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ABSTRACT

Renin expressing cells in the kidney’s juxta-glomeruluar compartment likely also serve as progenitors for adult
glomerular cells in disease. Although these cells of renin lineage (CoRL) decrease in number with advancing
kidney age, accompanied by less responsiveness to typical stimuli such as ACE-inhibition, mechanisms and the
impact of sex as a biological variable with age are not known. Accordingly, labeled CoRL were sorted from
individual young (2m) and aged (27m) male and female RenlcCre|ZsGreen reporter mice, and their
transcriptomic profiles analyzed by RNA seq. When both aged female and male mice were combined, there were
48 differentially expressed genes (DEG) compared to young mice. However, when compared to their young sex-
matched mice, aged female and male mice had 159 and 503 DEGs respectively. In addition to marked differences
in individual genes between aged female and male mice, gene ontology analysis showed major pathway
differences by sex. The majority of DEGs in one sex did not significantly change or changed in the opposite
direction in the other sex. These results show that in CoRL of advanced age, individual genes and gene ontologies
change, but differ between female and male mice, highlighting sex related differences the aging process.

INTRODUCTION in blood pressure and sodium regulation, changes to the
cells of renin lineage (CoRL) have characteristically

With the global population living longer, increasing been considered of major functional importance with

attention is focusing on the impact of advanced age on increasing kidney age.

organ function, and how this might impact normal

biological processes and pathways. Recent studies have Healthy kidney aging is considered a hypo-reninemic

shown functional and structural changes in the healthy state, based on lower plasma renin activity in human [3-

aged kidney, and how these changes might impact out- 15], and rats [16-20], reduced renin content in kidneys

comes in glomerular and tubulointerstitial diseases [1, [16, 17, 20, 21], and reduced responsiveness to certain

2]. For example, because of their biological functions stimuli known to increase renin [3-6, 8, 16, 21, 22].
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Moreover, the number of CoRL decrease in mice with
increasing age [21, 23]. Yet, the precise mechanisms are
not well understood.

Male and female sex impacts gene expression [24, 25]
and genomic stability [26]. Age associated changes to
organs, and even age-related disease types, are also
impacted by sex. For example, older men have higher
rates of cardiovascular disease and Parkinson’s disease,
while older women have more autoimmune disease and
Alzheimer’s disease [27]. Females have a greater life
span than males, which may or may not be X-linked and
may also be due to longer telomeres in females [28].
Changes in sex steroids occur with age, which might for
example underlie the greater prevalence of osteoporosis
in older females, but better cardiovascular health
compared to aged men. In the kidney, the age-related
decline in kidney function is augmented in males [29-
32], which is in part androgen dependent [33]. Even in
non-aged animals, glomerular hemodynamics differ by
sex [34]. There are also testosterone-mediated dimor-
phism for mouse proximal tubules [35, 36]. For these
and other reasons, increasing emphasis is being placed
on the importance of sex as a biological variable in pre-
clinical [37] and clinical studies [38].

Although we better understand how senescence [39],
oxidative stress [40] and other pathways contribute to
kidney aging, the precise mechanisms of age-related
kidney changes remain poorly understood. Moreover,
the impact of sex as a biological variable on kidney
aging remains to be elucidated. The purpose of the
current study was to better understand the impact of age
and sex on potential pathways associated with aging of
cells of renin lineage. Accordingly, we isolated cells of
renin lineage from young and aged mice from both
sexes, then quantitated and compared their transcript-
tomic profiles measured by RNA-seq.

RESULTS

Effect of age on the global transcriptomic changes in
cells of renin lineage

We hypothesized that with advancing age, cells of renin
lineage (CoRL) have reduced stemness, accompanied
by a reduced ability to proliferate and migrate from the
juxta-glomerular compartment to the intra-glomerular
compartment, with increased cell death compared to
young mice. To identify key genes that may regulate
these processes, we performed RNA-seq on 5 young (2
months) CoRL reporter mice (3 male, 2 female) and on
5 aged (27 months) inducible CoRL reporter mice (3
male, 2 female) (Fig. 1A).

To begin our analysis, we first reduced our high dimen-

sional dataset, being RNA expression levels for each
gene, into fewer dimensions in order to identify if there
were systematic differences in our four types of
samples. We performed principal component analysis
(PCA) to identify the dimension that explains the most
variance in our data set (PC1) and the dimensions that
explain the remaining variances (PC2, PC3, etc.). The
PCA plot in Figure 1B shows that both sex and age
contributed to global transcriptomic variation for cells
of renin lineage.

