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ABSTRACT

A conceptual difficulty in genetics of age-related phenotypes that make individuals vulnerable to disease in
post-reproductive life is genetic heterogeneity attributed to an undefined role of evolution in establishing their
molecular mechanisms. Here, we performed univariate and pleiotropic genome-wide meta-analyses of 20 age-
related phenotypes leveraging longitudinal information in a sample of 33,431 individuals and dealing with the
natural-selection—free genetic heterogeneity. We identified 142 non-proxy single nucleotide polymorphisms
(SNPs) with phenotype-specific (18 SNPs) and pleiotropic (124 SNPs) associations at genome-wide level.
Univariate meta-analysis identified two novel (11.1%) and replicated 16 SNPs whereas pleiotropic meta-
analysis identified 115 novel (92.7%) and nine replicated SNPs. Pleiotropic associations for most novel (93.9%)
and all replicated SNPs were strongly impacted by the natural-selection—free genetic heterogeneity in its
unconventional form of antagonistic heterogeneity, implying antagonistic directions of genetic effects for
directly correlated phenotypes. Our results show that the common genome-wide approach is well adapted to
handle homogeneous univariate associations within Mendelian framework whereas most associations with
age-related phenotypes are more complex and well beyond that framework. Dissecting the natural-selection—
free genetic heterogeneity is critical for gaining insights into genetics of age-related phenotypes and has
substantial and unexplored yet potential for improving efficiency of genome-wide analysis.

INTRODUCTION

Genome-wide association studies (GWAS) are a
powerful tool for hypothesis-free analysis of genetic
predisposition to various phenotypes. Historically,
GWAS were built within the “common disease —
common genetic variant” concept following the frame-
work of medical genetics. The underlying hypothesis in
this framework is that there is a “true” or causal genetic
effect on a phenotype of interest [1, 2]. This approach in
GWAS has been supported by successful discovery of
causal genetic mutations for Mendelian disorders [3].

Essentially the same approach is pursued in GWAS of
complex phenotypes, which do not follow clear pattern of
Mendelian inheritance [4]. Extension of the framework of
medical genetics of hereditary disorders to the complex
non-Mendelian phenotypes relies on the hypothesis that
they can have a genetic component. This hypothesis is
supported by the concept of heritability, with significant
heritability interpreted as indication of “pure” or “true”
genetic component in a trait [2]. The concept of heritabi-
lity, introduced in breeding experiments to improve crop
yield, requires, however, controlled and fixed environ-
ment [5, 6] that is strongly violated in human populations.
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The problem becomes even more challenging for age-
related phenotypes, i.e., phenotypes that make indi-
viduals vulnerable to disease in post-reproductive life.
A conceptual difficulty in genetics of age-related
phenotypes is the natural-selection—free genetic
heterogeneity attributed to an undefined role of
evolution in establishing their molecular mechanisms
[7, 8]. This problem is complicated by recent changes in
human life expectancy [9] and the fitness landscape [10-
13]. Accordingly, in evolutionary biology, age-related
phenotypes are viewed as the results of indirect
mechanisms (“side effects”) such as co-evolution with
fast-evolving pathogens, mismatch with environments,
reproductive success at the expense of health, trade-offs
that leave every trait suboptimal, defenses and their
special costs, etc. [7]. The concept of heritability in the
evolutionary framework for age-related phenotypes
becomes even more problematic because the estimates
of heritability change as environment changes [5, 6] and
significant heritability does not imply that the same
genetic variant carry the same risk in different
population groups, even of the same ancestry [11].

The natural-selection—free genetic heterogeneity has not
been addressed in mainstream GWAS. This hetero-
geneity implies that differences in genetic pre-
disposition to age-related phenotypes across different
population groups is biologically motivated. According-
ly, different, even antagonistic, effects of the same
allele on the same phenotype in different population
groups are biologically plausible [14, 15]. Another
challenge in the evolutionary framework is that genetic
variants predisposing to a phenotype may not
necessarily predispose to another, even causally related,
phenotype [16, 17] or such genetic variants can
predispose to seemingly unrelated phenotypes [18-20].

Here, we examine genetic predisposition to age-related
phenotypes following the concept of an undefined role
of evolution in establishing their molecular
mechanisms. We performed the univariate and pleiotro-
pic GWAS meta-analyses of 20 age-related phenotypes
in the sample of 33,431 Caucasians from five
longitudinal studies. We identified 142 non-proxy
(defined as linkage disequilibrium [LD] r2<70%) single
nucleotide polymorphisms (SNPs) with genome-wide
(GW) significance (p<pgp=5x10"). They include two
novel and 16 previously reported SNPs attained GW
significance in univariate meta-analysis of individual
phenotypes, and 115 novel and nine previously reported
SNPs attained GW significance in pleiotropic meta-
analysis. We show that pleiotropic associations for most
novel SNPs, 93.9% (108 of 115 SNPs), and for all
replicated SNPs were strongly affected by the natural-
selection—free genetic heterogeneity in a rarely
recognized form of antagonistic heterogeneity, implying

antagonistic directions of genetic effects for directly
correlated phenotypes.

RESULTS
Study overview

We performed two-stage univariate and pleiotropic
meta-analyses of genetic predisposition to 20 weakly-
to-modestly  correlated  age-related  phenotypes
(Supplementary Figure 1). The data were drawn from
five longitudinal studies for 33,431 men and women
combined, who identified themselves as of Caucasian
ancestry. In stage 1, we first performed simplified
univariate GWAS of each phenotype in each cohort
separately using plink software [21]. Then, these results
were prioritized and top 1,000 promising SNPs were
selected for more comprehensive analysis leveraging
information on repeated measurements for quantitative
markers and timing of the risk outcomes (Tables 1 and
Supplementary Table 1). In stage 2, we performed
univariate meta-analysis to combine statistics for these
1,000 selected SNPs across cohorts and pleiotropic
meta-analysis to combine such statistics across
phenotypes. These analyses addressed the natural-
selection—free genetic heterogeneity in  genetic
predisposition to age-related phenotypes (see the
Introduction) by performing five meta-tests (Fig. 1)
(details in Methods).

Univariate meta-analysis

Using the Fisher test and a fixed-effect meta-test (Fig.
1, pathway 1a), we identified two novel (see Methods)
non-proxy SNPs (defined as LD r2<70%, actual LD for
the reported SNPs in the same locus ranged "=1% to
64%, Supplementary Table 2) associated at GW level
with HC (rs6745983, Bei=-0.077, pmem=4.2><10'8) and
BG (510885409, fe=0.672, Pmea=1.9%10") (Sup-
plementary Table 3). We also replicated (p<pgw) 24
associations, primarily with lipids (21 associations), for
16 SNPs in or nearby (within +£100 Kb flanking region
for the index SNP) 11 protein coding genes
(Supplementary Table 3). Seven associations were
replicated in the LPL-gene locus. P-values were smaller
for the meta-test than for the Fisher test (Duera<Prisher)
for all associations except for the associations of
15780094 With BG (Der=2.7%10" vS. prigher =2.4x107'")
and 15261332 with TC (Ppe=5.1¥10" VS prigher
=2.7x10"). The Fisher test benefited the meta-analysis
because it disregarded strong heterogeneity in the effect
sizes across cohorts measured by the heterogeneity
coefficient I, i.e., I'=87.8% for rs780094 and I'=82.2%
for rs261332, as supported by significant inverse
correlation of the ratio 10g;o(Pmera)/10g10(PFisher) With 12,
Fearson=-0.634, p=5.0x10"",
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Table 1. Basic characteristics of cohorts included in the analyses.

Sample | Number Age Birth
Cohort P (SD), dates Quantitative markers Risk outcomes
size of visits years (range)
Markers: BG, BMI, CRP, creatinine, DBP, FVC, HC, HDL-C, HR, SBP, TC, TG
Risk outcomes: AD, AF, cancer, CHD, DM, death, HF, stroke
ARIC 9,612 41543 (5.7) 13421411- All All except AD
CHS 3,182 10 | 72.4 (5.4) 1885- All All
i A 1925
FHS | 8628 28* | 37.8 (9.3) | 138> All All
i e 1980
64.3 1917-
MESA 2,527 5 (10.2) 1957 All All except cancer and AD
1905- All except creatinine, FVC, HC, HR,
HRS 9,482 215820.1) 1974 and TG All except AF

Cohort: Atherosclerosis Risk in Communities Study (ARIC); Cardiovascular Health Study (CHS); Framingham Heart Study (FHS),
the Multi-Ethnic Study of Atherosclerosis (MESA), and Health and Retirement Study (HRS).

Age is given at baseline; standard deviation (SD).
*Number of visits in the FHS original cohort, offspring and 3" generation cohort are 28, 8, and 2, respectively.

