN3) in
the Huan et al. 2016 study [35] passed quality control in
our study. The full association results are shown in
Supplementary Table 14.

No transcripts were associated with former versus never
smokers (Supplementary Table 15). Six out of the top
10 genes in the Huan et al. 2016 study [35] were
represented by transcripts in this study, of which two
(RASSF1, p=0.03 and PILRA, p=0.02) were nominally
significantly (p<0.05) associated with smoking status,
but in the opposite direction (Supplementary Table
15).

Transcriptome-wide  association  identified  five
transcripts associated with telomere length (Figure 3b,
Table 3). The transcripts were for the following genes:
HERPUDI on chromosome 16 (p=7.32x10’7), GAB2 on
chromosome 11 (p=9.81x107), FAMI674 on chromo-
some 8 (p=1.86x10‘6), GLS on chromosome 2
(p=1.92x10°) and FAMI674 on chromosome 8
(p=1.95x10"). The full association results are shown in
Supplementary Table 16.

No transcripts were significantly associated with gf, 1Q
change, six metre walk time, FEV1, grip strength, CRP,
fibrinogen, HbAlc, or methylation age acceleration
(Hannum or Horvath) (Supplementary Tables 6-13, 17-
18). Eight out of the top 10 genes for muscle strength in
the Pilling et al. 2016 study of 7,781 participants, [34]
were represented by transcripts in this study, of which
one (PNP, p=0.03) was nominally significantly
associated with grip strength at p<0.05, but in the
opposite direction (Supplementary Table 10).

Survival analyses

Gene expression levels were not associated with
mortality (all p<2.17x10®) (Supplementary Table 19).

DISCUSSION

This study has identified 1,741 transcripts that
demonstrate a change in expression levels in lympho-
blastoid cell lines derived from 434 individuals at ages
70 and 76 years. At age 70 years the expression levels
of specific genes were associated with smoking status
and telomere length.

The findings from the GO enrichment analyses
indicated an enrichment of biological processes
involved in the immune system. This is consistent with
the finding of a decline in the normal functioning of the
immune system with age [37]. A similar number of
genes showed increased levels of gene expression as
showed decreased levels of gene expression with age,
which is in line with previous findings from cross-
sectional studies [36, 38], that also identified gene
expression changes in genes involved in immune
processes. A look-up of the 907 genes that we showed
to be differentially expressed with age, and were
included in a relatively large (N=14,983) cross-sectional
study of expression in whole blood [36], showed that
244 were also differentially expressed in the whole
blood study. However, only 113 were differentially
expressed in the same direction. Discrepancies in these
results are likely due to the different cell types sampled
(whole blood which is a mixture of cell types versus
LCLs), and the cross-sectional nature of the previous
study (mean ages of cohorts included 38-72 years)
versus the longitudinal nature of the current study (ages
70-76 years). Our study specifically looked at change
over a six year period in the eighth decade of life,
whereas the previous study included many younger
individuals. The correlation density plot (Figure 1b) of
transcript correlations between ages 70 and 76 years
indicated a relatively low level of stability that was
slightly higher for transcripts for which expression
levels significantly changed between these ages than for
all transcripts. This may indicate that the transcripts for
which change could be detected were more accurately
measured. The high correlations between the control
samples (> 0.95 within plates and > 0.90 between
plates) indicated that overall, measurement error was
small.

The expression of three genes was upregulated in
current versus never smokers. F2RL3, which showed
the strongest association with smoking status, encodes a
member of the protease-activated receptor subfamily,
part of the G-protein coupled receptor 1 family of
proteins that is associated with inflammation.
Hypomethylation of F2RL3 has been associated with
smoking status and lung cancer [39, 40]. CDC42BPA
encodes a member of the Serine/Threonine protein
kinase family and is upregulated in pancreatic cancer, a
smoking related cancer, compared to normal tissue [41].
EMILINI encodes an extracellular matrix glycoprotein
associated with elastic fibers. It has been shown to
decrease tumor cell growth [42].

None of the transcripts associated with smoking status
in our study were identified in a previous whole-blood
transcriptome meta-analysis, including more than
10,000 individuals, of current versus never smokers
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[35], and none of the top 10 hits from that study were
nominally significant in our study. This may be due to
the previous study investigating gene expression in
whole blood, whereas our study investigated gene
expression in LCLs. Our failure to replicate previously
published associations for both smoking [35] and
muscle strength [34] may also be due to the smaller
size of our study.