48 genes (FDR<0.01, Figure 1C and Table S1) were
identified with significant consistent differences
between aged and young mice of both sexes. Of these
differentially expressed genes (DEGs), 15 genes were
up-regulated in aged mice (Z score 0-2), and 33 were
down-regulated with age compared to young mice (Z
score -2-0). Because CoRL serve as adult progenitors
for mesangial cells [41], glomerular parietal epithelial
cells [42], podocytes [42-45] and pericytes [46], we
overlapped these 48 DEGs (Figure 1C) with known
pluripotency genes, defined as those highly expressed in
human embryonic stem cells (hESC), down-regulated in
differentiation and expression in somatic tissue is <5%
of hESC expression [47] and found Bcatl (Branched
Chain Amino Acid Transaminase 1) [48-51] a target
gene of kidney stem cells modulator c-Myc[50, 52].
Other downregulated genes involved in cell
proliferation and migration include Wnt Family
Member 9B (Wnt9b) [53] and Kinesin Family Member
26B (Kif26b) [54].

Age-related up-regulated DEGs important in cell
proliferation, migration and apoptosis include C-X-C
Motif Chemokine Ligand 14 (Cxcl14) [55], and Protein
Tyrosine Phosphatase, Receptor Type Q (Ptprq) [56],
which is increased in renal injury [57] Taken together,
both down- and up-regulated genes in aged CoRL was
consistent with a decline in stemness, migration,
proliferation, and an increase in apoptosis, supporting
the notion that with advancing age, their pluripotent
stemness decreases.

We next performed Gene Ontology (GO) term
enrichment analysis and found significant enrichment
for multiple kidney development and function GO terms
among down-regulated DEGs, such as metanephros
development (e.g., Wtl, Wnt9b) and fluid transport
(e.g., Slcdall, Slcl4al) (Figure 1D). Among the down-
regulated genes, we focused on four genes, Wtl, Nphsl,
Nphs2 and Lmxl1b, with important roles in kidney
development and podocyte function. These genes form
a transcriptional regulatory network, where Wtl
regulates nephrin (Nphs1)[58] and podocin (Nphs2)
[59] , and Lmx1b regulates podocin [60] (Figure 1E).
Coherent down-regulation of these four genes suggests
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that they may play an important role in CoRL aging,
and perhaps help explain their reduced capacity to act as
podocyte progenitors with age.

Transcriptomic changes in aged female and male
cells of renin lineage

The global transcriptome analysis in Figure 1
demonstrates that even among genes that show the same
trend in both aged female and male mice compared to
both young female and male mice, there are obvious
differences in gene expression between sexes within the
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same age groups (i.e., within aged and young).
Accordingly, we compared aged versus young CoRL
within each sex to identify sex-specific changes in the
aging process in this cell type (Figure 2).

Aged vs. Young Female Mice

We first analyzed differentially expressed genes (DEGs)
between aged versus young female mice (Figure 2A).
Using cutoffs as FDR<0.1 and a fold change >1.5, 159
DEGs were identified, of which 95 were up-regulated in
aged and 64 were down-regulated in aged (Figure. 2B,
Table S2). Volcano plots in aged female mice showed
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Figure 1. Global transcriptome changes associated with CoRL aging when both male and female mice are included in
the analysis. (A) Schema showing comparisons made included age and both sexes. (B) Principal Component Analysis (PCA) plot of all
(n=10) RNA-seq samples. PC1 represents the largest variation in gene expression, followed by PC2, then PC3. Blue and mustard colors
denote young and aged mice respectively; squares and triangles denote female and male sex respectively. Young female, young male,
aged female and aged male samples mostly tend to cluster together. (C) Heat map of all samples showing clusters of genes with
consistent changes in aged male and aged female mice compared to young sex counterparts. The Z-score colors are shown, with blue
indicating genes with lower than overall mean expression levels, and red indicating genes with higher than mean expression levels.
(D) In aged female and male mice, clustering by Gene Ontology (GO) terms identified the consistently down-regulated genes as
metanephros development, kidney development and metaneprhic nephron morphogenesis. (E) The developmental transcription
factors, Wtl and Lmx1b, and their key target genes, nephrin (Nphs1) and podocin (Nphs2) were down-regulated in aging.
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increases in calcification inhibitor matrix Gla protein
(Mgp), vascular cell adhesion molecule 1 (Vcam-1),
and retinoic acid-degradation enzyme Cyp26bl. Mgp is
known to be enriched in adult renin cells [61]. Several
genes decreased in aged female mice compared to
young female mice, including those involved in
xenobiotic metabolism (Inmt, Hpd, Cesle) and Cluster
of Differentiation 209 (Cd209a) (aka. Dendritic Cell-
Specific Intercellular adhesion molecule-3-Grabbing