Quantitative markers: blood glucose (BG); body mass index (BMI); C-reactive protein (CRP); creatinine; diastolic blood pressure
(DBP); forced vital capacity (FVC); heart rate (HR); hematocrit (HC); high-density lipoprotein cholesterol (HDL-C); systolic blood
pressure (SBP); total cholesterol (TC); and triglycerides (TG).
Risk outcomes: Alzheimer’s disease and related dementias (AD), atrial fibrillation (AF); cancer; coronary heart disease (CHD);
diabetes mellitus (DM); death; heart failure (HF); and stroke.
Additional details are provided in Supplementary Table 1.

pathway 1a > Figure 1. Scheme of univariate and pleiotropic meta-
analyses in stage 2. (A) Statistics from stage 1 univariate
(AL1C1—1P12:0L P1CS _(_EE) - GWAS of 20 phenotypes in five cohorts denoted PiCj,
1] T P]ti IihM i € (1,20) and j € (1,5). (B) Univariate statistics from the
wp2c14pzc2 ====-3 P2C5 ==5 P2Fc -~ P2M meta-analysis across cohorts using the fixed-effects meta-test
g (PiM) and Fisher test (PiFc). (C) Statistics from the pleiotropic
2 ||| | IH meta-analysis across phenotypes in cohort j for: (i) omnibus
© B ) o tests with correlation matrix for phenotypes Z]’-J (OpGj) and
- PZTﬁlJPlleCZTtPZﬂ(i'Sz;.pzypc “P20M % effect statistics 2‘.]5 (ObCj) and (ii) Fisher test (FpCj). (D) Meta-
g s statistics from Fisher test across cohorts for the results in (C)
£ ) HI I ) (E) e (OpFc, ObFc, and FpFc). (E) Meta-statisti h
8| | opc1- opc2— opcst OpFc | MOp g pFc, c, an. pFc). (E) 'eta statistics across phenotypes
l 1 I Y for the results in (B) from (i) meta-test across cohorts and
0bC1 - 0bC2 — ObC5+4> ObFc | MOb omnibus test across phenotypes with correlation matrix for
| | | ! phenotypes ZP (MOp), (i) meta-test across cohorts and
v FpCl > FpC2 — FpC5 > FpFc | MFp v omnibus test across phenotypes with correlation matrix for
effect statistics £2, (MOb), (iii) meta-test across cohorts and
FcFp < Fisher test across phenotypes (MFp), and (iv) Fisher test
across cohorts and Fisher test across phenotypes (FcFp).
pathway 2b > Pathway 1: meta-analysis combining statistics across cohorts
(pathway 1a) and pleiotropic meta-analysis across
_: ]' univariate across cohorts a‘:,’,/:f:::fte“ phenotypes (pathway 1b). Pathway 2: meta-analysis
—_ omnibus test; correlation of phenotypes combining statistics across phenotypes (pathway 2a) and
:: } pleiotropic ?:;:zstet::t correlation of effect statistics cohorts (pathway Zb)
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Significance of the association of rs2155216 with TG in
our modest sample of 33,431 individuals (p;e1,=9.4%10
") was about the same as previously reported
(pg,.asp=1.6X10'14) in a sample of 140,059 individuals
[22]. These p-values indicate improvement of the
efficiency of the analysis that can be quantified by the
ratio of the logjo(p-value) to the sample size [23]
yielding ~ 4-fold  (=log;o(9.4x10"%)x140,059/log;,
(1.6x107%)/33,431) larger efficiency in our study than in
[22]. This improvement was partly achieved by
leveraging longitudinal information on repeated
measurements that resulted in smaller standard errors
(Supplementary Figure 2).

Pleiotropic meta-analysis

We used four tests in pathway 1 and three tests in
pathway 2 (Fig. 1) to examine pleiotropy in the domains
of 12 quantitative markers, 8 diseases and death, and all
20 phenotypes (Table 1). Pleiotropic associations were
defined as at least one test showing GW significance
(see Methods).

This analysis identified 115 novel pleiotropic SNPs in or
nearby (within £100 Kb flanking region for the index
SNP) 84 protein coding genes (Table 2) and replicated
nine SNPs (Supplementary Table 4) with pueic<pow by
combining associations with multiple phenotypes that
individually did not attain GW significance in univariate
meta-analysis (p,,~pew) (Supplementary Table 5). SNPs
were identified as novel if they did not attain GW
significance in our pleiotropic meta-analysis of the results
collected in GRASP for the index SNPs or for flanking
SNPs, if no results for 20 selected phenotypes (Figure 1)
were reported in GRASP for the index SNPs (see
Methods). Specifically, of 115 SNPs, 31 were not
reported in GRASP for the selected 20 phenotypes. For
them, we identified multiple SNPs within £1Mb flanking
region in GRASP. For the flanking SNPs, which were in
the strongest LD to the index SNPs, no GW significant
pleiotropic associations were identified (Table 3). Nine
flanking SNPs showed GW significant pleiotropic
effects, which were independent of the pleiotropic effects
for the index SNPs. Of 115 novel SNPs, 29 SNPs
attained smaller p-value in pathway 1 and the remaining
86 SNPs in pathway 2.

Table 2. Novel SNPs attained genome-wide significance in pleiotropic meta-analysis.