The upregulation of expression of four genes was
associated with longer telomere length. HERPUDI
encodes a protein that is important in endoplasmic
reticulum (ER) stress response. ER stress influences
number of diseases including neurodegeneration and
cardiovascular disease [43]. GAB2 encodes a member of
the GRB2-associated binding protein (GAB) gene
family and is associated with human tumorigenesis,
particularly in breast cancer, leukemia and melanoma
[44]. FAMI67A4 is located in a locus previously
associated with autoimmune diseases [45]. GLS encodes
the K-type mitochondrial glutaminase which is
regulated by oncogenes and supports tumor cell growth
[46]. No genes previously associated with telomere
length via genome-wide association studies [47-49]
were shown to have expression levels associated with
telomere length in this study.

Strengths of this study include the longitudinal nature,
which allowed us to investigate expression changes
within older age. The large number of aging variables
allowed us to investigate the association between gene
expression levels and many cognitive and physical traits
in older age, the majority of which had not previously
been investigated. LBC1936 have a narrow age range
and are genetically homogeneous, reducing variability
that may be introduced in other cohorts.

Limitations include the use of LCLs rather than whole
blood. However, although we did not identify the same
genes as a whole-blood transcriptome meta-analysis of
smoking status [35], the majority of the genes that we
did identify are known to be differentially methylated or
expressed in smokers or smoking related cancers,
suggesting that the results are not just artefacts
introduced by LCL generation. Other limitations
include the relatively short time period between the two
waves of blood collection (~6 years), and the relatively
small number of individuals for whom we had
longitudinal data (n=434). The number of individuals in
each of the transcriptome-wide associations of aging
traits ranged from 665 to 781, which means that we had
limited power to detect individual small associations,
which, when combined, might predict aging-related
traits. A further limitation is the relative good health of
the LBC1936 participants, thus reducing the variance of
these traits relative to the general population. In the

future, sample sizes for this type of transcriptomic
analysis will increase as other studies with well
characterized aging cohorts move onto wide-range
expression analysis.

In conclusion, we identified several thousand genes
which show either increased or decreased expression
between ages of 70 and 76 years. These genes were
enriched for immune system processes. In the future we
intend to examine associations between changes in
expression and changes in cognitive and physical traits.
We also showed that genes previously identified as
being differentially methylated or expressed in smoking
or smoking-related cancers are over expressed in
smokers compared to non-smokers in LBC1936. We
identified a number of genes with expression levels
associated with telomere length that have previously
been associated with stress response, autoimmune
disease, and cancer. Finally, we have made available
results from the first transcriptome-wide associations of
a number of age-related physical and cognitive traits
that may be used in future meta-analyses of these traits.

MATERIALS AND METHODS

Lothian Birth Cohort 1936 (LBC1936)
Ethics statement

Investigation has been conducted in accordance with the
ethical standards and according to the Declaration of
Helsinki and according to national and international
guidelines and has been approved by the authors'
institutional review board. Ethics permission was
obtained from the Multi-Centre Research Ethics
Committee for Scotland (Wave 1: MREC/01/0/56), the
Lothian Research Ethics Committee (Wave 1:
LREC/2003/2/29), and the Scotland A Research Ethics
Committee (Wave 3: 07/MRE00/58). All persons gave
their informed consent prior to their inclusion in the
study.

Subjects

LBC1936 consists of 1091 (543 female) individuals,
most of whom took part in the Scottish Mental Survey
of 1947, during which, at the age of ~11years, they took
the Moray House Test version 12 (MHT), a validated
test of cognitive ability [50]. At a mean age of 69.5
years (SD 0.8) they were recruited to a study to
determine influences on cognitive aging [51, 52]. They
underwent a series of cognitive and physical tests.
Three further waves of cognitive and physical testing
have occurred at mean ages 73, 76, and 79 years. For
this study Peripheral Blood Mononuclear Cells
(PBMCs) were extracted from whole blood at ages 70
(Wave 1) and 76 (Wave 3) for the generation of
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lymphoblastoid cell lines (LCLs) at the Edinburgh
Clinical Research Facility (ECRF) Genetics Core,
Western General Hospital, Edinburgh. DNA extracted
from whole blood at age 70 was used to measure
telomere length and genome-wide methylation.

Physical tests

Physical trait measures included time taken to walk six
metres as quickly as possible, grip strength measured
with a Jamar Hydraulic Hand Dynamometer [all subject
had three trials with both hands, and the best of the
three trials in the dominant hand (self-reported) was
used], and FEV1 measured using a microspirometer (the
best of the three trials was used).