Non-integrin, DC-SIGN) (Figure 2B), which co-
expresses with nephrin in podocytes [62].
Up-regulated genes in aged female CoRL were

significantly enriched for GO terms related to angio-
genesis and ECM organization, such as Flt4, PDGF Rec
A, VEGFd (Figure 2C). One-carbon compound
transport was the only GO term for down-regulated
genes (Figure 2D).

Aged vs. Young Male Mice
When comparing aged versus young male gene
expression profiles (Figure 3A), 503 DEGs were iden-
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tified using the same cutoffs as above, of which 52 were
up-regulated in aged males, and 451 were down-
regulated (Figure 3B, Table S3). Compared to young
male mice, retinoic acid-synthesis enzyme Aldhlal was
up-regulated in aged male mice. Aldhlal has previously
been shown to be significantly up-regulated in aged vs.
young females using whole kidney samples [63].
Junctophilin 2 (Jph2), a gene related to Ca2+ control of
renin synthesis and release previously shown to be
highly expressed in CoRL [61] was down-regulated in
aged male mice (Figure 3B).

Up-regulated genes in aged males were significantly en-
riched in immune responses (e.g., complement 1 a, b, c,
Figure 3C), while genes down-regulated were enriched
for GO terms relating to muscle contraction and
development (e.g. myomesin 2, myocardin, Figure 3D).

CoRL aging dynamics exhibit sex dimorphism

We found that CoRL aging dynamics differs signifi-
cantly between female and male based on the following
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Figure 2. Differentially expressed genes (DEGs) and enriched Gene Ontology (GO) terms in aged female vs. young
female. (A) Comparisons include age and females only. (B) Volcano plot showing upregulated (mustard) and down-regulated (blue)
DEGs with a minimum 1.5-fold change and a FDR <0.1. Text boxes highlight individual genes discussed in results section. (C) Gene
ontology terms significantly enriched in the genes found to be significantly upregulated in aged female vs. young female mice. Many
of these GO terms are related to endothelial cell signaling and maintenance. (D) GO terms of down-regulated genes in aged females.
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observations. First, transcriptomic perturbation is much
larger in aged males than in aged females, based on the
number of DEGs (503 in male vs. 159 in female,
binomial proportions test p-value <2.2x107°). This
difference is not due to larger sample size for males (3
vs. 3 in male; 2 vs. 2 in female): after randomly
removing one male sample from each age group, and
recalculating DEG, we still observed more DEGs
(n=478) in male than female. Second, genes perturbed
in the female aging process behave differently from
male aging, and vice versa. For example, Aldhlal was
up-regulated in male CoRL but not in female CoRL.
Myom2, Nphsl, Lmx1b showed greater reduction in
aged males vs. young males than in aged females vs.
young females.
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We therefore took a female-centric view of the aging
process and examined the expression pattern of aged
versus young female DEGs (excluding genes in X and Y
chromosomes) across all sex and age groups and found
three distinct groups (Figure 4A). Genes in group A (92
out of 155 autosomal DEGs, 59.4%), enriched for blood
vessel morphogenesis and extracellular matrix organiza-
tion GO terms, are significantly up-regulated in aged vs.
young female, but do not have any significant change in
aged vs. young male. Genes in group B (22 out of 155,
14.2%) (e.g., Nphsl, Myom?2 and urea/CO2 transporters)
decreased in both aged vs. young female and aged vs.
young male. Genes in group C (41 out of 155, 26.4%)
show the opposite trend: they are down-regulated in aged
vs. young female, but up-regulated in aged vs. young male.
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Figure 3. Differentially expressed genes (DEGs) and enriched GO terms in aged male vs. young male. (A) Comparisons
include age and males only. (B) Volcano plot showing upregulated (mustard) and down-regulated (blue) DEGs with a minimum 1.5-fold
change and a FDR <0.1. Text boxes highlight individual genes discussed in results section. (C) Gene ontology terms significantly enriched
in genes significantly up-regulated in aged male vs. young male. Many of these GO terms are related to immune responses and differ
from those enriched in aged female vs young female mice. (D) Significantly enriched Gene Ontology terms down-regulated genes in
aged male vs. young male. These genes are interestingly related to muscles and were also not identified as enriched in aged female vs
young female mice. The results are consistent with the notion of distinct differences in the aging process between males and females.
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Figure 4. Female and male aging gene dynamics are different. (A) Female-centric perspective. Expression pattern of
aged female vs. young female DEGs (n=159) across all age and sex conditions. Group A genes (comprises 59.4% of all DEGs)
are significantly up-regulated in aged vs. young female, but do not have any significant change in aged vs. young male. Group
B genes decreased in both aged vs. young female and aged vs. young male. Group C genes show the opposite trend, as they
are down-regulated in aged vs. young female, but up-regulated in aged vs. young male. (B) Male-centric perspective.
Expression pattern of aged male vs. young male DEGs (n=503) across all age and sex conditions. Group A genes (comprises
9.7% of all DEGs) are up-regulated in aged vs. young male and are also moderately up-regulated in aged vs. young female.
Group B genes are significantly down-regulated in aged vs. young male are up-regulated in aged female mice.