. Pathway Meta p-values
Location,
ID Gene(s)' SNP? Chr | base pairs | EA| EAF |Domain| Np 1 Pyiop Puiob Puirp Prcrp | Group | Pcrase | Ng
GRCh38
2 POch POch PFch
1 CLCNG6 rs17376328 1 11,816,605 A 0.051 12M 3 2 6.89E-15| 1.21E-05 2.83E-07| HP |3.08E-07| 3
o | NKAINISNRNPAO! | 7500330 | 1 | 31249319 | A | 0218 | 12M | 5 | 2 |489E-10| 3.69E-15 2.74E-06 |HP/HB | 3.33E-01 | 1
ZCCHC17*
3 | TINAGLI-SERINC2* | 1516834550 | 1 | 31,530916 | A | 0.125 | 12M | 8 2 |4.17E-10| 5.48E-09 1.O4E-08 | M 0
4 CSMD2 1510914845 1 34,022,514 | C | 0.499 20P 3 1 2.23E-08 | 1.73E-03 | 1.41E-03 | 3.97E-03 | HP |3.20E-01]| 1
5 rs7551194 1 38,680,229 | A | 0.249 12M 4 1 2.55E-08 | 3.99E-02 |2.16E-04 |3.92E-02| HP |1.66E-01 | 2
AKIRIN1/
6 NDUFS5-MACF1* 1s7554809 1 39,038,206 | A | 0.168 12M 3 2 2.55E-08 | 4.16E-05 1.30E-03 | HP |6.04E-02| 2
7 15778405 1 56,237,741 A 0.493 12M 2 2 1.38E-11 | 2.34E-05 420E-06 | HP |[2.98E-01| 1
8 PTGER3 rs1327464 1 70,900,555 | A | 0.339 12M 5 1 2.37E-16 | 1.17E-03 | 7.39E-07 | 2.04E-05| HP |3.14E-01| 1
9 rs17105569 1 80,872,915 | A | 0.136 12M 4 1 1.80E-09 | 6.06E-03 |2.96E-04 | 1.36E-02| HP |1.62E-01| 1
RNPC3/
10 AMY2B-AMY2A* 154847151 1 103,581,040 | T | 0.365 20P 5 2 1.04E-09 | 5.48E-04 1.45E-02| HP |3.23E-01| 1
11 NTNG1 157542677 | 1 | 107319431 | T | 0.1 2M | 5 2 [2.99E-09| 1.94E-06 6.08E-04 | HP |1.03E-01] 2
12 | FCRIA-FCRL3* 151969742 | 1 | 157,643,547 | C | 0317 | 12M | 4 2 |L.58E-12| 1.60E-08 4.71E-05 |HP/HB 0
13 OLFML2B 152490420 | 1 | 161,994,746 | G | 031 | 20P | 5 2 |249E-08 | 1.02E-02 292E-03| HP |3.15E-01| 1
14 PRRX1 rs9426908 1 170,674,846 | C | 0.069 20P 7 2 5.97E-07 | 7.58E-10 2.24E-05| HB |[3.09E-01| 1
15 KCNH1 rs1934628 1 210,739,125 | G | 0.164 12M 5 2 8.52E-10| 1.98E-07 1.78E-05| HP 0
16 ESRRG 151436879 1 216,909,043 | A | 0.041 20P 5 2 1.68E-07 | 8.21E-09 6.72E-07 M 291E-01 | 1
17 GREB1 157596162 2 11,604,106 | C | 0.196 12M 5 1 3.83E-08 | 2.03E-04 |3.02E-06 | 9.25E-04 M 3.18E-01| 1
18 | SDCILAPTMA4A* | 1511685359 | 2 | 20,149672 | T | 0.137 | 12M | 3 I |2.80E-09| 4.04E-03 |6.86E-06 |7.49E-04| HP |[3.15E-01| 1
19 | ADCY3.DNAJC27# | 1s10182181 | 2 | 24927427 | C | 0472 | 12M | 3 2 |848E-10| 3.73E-06 4.44E-05| HP |3.41E-05| 3
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20 CAPN13 rs10173959 2 30,806,079 | A | 0.297 20P 6 2 8.25E-11| 5.43E-04 4.89E-05| HP |[1.66E-02| 3
21 CAPN13 rs10176484 2 30,806,230 | A | 0.304 20P 4 2 6.03E-10 | 1.49E-04 6.44E-05| HP | 1.88E-02| 3
22 1510495824 | 2 | 34525478 | C | 0247 | 12M | 3 2 [3.61E-17| 4.09E-11 1.03E-03 |HP/HB | 1.75E-01 | 1
23 THADA 1517334919 | 2 | 43480246 | A | 0.1 12M | 4 2 |2.89E-14| 3.96E-10 5.19E-07 |HP/HB| 1.17E-04 | 3
24 EPASI rs10191091 2 46,346,071 G | 0.498 12M 7 2 1.48E-08 | 2.13E-11 5.63E-08| HB |143E-01| 2
25 ANTXRI 1s4255990 2 69,046,532 C 0.062 20P 7 2 1.02E-11 | 1.67E-07 7.89E-10 M 8.35E-02 | 1
26 DNAHS6 rs11889456 | 2 | 84,619,559 | C | 0.077 | 20P | 7 1 8.17E-12| 7.78E-05 |1.16E-07 | 1.11E-04| HP |1.65E-01] 1
27 MGATS 15755503 | 2 | 134,386,883 | A [ 0427 | 12M | 4 | 2 [589E-11| 2.13E-04 1.75E-04 | HP 0
28 TMEMI163 1s503562 2 134,502,500 | G | 0.474 12M 5 2 9.26E-21 | 1.37E-14 7.52E-06 |HP/HB| 2.62E-02 | 2
29 TMEMI163 15666614 2 134,532,882 | G | 0.416 12M 5 1 1.50E-09 | 3.13E-07 | 1.93E-07 | 3.96E-09 | HP |2.66E-03| 4
30 UBXN4 16430585 2 135,749,357 | A | 0.253 12M 5 2 6.09E-11 | 4.00E-06 3.93E-04| HP |1.69E-04| 3
31 cCDClal 112693171 | 2 | 178,883,720 | A | 0.132 | 12M | 7 2 |7.25B-15| 7.51E-09 143E-08 | HP |131E-01] 1
32 rs6781156 3 5,811,612 T 0.394 20P 7 1 2.48E-10 | 3.24E-03 |3.97E-05|2.06E-03 | HP |6.82E-02| 2
33 CCK* rs11129950 3 42,273,095 C 0.15 12M 5 2 1.10E-10 | 4.39E-07 1.43E-06 | HP |5.44E-02| 2
34| WNTSA/ERC2* 1751194 | 3 | 55453400 | T | 046 | 20p | 1| 2 |292E-08| 145E-04 2.80E-02| HP |447E-02| 2
35 FHIT 11716721 3 60,696,259 | A | 0.126 20P 7 2 1.13E-09 | 8.92E-06 2.45E-07| HP |[3.79E-01| 1
36 COLGAS rs16827675 | 3 | 130428488 | C | 0027 | 20p | 8 | 2 |1.09E-10| 7.I3E-12 9.13E-10| HB |4.14E-01| 1
37 GFM1 rs16829273 3 158,664,831 | C 0.155 12M 7 2 3.42E-12 | 2.07E-08 5.50E-06 | HP/HB 0
38 1s7676659 4 26,055,991 T 0.414 12M 2 2 4.17E-09 | 4.21E-07 1.73E-02 | HP |[5.02E-03| 3
39 16827919 4 38,389,984 | A | 0.459 12M 6 1 3.93E-09 | 4.63E-03 | 1.01E-04 | 3.83E-05| HP |4.84E-06| 3
40 | per.SLCaadar | 110012631 | 4 | 71,093,574 | G | 0.054 | 20P | 4 | 2 |610E-13| 5.17E-07 3.03E-05 | HP 0
41 SLCAA4 16846301 | 4 | 71481774 | G | 0.002 | 20P | 9 | 2 |3.44E-12| 4.30E-09 4.97E-07 |HP/HB | 7.95E-02 | 1
42 CCSER1 rs13103126 4 90,340,833 T 0.448 12M 5 2 2.78E-08 | 4.49E-06 8.83E-04 | HP [9.96E-02| 2
43 CCSER1* rs2176312 4 91,608,453 C 0.478 12M 2 2 6.28E-11 | 7.48E-07 1.57E-04 | HP 1.64E-02 | 2
44 11460770 4 114,484,189 | A | 0.365 12M 7 2 4.34E-17| 1.13E-13 1.09E-08 | HP/HB 0
45 USP38-GAB1* rs300934 4 143,250,595 | T 0.334 20P 8 1 1.20E-09 | 2.82E-03 |5.64E-07 | 1.54E-05| HP |8.15E-03| 4
46 FSTL5* rs7438099 4 161,343,620 | T 0.323 12M 8 2 2.24E-08 | 9.55E-08 6.40E-06 | HP 1.20E-01 | 2
47 CMYA5 rs259130 5 79,763,725 T 0.326 20P 6 2 4.11E-08 | 5.63E-03 5.65E-04 | HP 0
48 rs980831 5 101,415,163 | T 0.022 20P 4 1 4.41E-10| 3.26E-05 |6.18E-04|1.18E-05| HP 0
49 EFNAS rs152608 5 107,435,508 | A | 0.247 12M 4 2 5.23E-11| 1.12E-11 3.16E-04 |HP/HB| 1.83E-03 | 3
50 ADRB2* 16580586 5 148,863,160 | C 0.116 20P 9 1 8.38E-25| 6.29E-09 |2.11E-12 |9.04E-09| HP |7.17E-03| 4
51 GLRA1* rs10053232 5 152,123,786 | T 0.224 12M 3 2 1.19E-09 | 3.68E-05 2.51E-03| HP |3.43E-01] 1
52 EBF1* rs2434612 5 158,595,033 | C 0.207 12M 2 2 3.28E-17 | 8.25E-11 4.21E-04 |HP/HB | 6.39E-03 | 2
3 | HLAE.GNLI/PRR3 | 152844720 | 6 | 30,507,940 [ T | 0312 | 12M | 5 | 2 |3.55E-08| 9.56E-05 122E-04 | HP |823E-02 2
54 C60orf10 16907322 6 32,357,168 | A | 0.184 12M 6 1 2.05E-08 | 6.63E-04 | 6.60E-06 | 3.35E-04 | HP |242E-02| 2
55 g;’:l_gl?‘ﬁ:%%gi 16936620 6 33,016,674 | T 0.363 20P 7 2 3.18E-09 | 1.43E-02 5.33E-05| HP 0
56 COLI9A1 117690160 6 70,197,672 | A | 0.055 12M 4 1 1.23E-08 | 5.58E-02 | 1.13E-02 | 1.76E-02 | HP |5.22E-02| 2
57 VGLL2* rs783199 6 117,229,431 | T 0.151 12M 4 2 8.58E-09 | 1.17E-05 7.04E-04 | HP |9.40E-04| 4
58 rs9482188 6 121,700,736 | A | 0.031 12M 5 2 9.97E-17 | 2.83E-15 4.48E-06 |HP/HB 0
59 HDAC9 rs1178348 7 18,176,753 C 0.257 20P 6 2 1.13E-08 | 1.12E-03 1.70E-04 | HP |[3.93E-01| 1
60 CPVL rs7785072 7 29,097,886 | A | 0.497 12M 5 2 3.40E-15| 1.34E-09 6.69E-05 |HP/HB 0
61 TMEM?248* 14717331 7 66,913,899 T 0.304 20P 2 2.85E-14 | 7.21E-10 2.68E-08| HP |[341E-01| 1
62 CALCR 156966283 7 93,539,572 T 0.108 12M 4 2 5.05E-19 | 2.92E-10 1.02E-06 |HP/HB | 2.45E-01 | 1
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63 VGF 110953325 7 101,162,227 | C 0.401 20P 5 2 591E-10| 4.37E-07 1.69E-07 | HP 0
64 17807451 7 115,825,666 | A | 0.134 20P 8 1 6.20E-09 | 4.29E-05 |3.28E-06 | 6.43E-06 | HP 0
65 rs6466686 7 118,996,763 | G | 0.356 12M 4 1 1.97E-08 | 7.48E-03 | 1.26E-04 | 8.29E-03 | HP 0
66 TSGA13 rs1038638 7 130,676,252 | C 0.461 20P 5 1 4.01E-08 | 9.40E-02 |8.55E-03|2.79E-02| HP 1.56E-01 | 2
67 CNTNAP2 rs700278 7 146,492,560 | T 0.458 12M 3 2 4.73E-09 | 1.26E-05 3.99E-03 | HP 0
68 BIN3-EGR3* 13893402 8 22,679,688 | G 0.321 20P 7 2 8.35E-09 | 8.09E-04 2.20E-05| HP [4.18E-01| 1
69 RP1 110103201 | 8 | 54,530,554 | A | 0377 | 12M | 5 1 1.19E-10 | 1.66E-04 |7.10E-06|1.57E-04| HP |2.27E-01| 1
70 XKR9 rs2732091 8 71,006,188 T 0.493 12M 5 1 3.94E-11 | 9.84E-05 |4.10E-06 | 8.38E-03 | HP 1.11E-01 | 2
71 SLC24A2 rs7851478 9 19,653,532 | G | 0.294 20P 6 1 7.37E-09 | 3.01E-03 | 1.15E-04 | 2.16E-02 | HP 0
72 rs3928808 9 32,278,893 | A | 0.345 12M 4 2 4.29E-10| 1.97E-06 348E-03| HP |1.16E-01| 2
73 FBP2 1s2987900 9 94,593,188 | G 0.057 20P 5 2 1.45E-08 | 7.07E-02 2.21E-03 | HP 0
74 ABCAI 154149313 | 9 | 104824472 [ C | 0141 | 20P | 5 | 2 |139E-09| B.S4E-05 2.30E-04 | HP 0
75 ABCA1 rs10820738 9 104,828,835 | G | 0.068 12M 5 2 8.30E-09 | 2.11E-06 3.34E-03| HP [3.02E-04| 2
76 LPARI rs1476946 9 111,102,469 | C 0.332 12M 5 1 2.47E-08 | 1.80E-03 |3.84E-06 | 1.26E-02 | HP 0
77 11340131 10 16,261,811 T 0.028 20P 6 2 2.27E-09 | 6.96E-04 5.48E-07 | HP |3.59E-01]| 1
78 1s7127823 11 28,939,160 T 0.382 12M 8 2 2.67E-13 | 1.48E-10 1.66E-07 |HP/HB | 3.70E-04 | 4
79 | ARLI4EP.MPPED2* | 151222210 | 11 | 30,340,578 | A | 0201 | 12M | 4 | 1 |1.0SE-09| 3.88E-02 |3.94E-06|325E-02| HP |2.68E-01| I
80 SHANK2 rs10459038 | 11 | 71,135915 | C | 0485 | 12M | 1 2 | 1.8IE-10| 2.42E-04 3.67E-02| HP 0
81 NTM rs2442100 11 131,429,821 | C 0.047 12M 5 2 6.59E-10 | 3.87E-08 2.29E-05 |HP/HB 0
82 SLCOIB7 111045743 12 21,089,365 G 0.045 12M 3 2 5.78E-14 | 2.56E-10 5.23E-07 |HP/HB 0
83 FGD4 157315682 12 32,533,023 | A | 0.144 12M 4 2 8.62E-09 | 1.40E-05 3.86E-03 | HP 0
84 RBM19* rs11066861 12 | 113,982,465 | A | 0.057 12M 5 2 3.84E-12 | 1.20E-08 6.65E-07 | HP | 1.48E-02| 3
85 CDK2API1 rs1109559 12 | 123,273,314 | C 0.324 20P 4 1 3.10E-09 | 8.64E-05 | 1.83E-05|4.01E-03| HP |2.34E-03| 4
86 rs9506931 13 22,814989 | G | 0.267 12M 5 1 1.05E-08 | 4.23E-03 |3.45E-05|2.00E-02| HP |7.93E-02| 2
87 | pDXI-CDX2* 12504220 | 13 | 27945217 | T | 0.114 | 12M | 4 | 2 |496E-09| 383E-05 2.50E-04 | HP 0
88 DGKH 19315885 13 42,068,674 | G | 0.365 12M 5 2 5.22E-11 | 2.56E-09 1.44E-06 |HP/HB | 3.39E-01 | 1
89 DGKH 1s670676 13 42,127,603 T 0.208 20P 7 2 1.34E-08 | 3.03E-06 3.77E-08 M 0
90 1359412 13 64,653,337 C 0.495 12M 3 2 3.04E-08 | 4.73E-06 6.27E-02 | HP 0
91 rs4903274 14 40,055,761 C 0.296 12M 7 2 4.76E-16 | 4.43E-09 1.41E-06 |HP/HB 0
92 FUT8* 14899173 14 65,326,450 T 0.227 20P 7 2 1.90E-08 | 9.48E-04 2.59E-06 | HP 0
93 rs7151718 14 86,428,552 T 0.068 12M 5 2 2.95E-09 | 8.14E-06 4.84E-04 | HP 0
94 RYR3 rs2217807 | 15 | 33,491,010 | G | 0427 | 12M | 6 1 3.74E-08 | 1.49E-02 |2.59E-04 |2.59E-04| HP |1.97E-01] I
95 SHF rs3959644 15 45,195,934 | A 0.35 12M 3 2 4.00E-08 | 1.03E-05 1.59E-03 | HP |3.14E-01]| 1
96 ATPSB4* 15626744 15 49,760,008 C 0.026 20P 10 2 1.17E-11 | 8.33E-10 8.83E-08 |HP/HB 0
97 SALL1* 157499584 16 51,205,506 | A | 0.297 20P 4 1 3.27E-12 | 4.02E-04 |2.99E-04 | 1.85E-04 | HP | 1.93E-01| 2
98 MT3-MT2A* 1512444489 | 16 | 56,597,022 | A | 0223 | 12M | 5 | 2 |1.03E-09| 9.58E-08 2.12E-07| HP 0
99 rs2057827 16 66,235,992 C 0.165 12M 8 2 6.99E-14 | 1.17E-08 6.03E-08 | HP |[3.93E-02| 3
100 CYBSB 15246134 16 69,440,614 T 0.416 12M 5 2 5.22E-10| 1.52E-08 2.36E-08 M 0
101|  GLPIR.RCVRN* | 874307 | 17 | 9894757 | G | 0271 | 12M | 6 I |265E-09| 1.02E-03 |5.90E-08|4.13E-05| M |125E-03| 3
102 MAPT rs11079727 17 45,899,447 T 0.167 12M 3 2 4.33E-09 | 5.97E-07 497E-05| HP [2.71E-02| 3
103 1s7213039 17 51,433,911 T 0.221 12M 4 2 2.90E-08 | 2.34E-04 8.62E-06 | HP |243E-02| 2
104 rs312750 17 70,347,398 C 0.498 20P 4 2 1.48E-07 | 3.53E-10 3.93E-06 | HB |[3.49E-01| 1
105 RNF157 rs11539879 17 76,166,467 | A | 0.043 20P 7 2 1.84E-06 | 9.30E-09 8.41E-05| HB 0
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105 RNF157 111539879 | 17 | 76,166,467 | A | 0.043 | 20P | 7 2 1.84E-06 | 9.30E-09 8.41E-05| HB 0
106 PTPRM rs1031116 | 18 | 7,861,458 | T | 0.047 | 12M | 3 2 1.98E-08 | 5.14E-06 1.65E-02| HP |9.86E-02| 2
107 MpfﬁgS;AL' 14797589 | 18 | 11,917,411 | A | 045 | 12M | 2 2 |6.74E-09| 1.04E-06 1.39E-02 | HP |7.95B-02] 1
108 LDLRADA 17231732 | 18 | 13,554,311 | C | 0224 | 20P | 7 2 |3.62E-14| 1.36E-11 3.87E-06 |HP/HB| 1.17E-01 | 2
109 1s10048286 | 18 | 44454280 | A | 0.192 | 12M | 5 2 1.95E-10 | 2.24E-09 1.68E-03 |HP/HB | 2.95E-01 | 1
110 1s4433895 | 18 | 76,663,057 | C | 0435 | 12M | 2 2 1.79E-08 | 1.21E-06 3.05E-05| HP |7.77E-02]| 1
111 UQCRFSI* rs10408404 | 19 | 29248822 | A | 0342 | 12M | 3 2 |3.05B-08| 1.32E-06 2.66E-02| HP |2.70E-01] 1
112 INF283 111673332 | 19 | 43835290 | G | 0.12 | 12M | 4 2 5.51E-09 | 2.12E-05 1.40E-04 | HP |2.67E-01] 1
113 MICAL3 19605473 | 22 | 17,980,500 | C | 0243 | 20P | 5 2 |2.58E-08| 1.68E-02 9.76E-03| HP |3.08E-01] I
114 1s8136986 | 22 | 47,891,569 | A | 0.198 | 12M | 4 2 5.31E-10| 3.22E-09 7.69E-04 |HP/HB 0
115 1s11090806 | 22 | 48,002,740 | T | 0057 | 12M | 5 1 225E-09| 1.61E-04 |2.14E-07|1.37E-03| HP |3.35B-01| 1