Cognitive tests

Cognitive tests included six Wechsler Adult Intelligence
Scale-IIIUK (WAIS-III) [53] non-verbal subtests
(matrix reasoning, letter number sequencing, block
design, symbol search, digit symbol, and digit span
backward). From these six cognitive tests a general
fluid cognitive factor (gf) was derived. The scores from
the first unrotated component of a principal components
analysis were extracted and labelled as gf. This com-
ponent explained 52% of the variance, with individual
test loadings ranging between 0.65 and 0.72. MHT
scores from ages 11 and 70 were corrected for age in
days and converted to MHT 1Q-type scores (mean =
100; SD = 15). IQ change between ages 11 and 70 years
was then calculated by regressing age 11 1Q on age 70

1Q.
Biochemical tests

CRP was measured using a dry slide immuno-rate
method on the OrthoFusion 5.1 F.S. analyser (Vitros
Chemistry Products CRP slides, Ortho Clinical
Diagnostics, Buckinghamshire, UK). As the CRP assay
is designed for detecting raised levels of CRP it cannot
distinguish values less than 3mg/L and all readings less
than 3mg/L (N = 467) were assigned a value of 1.5
mg/L. The reference interval for the assay is 10mg/L.
Therefore, CRP levels were classified as: normal (0-
3mg/L), elevated (4-10mg/L) or acute (>10mg/L) as
previously published [54]. Fibrinogen was measured
using an automated Clauss assay (TOPS coagulator,
Instrumentation Laboratory, Warrington, UK). HbAlc
was measured in non-fasting blood using an Adams
HA-8160 HbAlc analyzer, utilizing HPLc. The
coefficients of variation for these biomarkers are: CRP
= 126%, fibrinogen = 20%, HbAlc = 13%. Smoking
status was recorded as current smoker, former smoker
or never smoker.

Extreme outliers were removed after visual inspection
of the data. Two outliers were removed from HbAlc
and one each from six metre walk time and 1Q change.

Isolation of peripheral blood mononuclear cells

Whole blood was collected in 9ml Lithium Heparin
tubes with PBMC isolation occurring within 72 hours of
venepuncture. Whole blood was layered on histopaque
and span at 400g for 30 mins at room temperature.
Separated cells were collected and washed in RPMI
(1% 100x Penicillin/Streptomycin and 1% L-
Glutamine) and re-suspended in 1ml freezing mix (8%
DMSO in Fetal Calf Serum). Samples were slowly
frozen in a ULT using a cryo freezing container for at
least 4 hours before transferring to Liquid Nitrogen
storage. Cell number and viability was assessed using a
haemocytometer and trypan blue exclusion viability
test.

Generation of lymphoblastoid cell lines

PBMCs underwent Epstein Barr Transformation of the
B-lymphocyte component to generate LCLs at the
European Collection of Cell Cultures, Public Health
England, Porton Down, using standard methods [55].
Frozen cell pellets were returned to the ECRF Genetics
Core for RNA extraction.

RNA extraction

RNA was extracted from LCL pellets using Qiagen
miRNeasy kit. Cells were homogenised in Qiazol
Buffer with chloroform added to the homogenate and
phase separation performed at 4°C. The upper aqueous
phase was added to 1.5x ethanol and mixed, before
being added to the column. DNase treatment was on-
column. Eluted RNA was stored in a ULT. RNA yield
and RIN were assessed by Agilent 2100 Bioanalyser
and Nanodrop.

Gene expression profiling

Samples were amplified and biotin labelled using the
Ambion Illumina Totalprep RNA Amplification Kit.
The quality of the labelled cDNA was assessed on the
Agilent Bioanalyser and genome-wide gene expression
levels were measured on good quality samples using the
[llumina HumanHT-12 v4 Expression BeadChip and
scanned on an Illumina HiScan running GenomeStudio
v2011.1. A control RNA sample was included on each
array. The following quality control (QC) procedures
were applied to transcript profiles. Individuals with
signal-to-noise ratio <10 or with <9,000 transcripts
(P<0.01) detected were excluded (n=130). Probes
present in >20% of individuals with P<0.05 were
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retained. The lumiExpresso command in the R package
Tumi' [56] was used to perform variance stabilising
transformation and quantile normalisation within a
single step. After QC 23,031 transcripts were retained in
781 individuals at age 70 years and 574 individuals at
age 76 years. Transcript sequences were aligned to the
build 38 reference genome using BLAT [57]. Only
probes that perfectly mapped to a unique location in the
genome were kept, with all probes mapping to a second
position with greater than 40% identity excluded. The
remaining transcripts were annotated to genes by
overlapping their locations with Ensembl build 88 gene
coordinates using BEDtools v2.26.0 [58]. 14,500
transcripts that passed QC were successfully annotated
to a gene.