We then took a male-centric view and examined the
profile of DEGs in the male aging process across all
samples. Genes up-regulated in aged vs. young male are
also moderately up-regulated in aged vs. young female
(group A, 47 out of 487 autosomal DEGs, 9.7%, Figure
4B). However, most of the DEGs that were significantly
down-regulated in aged vs. young males were up-
regulated in aged female mice (440 out of 487, 90.3%,
group B, Figure 4B). Perturbed pathways during the
aging process are also different between female and male
mice (Figure 2B, 2C, 3B and 3C). It is clear that genes
perturbed in the aging process are distinct between males
and females, i.e., transcriptome perturbations in the aging
process exhibit sex dimorphism.

Sex differences in CoRL increases with aging

In light of sex-specific transcriptomic changes in the
aging process, we next compared male and female
samples within each age group and examined how such
sex differences change with age (Figure 5A).

Young female vs. young male mice
There were 113 differentially expressed genes between
young females vs. young males. Of these DEGs, 79

were up-regulated in females and 34 were down-
regulated in females (Figure SA, Table S4) The most
up-regulated genes in young females were cytochrome
P450, family 4, subfamily a, polypeptide 14 (Cyp4al4)
and prolactin receptor (Prlr). The most down-regulated
genes are solute carrier organic anion transporter
family, member lal (Slcolal) and Cytochrome P450,
family 2, subfamily j, polypeptide 13 (Cyp2j13) (Figure
5B).

Interestingly, both the up- and down- DEGs in young
female vs. young male mice were enriched for mono-
carboxylic acid (which includes fatty acid) and
xenobiotic metabolic processes (Figure 5C and 5D).
When clustered based on their expression profile
across all sex and age groups, these 113 DEGs fall into
two distinct categories. Sex differences in group A (49
out of 113, 43.4%) decreases with age while differences
in group B (64 out of 113, 56.6%) persisted or
increased with age (Figure SE). In particular, genes
expressed higher in young male compared to young
female mice are expressed even higher in aged male
than in aged female, consistent with these differences
being even more pronounced with advanced age
(Figure 5E).
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Figure 5. Differentially expressed genes (DEGs) and pathways in young female vs. young male. (A) Comparisons made
included age with female and male-centric views. (B) Volcano plot showing up-regulated (mustard) and down-regulated (blue) DEGs,
and those not significant (grey). Text boxes highlight individual genes discussed in results section. (C) Gene ontology (GO) terms
significantly enriched in genes up-regulated in young female vs. young male mice. (D) GO terms significantly enriched in genes down-
regulated in young female vs. young male mice. (E) Expression pattern of young female vs. young male DEGs across all age and sex
conditions. Group A genes (43.4% of all DEGs) are decreased with age; Group B genes (56.6%) either persisted or increased with age.