!If an index SNP was not within protein coding gene, the closest gene was assigned. Multiple genes were assigned if they were at about the
same distance up- and downstream from the index SNP or if the index SNP was within the region of overlapping genes.

? Proxy SNPs with linkage disequilibrium (LD) r*>70% were excluded. LD with r’>1% for SNPs within +1Mb flanking region retained in the table is
given in Supplementary Table 2.

" Protein coding genes within +100 Kb flanking region for the index SNP.

Chr = chromosome; EA = effect allele; EAF = EA frequency.

Domain indicates the pleiotropic domain in which minimal GW significant p-values were attained in our pleiotropic meta-analysis examining:
12 quantitative markers (12M), 7 diseases and death (8DD), and all 20 phenotypes (20P) domains. P-values are given for all pleiotropic meta-
tests for a given domain in a given Pathway (Fig. 1).

Group: the type of an association defined in the “Antagonistic genetic heterogeneity in pleiotropic meta-analysis” section.

Pgrasp: p-values from the pleiotropic meta-analysis of results for the index SNPs reported in GRASP for phenotypes used in 12M or 20P domain
reported in column “Domain”. Empty cells: no index SNPs for phenotypes from the corresponding domain (shown in column “Domain”) were
reported in GRASP.

Ny and Ng show the number of phenotypes that attained a minimal p-value (p<0.05) in the meta- or Fisher test in a given phenotypic domain in
pathway 1 and Fisher test of GRASP results, respectively.

Pwmops Pmobs Pmeps Peceps Popres Pobre, and Pegec: p-values for meta-tests (subscripts) defined in Fig. 1.

More details on the associations for these SNPs are given in Supplementary Tables 5 and 6.

All SNPs attained GW significant associations either in Ppieic<Pcw in meta-analysis of individual cohorts. For
the domain of 12 markers (76 of 115 novel SNPs and the remaining 49 SNPs in pathway 2, we observed
seven of nine replicated SNPs) or all 20 phenotypes (39 Dpleic<pcw in at least one cohort. For five of these 49
novel and two replicated SNPs). No associations with SNPs, pleiotropic associations did not attain Bonferroni
p<pew were identified in the disease/death domain adjusted significance level, p<0.05/(Ncohorts — 1), in at
(Supplementary Table 6). The 115 novel and nine least one additional cohort, whereas they attained that
replicated SNPs were associated with up to 10 pheno- level for the other 44 SNPs (Supplementary Table 7).
types at p<0.05 (Table 2 and Supplementary Table 4).

Figure 2 shows 39 novel pleiotropic SNPs attained GW Antagonistic genetic heterogeneity in pleiotropic
significance in the domain of 20 phenotypes. meta-analysis

Because ppieic<pow<puni for pleiotropic SNPs, this Let us assume that an allele is associated with a higher
inequality automatically validates pleiotropy for 29 risk of a phenotype P; and that P; is directly correlated
SNPs in pathway 1, as it implies that pleiotropic with a phenotype P,, e.g. individuals with larger
statistics improved to attain ppei<pew by pooling values of P; tend to have larger values of P,. An
contributions from multiple phenotypes with p,,>pew implicit expectation in medical genetics for partly
(Supplementary Table 5). Likewise, GW significant correlated phenotypes, especially when they are
pleiotropic associations in meta-analysis in pathway 2 etiologically related, is that the same allele will be also
were automatically validated for 37 SNPs with associated with a higher risk of a phenotype P,. In the
Ppieioc”Pcw in each individual cohort (i.e., in pathway 2a) framework of the undefined role of evolution in
as it implies that pleiotropic statistics improved to attain establishing molecular mechanisms of age-related
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phenotypes (see Introduction), this logic may or may approach to examine this logic is to compare the results
not hold because given allele may not be evolutionary from different tests used in our pleiotropic meta-
selected in favor or against these phenotypes. A simple analysis.

Table 3. P-values from pleiotropic meta-analysis of GRASP results for SNPs within £+1Mb flanking region of
the index SNPs not reported in GRASP for 20 selected phenotypes (Table 1).