Telomere length measurement

Telomere length was measured using a quantitative
real-time polymerase chain reaction (PCR) assay [59].
The intra-assay coefficient of variation was 2.7% and
the inter-assay coefficient of variation was 5.1%. Four
internal control DNA samples were run within each
plate to generate absolute telomere lengths and to
correct for plate to plate variation. These internal
controls are cell lines of known absolute telomere
length, 6.9kb, 4.03kb, 2.0kb and 1.32kb respectively,
whose relative ratio values (telomere starting
quantity/glyceraldehyde 3-phosphate dehydrogenase
starting quantity) were used to generate a regression line
by which values of relative telomere length for the
actual samples were converted into absolute telomere
lengths. The correlation between relative telomere
length and absolute telomere length was 0.8.
Measurements were performed in quadruplicate and the
mean of the measurements used. PCRs were performed
on an Applied Biosystems (Pleasonton, CA, USA)
7900HT Fast Real Time PCR machine.

Methylation

Measurement of DNA methylation in LBC1936 has
been described in detail previously [60]. Briefly
genome-wide methylation levels were measured in
DNA extracted from whole blood using the Illumina
HumanMethylation450 BeadChips array. Quality
control was carried out on these data to remove (i)
probes with a low detection rate, (ii) low quality
samples, (iii) samples with a low call rate, (iv) samples
where there was a sex mismatch. Post-QC there were
450,726 autosomal probes available for analysis in 920
participants. Seventy-one of these probes were used to
calculate DNA methylation age using the regression
weights supplied by Hannum et al. [61]. 353 of these
probes were used to calculate DNA methylation age
using the regression weights supplied by Horvath et al

[62]. Methylation age acceleration for both the Hannum
and the Horvath methylation ages was calculated by
regressing DNA methylation age on chronological age
and saving the residual.

Statistical analyses

Expression change between ages 70 and 76 years

A paired t-test was used to investigate the difference in
the expression of each transcript between ages 70 and
76 years for the 434 individuals with expression
measured at both ages. Adjustment was made for plate
and batch. A Bonferroni corrected p value of
0.05/Mganscrips = 0.05/23031 =2.17x10° was used to
indicate statistical significance. All genes were entered
into a Gene Ontology (GO) enrichment analysis, ranked
by p value of the transcript with the lowest p value, for
biological processes using the Gene Ontology
enRIchment analysis and visualLizAtion tool
(GORILLA) [63, 64]. Next, separate analyses were
performed for genes where expression levels increased
and for genes where expression levels decreased. No p
value cut off was used to select genes that were entered
into the GO enrichment analyses. A Pearson correlation
was calculated for each transcript at age 70 and 76
years, controlling for plate and batch.

A heatmap of gene expression profiles across
individuals and waves was plotted using the
ComplexHeatmap package in R [65]. Plotting was
restricted to genes significantly differentially expressed
between waves across the 434 individuals with
expression data at both timepoints. Both rows and
columns of the heatmap were scaled to a mean of 0 and
standard deviation of 1 prior to plotting. K means
clustering with k set to two was used to separate genes
into those going up and down between timepoints and
GO terms were retrieved using the biomaRt R package
[66].

Transcriptome-wide analyses

Power calculations were performed using the pwr R
package [67, 68]. Linear regression models were used to
test the association of gene expression at age 70 years
with gf, 1Q change between the ages of 11 and 70 years,
six metre walk time, FEVI1, grip strength, CRP,
fibrinogen, HbAlc, smoking status (current versus
never and former versus never), telomere length and
methylation age acceleration (Hannum and Horvath),
adjusting for age, sex, batch and plate (N=665 to 781).
Grip strength, six metre walk time and FEV1 were also
adjusted for height. Expression of each gene was the
outcome variable in all models. A Bonferroni corrected
p value of 2.17x10° was used to indicate statistical
significance. Linear regression analyses were performed
in R. The most significant transcripts for the top 10
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genes associated with muscle strength in [34] and
smoking status (current versus never and former versus
never) in [35] were identified in our equivalent
analyses.

Survival analyses

Mortality status was obtained from data linkage from
the National Health Service Central Register, provided
by the General Register Office for Scotland (now
National Records of Scotland). Cox proportional
hazards regression models were used to test the
association between gene expression and mortality,
adjusting for age at sample collection, sex, batch, and
plate. Survival analyses were performed in R [68] using
the survival package [69].
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