Aged male vs. aged female mice

Finally, there were 546 DEGs in aged females vs. males
(Figure 6B, Table S5), which is 4.8-fold more DEGs
than in young female vs. male (113 DEGs). Of these,
441 were up-regulated in aged females and 105 were
down-regulated in aged females. When comparing aged
female and aged male to one another, the major genes
that increased in aged female were Insulin Like Growth
Factor 2 (Igf2), Prolactin Receptor (Prlr) and Sulfatase 1
(Sulfl) (Figure 6A). Igf2 is known to regulate adult
hematopoetic stem cell activity [64] and Sulflexpression
decreases proliferation and migration in cancer cell lines
[65]. The major genes downregulated were Angio-
poietin Like 7 (Angptl7) and solute carrier organic
anion transporter family, member 1al (Slcolal) (Figure
6A).

Up-regulated DEGs in aged females were enriched for
angiogenesis (Figure 6C); while down-regulated DEGs
in aged females (higher in aged male) were again
enriched for fatty acid metabolism (Figure 6D). Only 35
genes are differentially expressed between female vs.
male in both young and aged age groups. Therefore,
96% of the differentially expressed genes in aged
female vs. aged male mice arise de novo in the aging
process, i.e., they are not differentially expressed in
young female vs. young male (Figure 6E).

Gene Set Enrichment Analysis of CoRL aging

We performed Gene Set Enrichment Analysis [66]
using the Hallmark gene set [67] for both aged vs.
young female and aged vs. young male mice (Table S6-
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9). We observed that epithelial-mesenchymal transition,
TGF P, apoptosis and angiogenesis pathways are
significantly up-regulated in aged females compared to
young females (Figure 7A). This is consistent with
previous results that these pathways play important
roles in CoRL aging [46, 68, 69]. Surprisingly, these
pathways are down-regulated in aged male vs. young
male (Figure 7B), further supporting that CoRL aging
process is different between male and female. In
particular, multiple matrix metallopeptidase genes (e.g.,
Mmp2, Mmp3, Mmp14) that regulate EMT [70-72]are
significantly up-regulated in aged female but not aged
male. Down-regulation of biglycan (Bgn) is known to
inhibit cell cycle and induce apoptosis [73]. Interes-
tingly, biglycan is significantly up-regulated in aged
female but down-regulated in male.
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DISCUSSION

Recent studies have shown that in addition to cells of
renin lineage (CoRL) serving a major endocrine function,
they likely also have a major biological role serving as
progenitors for adult mesangial cells, podocytes,
glomerular parietal epithelial cells and pericytes [23, 41-
44, 68]. Advanced aging is accompanied by reduced
renin content in CoRL [3, 10, 74], and decreased CoRL
number in aged mice [23]. In addition, CoRL
proliferation in aged mice is blunted in response to ACE-
inhibitors[21]. Because gene expression in CoRL might
provide insights into potential mechanisms for changes
during aging, we performed RNAseq on sorted CoRL to
define changes in their transcriptional profile in aged
mice compared to young age mice. Overall sex also had a
major impact in gene patterns with advanced age.

GO terms upregulated in aged female vs. aged male

angiogenesis
blood vessel morphogenesis

extracellular matrix organization

extracellular structure organization

negative regulation of cellular component movement
negative regulation of locomotion

negative regulation of cell motility

negative regulation of cell migration
ameboidal-type cell migration

GO Terms

regulation of vasculature development
regulation of angiogenesis
cell-substrate adhesion

endothelial cell migration

epithelial cell migration

epithelium migration

10 15

—-log10(FDR)
~ Young

Aged
Male

Female Male Female

— =
= |
— — E—score Age

9

0.0 25

5.0
—-log10(FDR)

7.5

Figure 6. Differentially expressed genes (DEGs) and pathways in aged female vs. aged male. (A) Comparisons made
included sexes between same aged groups. (B) Volcano plot of differentially expressed genes; (C) Gene ontology terms significantly
enriched in genes up-regulated in aged female vs. aged male. (D) Gene ontology terms significantly enriched in genes down-regulated
in aged female vs. aged male. (E) Expression pattern of aged female vs. aged male differential genes across all age and sex conditions.
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Figure 7. Gene Set Enrichment Analysis (GSEA). GSEA results for four pathways in old vs. young female (A) and old vs. young male
(B). These four pathways show opposite change in female aging compared to male. Full GSEA results are reported in Supplemental Table S6-9.

When the results from both female and male mice were
combined in to the overall analysis, there were only 48
differentially expressed genes in RenlcCre|ZsGreen
mice aged 27 months (equivalent to human aged 79
years) compared to combined young female and male
mice aged 2 months (equivalent to young human adult).
However, the first major finding was that when aged
female mice and aged male mice were compared to their
young sex matched counterparts separately, the number
of differentially expressed genes (DEGs) was
significantly higher than when analyzed together.
Compared to young sex matched mice, aged female
mice had 159 DEGs, and aged males had 503 DEGs.