Strongest LD Smallest p-value

ID Index SNP Chr Flanking SNP, LD Pcrasp Flanking SNP, LD Pcrasp
3 rs16834550 1 1s2377856 0.557 | 3.23E-01 154949302 0.008 7.03E-06
12 151969742 1 rs2777987 1.000 | 3.27E-01 1s7528684 0.089 3.43E-05
15 151934628 1 156665563 1.000 | 4.32E-01 156540664 0.000 1.83E-05
27 1s755503 2 rs10186614 0.718 | 1.81E-01 rs6730157 0.055 1.16E-18
37 rs16829273 3 156769314 0.772 | 1.82E-01 rs9825140 0.000 5.91E-05
40 rs10012631 4 rs1814082 0.266 | 3.34E-01 1s6831443 0.002 1.04E-03
44 151460770 4 rs11098258 0.745 | 4.14E-01 rs17046113 0.000 5.26E-04
47 1s259130 5 1s259114 0.418 | 4.01E-01 rs13157900 0.002 1.36E-19
48 rs980831 5 rs17160705 0.196 | 2.99E-01 rs10037968 0.007 1.21E-04
55 156936620 6 156457702 0.796 | 4.09E-01 rs9273363 0.001 1.52E-289
58 1s9482188 6 rs11750990 0915 | 2.27E-01 rs1015451 0.420 2.35E-24
60 157785072 7 rs12671830 0.322 | 4.31E-01 15864745 0.000 7.68E-12
63 rs10953325 7 rs734688 0.480 | 4.03E-01 rs13245899 0.000 2.74E-22
64 157807451 7 rs10224905 0.276 | 3.78E-01 rs3807989 0.004 5.85E-06
67 rs700278 7 15696773 0.625 | 3.69E-01 rs802196 0.108 1.84E-02
71 rs7851478 9 rs16937690 0.745 | 3.97E-01 rs7022576 0.001 1.23E-05
73 152987900 9 rs1536859 0.879 | 4.34E-01 rs3852402 0.025 2.50E-05
74 rs4149313 9 1s961160 0.005 | 7.40E-02 1s960644 0.003 8.03E-03
76 151476946 9 152014343 0.824 | 3.40E-01 rs7029898 0.000 1.14E-03
81 152442100 11 1rs2084439 0.762 | 3.11E-01 1s2517996 0.000 3.82E-03
82 rs11045743 12 rs4149012 0.633 | 1.45E-01 rs7134375 0.046 9.02E-10
89 15670676 13 15682573 0.478 | 3.86E-01 1s9943924 0.000 9.90E-06
90 1s359412 13 1s359357 0.968 | 2.54E-01 1s275896 0.000 4.27E-03
91 154903274 14 rs11621041 0.807 | 3.89E-01 rs12433610 0.009 8.04E-04
92 rs4899173 14 rs2127870 0.947 | 3.73E-01 rs1256507 0.001 4.78E-04
93 rs7151718 14 rs10484104 1.000 | 4.07E-01 rs1978243 0.001 1.18E-34
96 15626744 15 rs16962739 0.155| 4.09E-01 rs3848128 0.000 1.68E-03
98 rs12444489 16 rs8052106 0.599 | 2.28E-01 rs3764261 0.000 0.00E+00
100 1s246134 16 rs246141 0.807 | 4.27E-01 1s9929218 0.000 1.54E-05
105 | rs11539879 17 rs1046446 0.369 | 2.71E-02 1s9892909 0.003 9.29E-06
114 158136986 22 rs16997937 0.355| 1.59E-01 rs5768709 0.000 1.68E-04

Chr = chromosome. LD: linkage disequilibrium, r.

Strongest LD: SNPs with the strongest LD reported in GRASP within £1Mb flanking region of the index SNPs.

Smallest p-value: SNPs from the +1Mb flanking region of the index SNPs attained smallest p-values in our pleiotropic
meta-analysis of results reported in GRASP.

Pgrasp: p-values from the pleiotropic meta-analysis of the results for flanking SNPs reported in GRASP.
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Indeed, the Fisher test in pathways 1b and 2a (Fig. 1)
combined p-values across phenotypes assuming that
they were from independent associations whereas the
two omnibus tests adjusted the pleiotropic meta-
statistics for correlation among phenotypes (EP-based
omnibus test) and the effect statistics (ZZ-based omni-
bus test) (see Methods). Accordingly, the differences in
p-values from the Fisher and omnibus tests reflect the
impacts of heterogeneity and/or correlation in genetic
associations. Below, we characterize these impacts. We
used an ad-hoc cut-off for the difference in p-values
between these tests of >2 orders of magnitude to
characterize a strong impact.
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Figure 2. Heat map of phenotype-specific associations
for selected pleiotropic SNPs. Data are for 39 novel SNPs
with pleiotropic associations in the domains of all 20 phenotypes
(20P) from Table 2. Numbers in parentheses are SNP IDs in Table
2. Phenotypes are defined in Table 1. FF, Op, and Ob denote
pleiotropic meta-tests either from pathway 1 or 2 based on
Fisher test, omnibus test with correlation matrix for phenotypes,
and omnibus test with correlation matrix for effect statistics (Fig.
1), respectively. MFp denotes pleiotropic meta-tests from
pathway 1 (Fig. 1). Colors code -logy(p-value) trimmed at GW
level -Iog10(5x10'8)=7.3 for better resolution.

Given a common assumption that the Fisher pleiotropic
meta-test provides inflated p-values for correlated
phenotypes, correlation-adjusted estimates in the omni-

bus tests are expected pomnibus>Prishe- Contrary to this
expectation, for most novel SNPs, 93.9% (108 of 115
SNPs) and all nine replicated SNPs, we observe an
opposite inequality, i.€., Pomnibus<PFisher Dy =2 orders of
magnitude (Table 2 and Supplementary Table 4A). An
unconventional set of 108 novel SNPs includes 27 SNPs
from HP group in pathway 1, and 54, 5, and 22 SNPs
from HP, HB, and HP/HB groups, respectively, in
pathway 2 (Table 2). The HP group (27+54=81 SNPs)
was characterized by attaining GW significance after
the ZP-based omnibus tests (i.e., OpFc or MOp, Fig. 1)
and substantially larger (>2 orders of magnitude) p-
values in the Fisher pleiotropic meta-tests, i.c.,
Puoy<Purp for pathway 1 and po,rc<prpr. for pathway 2.
The HB group (5 SNPs) resembled the HP group except
for having popre<prpr.. The HP/HB group (22 SNPs)
was characterized by attaining GW significance after
the ZP- and XB-based omnibus tests (popre, Pobre<prre)
and substantially larger (>2 orders of magnitude) p-
values in the Fisher pleiotropic meta-tests (pg,rc).

Alleles: @ effectallele A ©) no A

ToBy

P2 0

Figure 3. Schematic illustration of antagonistic genetic
heterogeneity in the associations with two partly
correlated age-related phenotypes P1 and P2. Small dots
represent a sample of carriers of an effect allele A (red color)
and those who do not carry this allele (no A; green color). Ellipse
shows correlation of P1 and P2 in this sample (r=0.6). Red color
denotes vector of correlation of P1 and P2 (thick diagonal
vector) and its projections on phenotypes, i.e. P, (horizontal)
and P, (vertical). Black vectors B, and B, denote the effects in
the associations of allele A with P1 and P2. Sum of B, and B,
represents bivariate vector (thick line) of the effects.

These results show that majority of novel SNPs with
pleiotropic associations, 93.9%, is characterized by a
strong impact of unconventional (natural-selection—free)
genetic heterogeneity rather than commonly expected
correlation. This form of the natural-selection—free
genetic heterogeneity, called antagonistic heterogeneity,
is schematically illustrated in Fig. 3 for two partly
correlated phenotypes P1 and P2. This heterogeneity
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results in orthogonal directions of the bivariate vector of
genetic effects By and B, for phenotypes P1 and P2 and
the vector of the correlation of these phenotypes and,
accordingly, in opposite directions of vectors B, and P,.
As seen from Fig. 3, the antagonistic heterogeneity
implies antagonistic directions of genetic effects for
directly correlated phenotypes (see Methods).

Pathway 2 provides a natural opportunity to validate the
antagonistic heterogeneity in different cohorts. Our
analysis shows that this heterogeneity, characterized by
DopFe> Pobre<Prpre With a difference of >0.2 orders of
magnitude for associations with suggestive significance
(popFe> Pobre <0.1 or pr,p.<0.1), was replicated for 77 of
81 novel pleiotropic SNPs in two or more cohorts
(Supplementary Table 8).

Lastly, the M group (7 SNPs) included 2 SNPs from
pathway 1 and 5 SNPs from pathway 2. It was
characterized by attaining GW significance in several
tests and/or minor (<2 orders of magnitude) differences
between p-values in OpFc and FpFc tests (pathway 2)
and MOp and MFp (pathway 1).

Bioinformatics analysis

We performed biological pathway (IPA,
www.qiagenbioinformatics.com) and gene ontology
(GO) Dbiological processes (BPs) (DAVID [24])
enrichment analysis for 96 protein coding genes
mapped from 108 pleiotropic SNPs (Table 2). We
excluded genes for five non-validated SNPs (Table 2,
ID 1, 24, 25, 49, and 95) and for two SNPs (Table 2, ID
53, 55) from the Major Histocompatibility Complex
(MHC). The GO analysis (by DAVID 6.8 GO category
“GO_direct”) identified 10 BPs with enrichment for
genes at p<0.05 (Fisher’s exact test) (Supplementary

Table 9). Two specific terms, adenylate cyclase-activa-
ting G-protein coupled receptor signaling pathway and
activation of adenylate cyclase activity, were enriched
at p<10™ and p<10~, respectively. The IPA analysis
identified 18 pathways (Supplementary Table 10)
enriched for genes at p<0.05 (Fisher’s exact test). The
strongest enrichment was observed for G-protein
coupled receptor signaling (p<10™*), GPCR-mediated
integration of enteroendocrine signaling exemplified by
an L cell and cAMP-mediated signaling (p<10~)
(Figure 4) that is consistent with enrichment of GO BPs.

DISCUSSION

Our univariate and pleiotropic meta-analyses of 20 age-
related phenotypes dealing with the natural-selection—
free genetic heterogeneity identified large number of
non-proxy SNPs, 142 SNPs, with GW significance in a
relatively modest sample of 33,431 individuals of
Caucasian ancestry from five longitudinal studies
(Figure 5). Only 18 SNPs (12.7%) were identified in the
univariate meta-analysis with most SNPs, 88.9% (16 of
18 SNPs), replicating previously reported associations,
primarily with lipids. Two novel SNPs were associated
with HC (rs6745983 in TMEMI163 gene) and BG
(rs10885409 in TCF7L2 gene). Two of 16 replicated
SNPs, 15780094 (GCKR gene) and 15261332
(LIPC/LIPC-ASI genes) associated with BG and TC,
respectively, showed evidences for inter-cohort
heterogeneity in the effect sizes. Accordingly, smaller
p-values were attained by addressing this heterogeneity.
The association of rs2155216 (BUDI3-ZPRI1/APOAS
gene locus) with TG was replicated with substantially
higher (4-fold) efficiency in our analysis than in
previous study [22] that was achieved, in part, by
leveraging information on repeated measurements from
longitudinal follow up.

-log,,(p-value)

G-Protein Coupled Receptor Signaling

GPCR-Mediated Integration of Enteroendocrine
Signaling Exemplified by an L Cell

cAMP-mediated signaling
Relaxin Signaling

CDKS5 Signaling

0 05 1 15 2 25 3 35 4 45
I I I I
0 1

=

0.02

0.04 0.06
Ratio

0.08 0.

Figure 4. Enrichment of pathways in the Ingenuity Pathway Analysis (IPA) bioinformatics tool.
Blue bars (upper x-axis) show —log;,(p-value) for the top five IPA pathways. Proportion of genes from the
identified sets to those in the IPA pathways (orange symbols and line) is shown on the lower x-axis.

Numerical estimates are given Supplementary Table 10.
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124 pleiotropic SNPs
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Figure 5. Summary of SNPs identified in the univariate and pleiotropic meta-
analyses. Green and blue colors denote novel and replicated SNPs, respectively.

Most SNPs, 87.3% (124 of 142 SNPs), were identified
in our pleiotropic meta-analyses and most of them,
92.7% (115 of 124 SNPs), were novel (Figure 5). Novel
pleiotropic SNPs attained GW significance by
combining associations with multiple phenotypes,
which individually did not attain GW significance in
univariate meta-analysis (Figure 2). Therefore, pleio-
tropic meta-analysis has power to identify SNPs
leveraging signals, which are often considered as noise
in univariate GWAS. Most importantly, our analysis
showed that the associations for most novel pleiotropic
SNPs, 93.9% or 108 of 115 SNPs (and all 9 replicated
SNPs) were strongly affected by the natural-selection—
free genetic heterogeneity in a rarely recognized form of
antagonistic  heterogeneity, implying antagonistic
directions of genetic effects for directly correlated
phenotypes. This heterogeneity has not been addressed
in the currently prevailing GWAS.

Thus, our analysis provides compelling evidences that
the traditional sample-size-centered GWAS approach is
well adapted to handle homogeneous univariate associa-
tions (one SNP — one phenotype) within Mendelian
framework whereas most associations with age-related
phenotypes are more complex and well beyond that
framework. This complexity substantially decreases the
efficiency of the analysis of such phenotypes within the
current GWAS framework. This conclusion leads to
three major implications.

First, discovery of a large number of common genetic
variants associated with different phenotypes in GWAS
[25], raised concern known as a “missing heritability
problem” [26]. The problem is that the estimated
variance attributed to GWAS-identified common SNPs
is only a fraction of the expected genetic variance from
the estimates of heritability of a phenotype. This prob-
lem even leads to questioning whether genetics could be
helpful for improving health care [27]. Our results show
that in large part missing heritability problem for age-

related phenotypes can be due to missing associations
with complex genetic predisposition to these pheno-

types.

Second, the traditional GWAS approach is built on the
concept of a “true” or causal genetic effect (see the
Introduction) whereas biologically plausible concept for
age-related phenotypes is that based on the undefined
role of evolution in establishing their molecular
mechanisms. The letter implies that the same genetic
variant can predispose differently to the same pheno-
type in different population groups, even of the same
ancestry, e.g., throughout the life course and/or across
generations. This concept particularly implies that
“small” genetic effects (often expected in GWAS of
age-related phenotypes) can be due to a complex super-
position of large effects rather than small penetrance.
Then, just relaying on large samples in GWAS of age-
related phenotypes without dissecting the natural-
selection—free genetic heterogeneity is inefficient
because increasing the sample size will also increase
heterogeneity [28]. The current study supports this
concept by highlighting strong impact of antagonistic
heterogeneity, which is counter-intuitive in medical
genetics but natural within the evolutionary framework.
The antagonistic heterogeneity is also supported by the
analyses of alleles from well-known apolipoprotein B
and E genes [16, 17].

Third, all pleiotropic SNPs attained GW significance in
the two largest domains of 12 quantitative markers and
all 20 phenotypes. These findings support the
hypothesis that pleiotropic predisposition to age-related
phenotypes can be driven by fundamental mechanisms
associated with aging [8, 18, 19, 29]. This attractive
hypothesis in gerontology conceptualized as gero-
science [28, 30] is based on observations that aging-
related processes [31, 32] are among the most important
risk factors for geriatric diseases of distinct etiologies.
The dominant role of antagonistic heterogeneity in
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pleiotropic associations cautions against simplistic
approaches in studies of pleiotropic effects on age-
related phenotypes and emphasizes the importance of
personalized medicine which can potentially handle
complexity of risk profiles on an individual basis [15,
33, 34]. Dissecting the role of antagonistic hetero-
geneity is particularly important as this provides a
genetic basis for strategies focusing on anti-side-effect
treatments in medical care.

Finally, our bioinformatics analysis of genes for
pleiotropic SNPs identified three interlinked pathways,
G-protein coupled receptor signaling, GPCR-mediated
integration of enteroendocrine signaling exemplified by
an L cell, and cAMP-mediated signaling. G-protein
coupled receptors (GPCRs), members of the largest
family of membrane proteins, are activated by a wide
variety of external signals (e.g., light, odorants,
hormones, neurotransmitters, pharmacologic agents,
etc.) and modulate the activity of signaling pathways
involved in most physiological processes. In particular,
GPCRs partly mediate secretion of enteroendocrine
peptide hormones glucagon-like peptide 1 (GLP-1) and
peptide YY (PYY) by L-cells, relevant to food intake
and blood glucose homeostasis [35, 36]. GPCRs play a
causative role in many human diseases and are the
important drug targets [37, 38]. Adenylyl cyclase, a
membrane-associated enzyme, when activated by G
proteins, catalyzes synthesis of important second
messenger cyclic adenosine monophosphate (cAMP).
cAMP is involved in diverse biological processes (e.g.,
glycogen metabolism, hormone regulation, gene
expression, sensory signal transduction). The cAMP
levels also partly mediate secretion of enteroendocrine
peptide hormones linked to feeding/metabolic control
[35] and are associated with immune function [39]. Top
GO BPs (adenylate cyclase-activating G-protein
coupled receptor signaling pathway and activation of
adenylate cyclase activity) support an enrichment of
BPs related to GPCRs function and cAMP synthesis.
Thus, these results suggest an important role of G
protein-dependent signaling and adenylyl cyclase
activity necessary for the proper biological response of
cells to hormones and other extracellular signals in
pleiotropic effect on age-related phenotypes.

METHODS
Study cohorts

Data were drawn from the Atherosclerosis Risk in
Communities (ARIC) study [40, 41], the Cardiovascular
Health Study (CHS) [42], the Multi-Ethnic Study of
Atherosclerosis (MESA) [43], the Framingham Heart
Study (FHS) [44-46], and the Health and Retirement

Study (HRS) [47] for individuals who identified
themselves as of Caucasian ancestry.

Phenotypes

The analyses focused on 20 phenotypes (12 quantitative
markers, 7 diseases, and death) listed in Table 1. Given
longitudinal design of the studied cohorts, the analyses
leveraged repeated measurements of quantitative
markers during follow up and timing information on
onsets of diseases or death (Supplementary Table 1).
These not strongly correlated phenotypes (Supplemen-
tary Figure 1) were available in majority of the selected
cohorts. All studies except HRS collected information
on diseases and death in population samples during
follow-up. The HRS assessed information on date of
death from the National Death Index Cause of Death
file. Age at onset of diseases in HRS was assessed from
the linked Medicare service use files, which include
enrollment information and the diagnoses made
(International Classification of Disease-revision 9,
Clinical Modification) during episodes of care paid for
by the Medicare system.

Genotyping

SNPs were available from Affymetrix 1M chip in ARIC
and MESA, Illumina CVDSNP55vl A chip (~50K
SNPs) in FHS and CHS cohorts, Illumina
HumanCNV370vl chip (370K SNPs) in CHS,
Affymetrix 500K in FHS, and Illumina HumanOmni
2.5 Quad chip (~2.5M SNPs) in HRS. SNPs were
included in the analyses after quality control in each
study (call rate>95%, Hardy-Weinberg disequilibrium
p<10'6, minor allele frequency [MAF] >2%). In case of
marginally smaller MAF for prioritized SNPs in a
specific cohort compared to the MAF cut off, these
SNPs were used regardless of the MAF cut off. To
facilitate cross-platform comparisons, we selected
directly genotyped (index) SNPs using all available
arrays for each study. Non-genotyped SNPs were
imputed (IMPUTE2, [48]) according to the 1000
Genomes Project Phase 1 integrated variant set release
(SHAPEIT2) in the NCBI build 37 (hgl9) coordinate.
Only SNPs with high imputation quality (info>0.8)
were retained for the analyses.