The second major finding was that within age-
associated DEGs, the genes and pathways differed
substantially between aged female and aged male mice
over sex-matched young mice. In addition to marked
differences in individual genes between aged female
and male mice, gene ontology analysis showed major
pathway differences by sex. Aged females had marked
increases in vascular endothelial growth factor signal-

ing, blood vessel morphogenesis and extracellular
matrix organization in CoRL, whereas aged males had
increases in immune and inflammatory pathways such
as complement activation, immunoglobulin immune
response, B cell immunity and humoral response.
Downregulated pathways also differed by sex in aged
mice compared to young counterparts. In aged females,
one-carbon compound (e.g., CO2, urea) transport
decreased, whereas muscle system processes and
contraction, heart development and extracellular matrix
and structure organization were decreased in aged
males. Consistent with the observation that the
progression of chronic kidney disease is faster in males
[75], these results showed larger transcriptomic
perturbations in aged males compared to aged females
(503 DEGs in male, 159 in female, binomial
proportions test p-value <2.2x10™'°). In addition to the
magnitude of transcriptomic perturbations, perturbed
genes show very different dynamic patterns in the aging
process of different sexes: the majority of DEGs in one
sex do not significantly change or change in the
opposite direction in the other sex. Thus, it is critical to
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include samples/subjects from both sexes when
studying kidney aging.

The third major finding was that specific patterns
emerged within the DEGs when comparing sex and age.
From a female perspective, three groups emerged. The
largest was group A, enriched for blood vessel morpho-
genesis and extracellular matrix organization genes
which increased in aged female mice but not aged male
mice. Group B genes (e.g., Nphs1, Myom?2 and urea/CO2
transporters) decreased in both aged female and male
mice compared to their young controls, whereas group C
genes were decreased in aged female but increased in
aged male. From a male-centric view, of the 503 DEGs,
group A genes were increased in both aged male and
female mice, while group B, enriched for muscle
contraction and blood morphogenesis genes were down-
regulated in aged male mice, yet increased in aged female
mice. We also found that nitric oxide synthase (NOS)
expression decreased in aged vs. young male, but not in
aged vs. young female (Table S2 and S3). While previous
studies have reported sex dimorphism in NOS activity in
kidney aging [76], our results showed much more
widespread sex differences in the kidney aging process.

We recognize some limitations in these studies. First,
animal number was limited. However, this exploratory
approach should be followed up by more definitive
studies on candidate genes pertaining to their role in
CoRL aging. Second, only one aged time point was
measured, limiting a full interpretation of when changes
in transcriptomic profiles occurred. Third, the exact
location within the kidney of the FACS sorted cells of
renin lineage was not specified, although the majority
are typically in the juxta-glomerular compartment.
Fourth, we acknowledge that although we used FACS
sorting to isolate CoRL based on GFP, the gene de-
enrichment results might be due to a small amount of
contamination from tubular epithelial cells.

In summary, we found a small core set of genes involved
in stemness, proliferation and migration that showed
consistent changes in CoRL aging. Surprisingly, most
gene expression changes in CoRL aging are sex-specific:
aged female mice showed up-regulation of epithelial to
mesenchymal transition, angiogenesis, and TGFp
signaling, while male mice showed opposite change in
these pathways. Follow up studies are needed to prove
the biological roles of these genes in aged kidneys.

METHODS
Animals

RenlcCre|ZsGreen mice as previously described [23]
were bred and maintained in house and allowed to age

for either 2 months (n =5, 3M, 2F) or 27 months (n =5,
3M, 2F) prior to sacrifice. These mice are the product of
breeding the RenlcCre mouse [77] with the ZsGreen
mouse [78], and results in the constitutive and
permanent labeling of all cells that have expressed
renin. Mice were housed, provided ad lib chow and
water, in the animal care facility of the University of
Washington, under specific pathogen-free conditions.
Studies were reviewed and approved by the University
of Washington Institutional Animal Care and Use
Committee (2968-04).