Mapping to genes

SNPs were mapped to genes using variant effect
predictor from Ensembl and NCBI SNP database
(assembly GRCh38.p7). If an index SNP was not within
protein coding gene, the closest gene(s) within £100 Kb
flanking region was (were) assigned. Multiple genes
were selected if they were at about the same distance
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up- and downstream from the index SNP or the index
SNP was within the region of overlapping genes.

Selecting SNPs in univariate GWAS in stage 1

GWAS was performed for each phenotype in each
cohort separately using plink software [21]. In this
analysis, we used quantitative markers measured at
baseline, and diseases and death as binary outcomes. An
additive genetic model with minor allele as an effect
allele was adopted in all analyses throughout this
article. We computed pleiotropic p-value by combining
p-values for individual markers and binary outcomes for
SNPs attained nominal significance only (p<0.05) using
Fisher’s test [49]. This computationally efficient but
overly-simplified approach was used for prioritizing of
promising SNPs. Because this procedure provides
inflated p-values, we selected top 1,000 SNPs (with
smallest p-values) for all downstream analyses, rather
than selecting SNPs based on specific cut off for
pleiotropic p-values.

Leveraging longitudinal information in stage 1
analysis

The analysis of the selected 1,000 SNPs were enhanced
by leveraging longitudinal information. For quantitative
markers, we used all measurements available during
follow up of the same individuals. Information on
longitudinal measurements has multiple advantages
including potential gain in statistical power in the
analyses [50]. To correct for repeated-measurements (all
cohorts) and familial (FHS) correlations in the analyses
of quantitative markers, we mostly used the linear
mixed effects model (/me4 package in R [51]).
Measurements of BG, BMI, HDL-C, HR, TC, and TG
were natural-log-transformed to offset potential bias due
to skewness of their frequency distributions. They were
multiplied by 100 for better resolution. Measurements
of creatinine, DBP, FVC, HC and SBP were used in
their natural scale as no significant skewness was
observed. Given gamma-like frequency distributions of
CRP, a generalized linear mixed model (glmmPQL
package in R) with a gamma function and log-link was
used. We evaluated the associations for SNPs given the
measurements of quantitative markers for individuals of
a given age at each examination with available measure-
ments.

Longitudinal information on time to events was
implemented in the Cox proportional hazards mixed
effects model (coxme package in R). This model
addressed familial relatedness. In the FHS, we used
both prospective and retrospective onsets. The use of
retrospective onsets in a failure-type model is justified
by Prentice, Breslow [52]. These analyses provide

estimates of the effects in a given population. Time
variable in these analyses was the age at onset of an
event or at right censoring.

The models were adjusted for: (all studies) age and sex;
(ARIC, CHS, and MESA) field center; (HRS) HRS
cohorts, and (FHS) whether the DNA samples had been
subject to whole-genome amplification [53]. No adjust-
ment for principal components was performed as argued
in Ref. [54].

Meta-analyses in stage 2

After stage 1, for each SNP we have a table with the
association statistics for up to 20 phenotypes in 5
cohorts. These statistics were combined along two
possible pathways: (i) first across studies and then
across phenotypes and (ii) first across phenotypes and
then across studies. To deal with the natural-selection—
free heterogeneity in genetic predisposition to age-
related phenotypes (see below), we used four tests in
pathway 1 and three tests in pathway 2 (Fig. 1).

In pathway 1, univariate (phenotype-specific) meta-
analysis combining the stage 1 statistics for the selected
SNPs across cohorts (pathway 1a) was performed using
the Fisher test and the traditional GWAS fixed-effects
meta-test. Pleiotropic meta-analysis (pathway 1b) was
performed by combining the univariate meta-statistics
for the same SNPs across phenotypes. In pathway 1b,
we used the Fisher test and two omnibus tests. The
latter were designed to address correlations between the
effect statistics and phenotypes. In pathway 2, we
performed first pleiotropic meta-analysis by combining
the stage 1 univariate statistics across phenotypes in
each cohort separately (pathway 2a) using the Fisher
test and the two omnibus tests as in pathway 1b. Then,
we combined these pleiotropic meta-statistics across
cohorts using the Fisher test (pathway 2b) (details on all
tests are below).

Fixed-effects meta-test

We adopted a conventional GWAS meta-test using a
fixed effects model with inverse-variance weighting
(METAL software [55]). This test combines the
estimated effect sizes across cohorts for each pheno-
type. Combining effect sizes is feasible because each
phenotype was harmonized to be on the same scale and
unit across cohorts. This meta-test could account for the
directions of effects in different cohorts, and is more
powerful than those tests that combines p-values or Z-
scores [56]. In pathway la, the weighted average of the
effect sizes was calculated as Zj(Wjﬁj)/Zj(Wj) with
variance 1/Z;(W;), where w; is the inverse variance of

effect size [?]- in the cohort j € (ﬁ) for a given
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phenotype and SNP. Wald test was then used to obtain
p-value.

Fisher’s test

The Fisher method [49] combines p-values assuming
that they are from independent tests. In pathway 1a, this
test combines p-values across cohorts. It has power to
reject the “null” hypothesis of no pooled effect regard-
less of the effect sizes and directions in the cohort-
specific estimates. Accordingly, the Fisher test can
indicate heterogeneity in genetic associations by
providing smaller p-value than that from the fixed-
effects meta-test. In pathways 1b and 2a, the Fisher test
combines p-values across phenotypes. This test is often
used for pleiotropic meta-analysis of modestly
correlated phenotypes [57]. Because the Fisher method
combines p-values from multiple tests, it addresses the
problem of multiple testing by increasing the number of
degrees of freedom.

Omnibus tests

The statistics from tests of the same SNPs with different
phenotypes may or may not be independent. It is then
argued that tests penalizing for correlation of such
statistics should be used to deflate the Fisher test
estimates. A commonly adopted test in this case is an
omnibus test [58-60].

For a certain SNP we have an estimated effect size ; i
and its standard error &; ; for the phenotype i € (I—I?])
in the cohort j € (1_5), where K; is the number of
phenotypes in study j. The omnibus test statistic is
constructed as 2’]-2]-_12]- where Z; = B j/0j is a z-score
vector of associations of SNPs with phenotypes and X;
is the correlation matrix of the z-scores to be estimated
[58, 59]. Accordingly, this test takes into account the
correlation of the effect statistics for different
phenotypes. Under the null hypothesis (8; = 0), the test
statistic follows a chi-squared distribution with K;
degrees of freedom

Al —1/\~ 2
Zx "z Xic;»

from which we obtained a combined p-value p; in the
study j. Accordingly, this statistic addresses the
problem of multiple testing by increasing the number of
degrees of freedom.

Correlation matrices ¥ were estimated based on the
effect statistics of simulated SNPs in association models
with phenotypes (denoted X = XB). We randomly
permuted the dosage data for alleles of a given SNP for

250 times, used each permuted SNP in association
models with each of K phenotypes, and estimated £&
based on the 250 effect sizes of permuted SNPs with K
phenotypes. Likewise, X can be also constructed by
evaluating the correlations between phenotypes [61]
(denoted £ = XP). The correlation matrices, 2% and ZP,
were constructed for pathways 1 and 2 (Fig. 1)
separately. Cohort-specific matrices Z]B for pathway 2
were constructed by evaluating correlations of the effect
statistics in each cohort. For pathway 1, matrix 2 was
constructed by evaluating correlations of the effect
statistics from a fixed effect meta-test of all cohorts for
each permutation. The phenotype-based cohort-specific
matrices for pathway 2, Z]P , were evaluated using

phenotype measurements in each cohort separately and
matrix for pathway 1, XP, was evaluated using
phenotype measurements in the combined data from all
cohorts. All correlation matrices were constructed using
averaged values for quantitative traits measured
longitudinally at different visits.

Correlation and genetic heterogeneity

Omnibus tests are commonly used to penalize
correlation between the effect statistics or phenotypes in
pleiotropic meta-analysis. This can be explicitly
illustrated by the test statistics 2'~Z-_12j in two-

j&j
dimensional case,

ar w1 _ (288=212,%51)+(23511-212,315)
Zj¥ 2 = det(Z) : (1

Either the 28 or XP-based omnibus test (see above)
penalize pleiotropic meta-statistics, if
2129891, 2125845 > 0.

The wundefined role of evolution in establishing
molecular mechanisms of age-related phenotypes is the
source of genetic heterogeneity, which is driven by the
lack, rather than the presence, of the evolutionary
pressure in favor or against these phenotypes. The
natural-selection—free genetic heterogeneity suggests
that mechanisms driving associations of genes with age-
related phenotypes and correlation between these
phenotypes are, generally, of different origins. In case
of antagonistic genetic heterogeneity (see “Antagonistic
genetic heterogeneity in pleiotropic meta-analysis”
section), omnibus test provides smaller p-values
compared to the Fisher test as can be seen from (1)
because 2,272,251, 212,21, < 0 in this case.

Significance and novelty

The fixed-effect, Fisher, and two omnibus meta-tests
used in our analyses have power to identify associations,
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adjusted and unadjusted for correlation and hetero-
geneity in genetic predisposition to age-related
phenotypes (see above). Fisher and two omnibus tests
used in pleiotropic meta-analysis address the problem of
multiple testing by increasing the number of degrees of
freedom. Accordingly, GW level (p=5x10"") attained in
either of these tests was used as a cut off for the
significance for a given SNP. The difference between p-
values from these tests for a given SNP was used to
characterize the impact of correlation and heterogeneity
on the association.