Isolation of cells of renin lineage for RNA
sequencing

At the ages stated above, animals were sacrificed, the
kidneys were removed and dissected free of fat and the
kidney capsule. Kidney cortex was digested in
0.2mg/ml Liberase™ TL (Sigma-Aldrich, St. Louis,
MO), 100 U/ml DNAse I (Sigma-Aldrich, St. Louis,
MO) in RPMI 1640 medium, without L-glutamine or
phenol red (GE Healthcare Bio-Sciences, Pittsburgh,
PA) by shaking in a 37°C water bath for 30 minutes.
The digest was passed through a 22G needle (Becton
Dickenson, Franklin Lakes, NJ) 10 times to further
dissociate the tissue, then inactivated by combining with
Sml of in media consisting of RPMI 1640 medium,
without L-glutamine or phenol red (GE Healthcare Bio-
Sciences, Pittsburgh, PA) supplemented with 1mM
sodium pyruvate (ThermoFisher Scientific, Waltham,
MA), 9% Nu-Serum™ [V Growth Medium Supplement
(Corning Incorporated - Life Sciences, Durham, NC)
and 100U/ml Penicillin-Streptomycin (ThermoFisher
Scientific, Waltham, MA). The suspension was passed
through a 100pm, then a 40 pm cell strainer (BD
Biosciences, San Jose, CA), to clear multicellular
debris, then pelleted by centrifugation at 200G at 4°C
for 5 minutes. The cells were re-suspended in the media
described above, counted and isolated using multicolor
fluorescence-activated cell sorting (FACS) on a BD
FACS Aria II (BD Biosciences, San Jose, CA) housed
within a BSL1/2 approved biosafety cabinet. Sorted
cells were pelleted by centrifugation and snap frozen in
liquid nitrogen until isolation of RNA. The entire
procedure took 6-7h per animal. Samples were then
shipped on dry ice to Roswell Park Cancer Institute for
further processing.

RNA isolation

The purification of total and RNA was performed using
the miRNeasy micro kit (Qiagen, Germantown, MD).
Flow sorted cells were homogenized with the addition
of 700 ul of QIAzol Lysis Reagent. After addition of
chloroform, the homogenate was separated into aqueous
and organic phases by centrifugation. The upper,
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aqueous phase was extracted. On-column DNAse
digestion was also performed to remove any residual
genomic DNA contamination followed by additional
washes. High quality RNA was then eluted in 14 ul of
RNase-free water.  Quantitative assessment of the
purified total RNA was accomplished by using a Qubit
Broad Range RNA kit (Thermo Fisher, Waltham,
MA). The RNA was further evaluated qualitatively by
a 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, CA).

RNAseq library preparation and sequencing

Amplified cDNA was generated using the SMART-Seq
v4 Ultra Low Input RNA kit (Clontech, Mountain
View, CA). Total RNA (10 ng) was used to synthesize
first-strand cDNA utilizing proprietary template
switching oligos. Amplified double stranded cDNA is
created by LD PCR using blocked PCR primers and
unique sample barcodes were incorporated. The result-
ing cDNA was purified using AmpureXP beads
(Beckman Coulter, Brea, CA). Abundant Ribosomal
cDNA was then depleted using R probes and 12 cycles
of PCR with universal PCR primers completed the
library.  The final libraries were purified using
AmpureXP beads, and validated for appropriate size on
a 4200 TapeStation DI1000 Screentape (Agilent
Technologies,, Santa Clara, CA). The DNA libraries
were quantitated using KAPA Biosystems qPCR kit and
pooled together in an equimolar fashion. Each pool was
denatured and diluted to 16pM for On-Board Cluster
Generation and sequencing on a HiSeq2500 sequencer
for 100 paired-end sequencing following the manufac-
turer’s recommended protocol (Illumina Inc., San
Diego, CA).

RNAseq data analysis

RNA-seq were aligned to mm9/NCBIM37 using Tophat
(version 2.0.13) [79]. Gene-level read counts were
quantified using featureCounts [80] using Ensembl
NCBIM37 gene annotations. prcomp function from R
was used to for Principal Component Analysis.DESeq
[81] was used for differential gene expression analysis.
Two models were built to find genes that change
consistently between sexes during aging. The null
model assumed gene expression variation was purely
due to sex differences; the full model additionally
included aged vs. young as a predictor. A gene was
identified as significant when the full model fit was
better (Benjamini-Hochberg FDR<0.1). topGO R
package [82] was used for Gene Ontology enrichment
analysis. prop.test function in R is used to test whether
male has significantly more DEGs in aging process than

female. The RNA-seq data is deposited at Gene
Expression Omnibus, accession GSE113195.
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