SNPs were considered as novel if they attained GW
significance in: (i) our univariate meta-analysis but
were not reported in GRASP catalog [62] at p<5x10™® or
(il) our pleiotropic meta-analysis but not in our
pleiotropic analysis of the results collected in GRASP.
For univariate meta-analysis, we used evidences for the
same (index) SNP in our study and GRASP. For
pleiotropic meta-analysis, we selected associations from
GRASP for the index SNPs with 20 phenotypes used in
our analysis (Table 1). If an index SNP was not
available in GRASP for the selected phenotypes, we
selected SNPs within £1Mb flanking region. Then we
performed pleiotropic meta-analysis by applying the
Fisher method to these GRASP results to present
evidence for pleiotropy in prior studies. We used the
Fisher statistics pyg.,, because the effect sizes were not
reported in GRASP. We used a flat p-value, p=0.4, to
penalize the Fisher statistics for phenotypes with p-
values not reported in GRASP. For flanking SNPs, we
reported associations for SNPs having: (i) the strongest
LD with the index SNP and (ii) the smallest pgg, for
SNPs within +£1Mb flanking region.

Heterogeneity coefficient

We used METAL software [55] to evaluate the
heterogeneity coefficient I°. The I* can be interpreted as
the percentage of the total variability in a set of effect
sizes due to between-sample variability.
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Supplementary Figure 1. Pairwise correlation between phenotypes selected for the analysis. Correlation coefficients
are from correlation matrix £F evaluated using phenotype measurements in the combined data from all cohorts (see Online
Methods). Quantitative markers: blood glucose (BG); body mass index (BMI); C-reactive protein (CRP); creatinine; diastolic blood
pressure (DBP); forced vital capacity (FVC); heart rate (HR); hematocrit (HC); high-density lipoprotein cholesterol (HDL-C); systolic
blood pressure (SBP); total cholesterol (TC); and triglycerides (TG). Risk outcomes: Alzheimer’s disease and related dementias
(AD), atrial fibrillation (AF); cancer; coronary heart disease (CHD); diabetes mellitus (DM); death; heart failure (HF); and stroke.
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Supplementary Figure 2. Forest plots illustrating benefits of longitudinal information for rs2155216. Cohorts:
Atherosclerosis Risk in Communities Study (ARIC); Framingham Heart Study (FHS), and the Multi-Ethnic Study of Atherosclerosis
(MESA). N indicates the sample size at a given examination (visit) and person-observations. “All” denotes the estimates evaluated
leveraging longitudinal information. SE denotes standard error. Bars show 95% confidence intervals. The x-axis shows effects sizes beta.

Supplementary Table 1. Basic characteristics of cohorts included in the analyses and available
sample sizes.

Variable ARIC CHS FHS MESA HRS
Sample size 9,612 3,182 8,028 2,527 9,482
Age (SD), years 54.3 (5.7) 72.4(5.4) 37.8(9.3) 64.3 (10.2) 58.2 (9.1)
Birth dates, range | 1921-1944 1885-1925 1885-1980 1917-1957 1905-1974
g/i;‘der’ female | 5 095 (53.0) | 1,841 (60.4) | 4.659 (54.0) 1,320 (52.3) 5,489 (57.9)
Quantitative markers: number of visits (number of person-visits available for the analyses)

BG [mg/dl] 4 (35,090) 3 (7,515) 17 (40,065) 5(11,180) 1 (7,404)
BMI [kg/m’] 4 (35,055) 3(7,570) 19 (46,187) 5(11,200) 1(9,419)
CRP [mg/1] 1 (523) 2 (5,564) 3 (18,699) 2(2,716) 1 (8,087)
Creatinine

[mg/dI] 3 (26,603) 3 (7,515) 6(23,210) 4 (8,8106) N/A
DBP [mmHg] 4 (35,109) 7 (21,872) 28 (54,740) 5(11,234) 2 (18,806)
FVC [liter] 2 (18,668) 3(6,915) 4 (4,813) 1(1,324) N/A
HC [%] 3(26,529) 2 (5,934) 14 (15,070) 1 (396) N/A
HDL-C [mg/dl] 4 (35,033) 2 (5,611) 8 (35,548) 5(11,166) 1(5,973)
HR [beat/min] 4 (34,966) 7 (21,961) 25 (47,932) 2 (4,291) N/A
SBP [mmHg] 4 (35,109) 7(21,922) 28 (54,751) 5(11,234) 2 (18,806)
TC [mg/dl] 4 (35,065) 6(16,258) 18 (46,287) 5(11,173) 1 (7,067)
TG [mg/dl] 4 (35,082) 2 (5,617) 4 (7,728) 5(11,177) N/A
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Risk outcomes: number of cases available for the analyses

Follow up through 2005 2003 2014 2012 2013
AD N/A 185 437 N/A 261
AF 837 631 957 137 N/A
Cancer 1,298* 631 1,366 N/A 1,640
CHD 1,497 952 1,140 170 2,644
DM 862 406 709 382 1,956
Death 1,430 1,345 1,784 176 1,239
HF 823 676 596 72 1,360
Stroke 398 300 462 57 1,232

* All cancer sites combined; otherwise, all cancer sites except skin.
Cohort: Atherosclerosis Risk in Communities Study (ARIC); Cardiovascular Health Study (CHS); Framingham
Heart Study (FHS), the Multi-Ethnic Study of Atherosclerosis (MESA), and Health and Retirement Study (HRS).
Quantitative markers: blood glucose (BG); body mass index (BMI); C-reactive protein (CRP); creatinine;
diastolic blood pressure (DBP); forced vital capacity (FVC); heart rate (HR); hematocrit (HC); high-density
lipoprotein cholesterol (HDL-C); systolic blood pressure (SBP); total cholesterol (TC); and triglycerides (TG).

Risk outcomes: Alzheimer’s disease and related dementias (AD), atrial fibrillation (AF); cancer; coronary heart

disease (CHD); diabetes mellitus (DM); death; heart failure (HF); and stroke.

N/A identifies phenotypes not available in a given cohort.
Age is given at baseline; standard deviation (SD).

Supplementary Table 2. Linkage disequilibrium (LD, r2) for all non-proxy SNPs reported in the paper,

which are within £1Mb flanking region for the index SNP.

SNP_A Chr_A BP_A SNP B Chr_B BP B LD, ¥

rs17367504 1 11802721 rs17376328 1 11816605 0.228
rs7549339 1 31249319 rs16834550 1 31530916 0.028
rs780094 2 27518370 rs780092 2 27520287 0.138
rs755503 2 134386883 15503562 2 134502500 0.091
rs755503 2 134386883 15666614 2 134532882 0.070
rs755503 2 134386883 156745983 2 134532882 0.068
rs755503 2 134386883 156430585 2 134673139 0.037
15503562 2 134502500 15666614 2 134673139 0.219
15503562 2 134502500 156745983 2 134673139 0.130
15503562 2 134502500 156430585 2 135749357 0.040
15666614 2 134532882 156745983 2 135749357 0.399
15666614 2 134532882 156430585 2 135749357 0.115
rs6745983 2 134673139 156430585 2 135749357 0.125
1rs2844720 6 30507940 156936620 6 33016674 0.007
1s2410616 8 19971168 rs17482753 8 19975135 0.019
1s2410616 8 19971168 1517410962 8 19990569 0.020
1s2410616 8 19971168 1517489268 8 19990569 0.465
rs17482753 8 19975135 rs17410962 8 19994534 0.639
rs17482753 8 19975135 1517489268 8 19994534 0.251
rs17410962 8 19990569 1517489268 8 19994534 0.190
rs2155216 11 116661022 156589567 11 116799960 0.101
rs2155216 11 116661022 rs7115242 11 117037567 0.043
156589567 11 116799960 1s7115242 11 117037567 0.232
rs9315885 13 42068674 15670676 13 42127603 0.248
15261332 15 58435126 15261336 15 58450219 0.509

BP = base pairs, Chr = chromosome.
Linkage disequilibrium (LD) was evaluated with cut off ’=0.01 in the Framingham Heart Study.
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ADDITIONAL SUPPLEMENTARY MATERIAL

Please browse the Full Text version to see the links to
Supplementary Tables of this manuscript.

Supplementary Table 3. SNPs attained genome-wide
significance (p<5E-8) in univariate meta-analysis of
individual phenotypes.

Supplementary Table 4. Replicated SNPs attained
genome-wide significance in pleiotropic meta-analysis.

(A) Replicated SNPs attained genome-wide significance
in pleiotropic meta-analysis. (B) Effect sizes and p-
values from the univariate meta-analysis of the
associations of SNPs from Supplementary Table 4A
with 20 phenotypes in pathway la using fixed-effects
meta-test. (C) P-values from the univariate meta-
analysis of the associations of SNPs from
Supplementary Table 4A with 20 phenotypes in
pathway la using Fisher's test. (D) The results of
pleiotropic meta-analysis for SNPs from Supplementary
Table 4A in each phenotypic domain.

Supplementary Table 5. Results of univariate meta-
analysis of the associations of SNPs from Table 2 with
20 phenotypes in pathway la. (A) Effect sizes and p-
values from the univariate meta-analysis of the
associations of SNPs from Table 2 with 20 phenotypes
in pathway la using fixed-effects meta-test. (B) P-
values from the univariate meta-analysis of the
associations of SNPs from Table 2 with 20 phenotypes
in pathway 1a using Fisher's test.

Supplementary Table 6. The results of pleiotropic
meta-analysis for SNPs from Table 2 in each
phenotypic domain.

Supplementary Table 7. The results of pleiotropic
meta-analyses for SNPs reported in Table 2 for pathway
2 in each cohort separately (pathway 2a) and after
Fisher meta-analysis across cohorts (pathway 2b).

Supplementary Table 8. Pleiotropic meta-statistics for
the antagonistic heterogeneity reported in Table 2 for
pathway 2 in each cohort separately and combined
using three meta-tests, FpFc, OpFc, and ObFc in
pathway 2b (Figure 1).

Supplementary Table 9. Ten nominally significant
gene ontology (GO) terms (Fisher’s exact test) for
biological processes enriched in DAVID.

Supplementary Table 10. Top 18 nominally
significant (Fisher's exact test) ingenuity canonical
pathways.
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