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ABSTRACT

Non-enzymatic protein modifications occur inevitably in all living systems. Products of such modifications
accumulate during aging of cells and organisms and may contribute to their age-related functional
deterioration. This review presents the formation of irreversible protein modifications such as carbonylation,
nitration and chlorination, modifications by 4-hydroxynonenal, removal of modified proteins and accumulation
of these protein modifications during aging of humans and model organisms, and their enhanced accumulation

in age-related brain diseases.

INTRODUCTION

Aging, an inevitable part of the life process, is
characterized by a progressive decline in physiological
functions that ultimately leads to morbidity and mortality.
Aging increases susceptibility to certain class of diseases.
Age-related diseases constitute a considerable socio-
economic burden for contemporary societies. As human
mean lifespan increases, growing incidence of these
diseases has features of a pandemic. The number of
people aged 65 or older is projected to grow from an
estimated 524 million in 2010 to almost 1.5 billion in
2050, mostly in underdeveloped and developing
countries [1]. These trends have obvious serious social
and economic implications, such as healthcare costs [2].

Despite extensive studies, the molecular basis of
physiological aging is still poorly understood. Reactive
oxygen species (ROS), reactive nitrogen species (RNS)
as well as reactive halogen species (RXS) species are
believed to play a key role in the aging process. They
are generated during aerobic metabolism in living
organisms. The term “reactive oxygen species” includes
both free radicals [molecules having an odd electron,
like superoxide radical anion (O,") and hydroxyl radical
(HO")] and species that are not free radicals, like
hydrogen peroxide (H,0,), singlet oxygen (‘O,) and
ozone (Oj3). The primary source of RNS is usually the
nitric oxide radical (‘NO). In consequence of ROS and
RNS reactions, peroxynitrite ONOO’, anion of pero-
xynitrous acid ONOOH, may be formed via the near
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diffusion-limited reaction of 'NO and O,". The term
“reactive nitrogen species” includes also nitrous acid
(HNO,), dinitrogen trioxide (N,O3), nitrosyl anion (NO),
nitrosyl cation (NO"), nitrogen dioxide radical (NO,),
peroxynitrate (ONOOO)), peroxynitric acid
(ONOOOH), nitryl chloride (NO,CI), and nitronium
cation (NO,") [3, 4]. "Reactive halogen species” include
HOCI, HOBr, HOI, chlorine, bromine, iodine etc.
Hypohalogenous acids (HOX; X = F, Cl, Br, or I) are
formed in the body mainly by oxidation of halogen ions
by myeloperoxidase. The imbalance between ROS,
RNS and RXS production and the antioxidant defense,
in favor of prooxidants, is causes oxidative, nitr(os)ative
and halogenative stress (OS, NS, XS), respectively.
Although at physiological concentrations ROS, RNS
and RXS can function as signaling molecules regulating
cell proliferation, growth, differentiation and apoptosis
[5, 6] they react with and damage all classes of
endogenous macromolecules including proteins, nucleic
acids, lipids and carbohydrates [7]. Proteins are the
main targets for such modifications as they are the most
abundant cell components in the terms of mass content.
The level of protein damage increases under stress
conditions and can be in principle an integrative
measure of the exposure to OS, NS and XS. However,
protein turnover complicates this issue, the more that
modified proteins in most cases are subject to
preferential degradation [8]; see Chapter “Removal of
modified proteins”.

Protein modifications produced by ROS, RNS and RXS
can be classified as transient, reversible or irreversible.
Reactions of free radicals with proteins leads to
formation of protein radicals, which are generally
short-lived, transient and are not useful as biomarkers.
Protein hydroperoxides formed upon reactions with
ROS are also unstable and decompose forming more
stable products [9, 10]. Examples of reversible
modifications are cysteine (Cys) thiol oxidation to
sulfenic acid, methionine (Met) oxidation to methionine
sulfoxide or cysteine S-nitrosylation and S-
glutathionylation (Table 1, Fig. 1). While these
modifications are of vital importance for regulation of
protein function and metabolic processes, they are of
less importance as permanent markers of OS/NS/XS, so
this review will concentrate on irreversible protein
modifications.

FORMATION OF
MODIFIED PROTEINS

NON-ENZYMATICALLY

Compared to other oxidative modifications, carbonyls
are relatively difficult to induce and in contrast to, for
example, methionine sulfoxide and cysteine disulfide
bond formation, carbonylation is an irreversible
oxidative process [11]. Protein carbonylation is an

oxidative modification induced by ROS, RNS, RXS and
reactive aldehydes. It consists in formation of reactive
aldehyde or ketone residues on proteins, which can
react with 2,4-dinitrophenylhydrazine (DNPH) forming
hydrazones. There are two ways of protein
carbonylation. "Primary protein carbonylation" is due to
oxidation of some amino acid residues, initiated by
ROS, RNS and RXS, often catalyzed by metals while
“secondary protein carbonylation” is caused by addition
of aldehydes. The aldehydes are formed mainly in the
process of lipid peroxidation [malondialdehyde, MDA,
4-hydroxy-2,3-trans-nonenal, (4-HNE); 2-propenal
(acrolein, ACR)], but may be also by-products of
glycolysis and the glycation process (methylglyoxal,
glyoxal).

In the first pathway, ROS, RNS and RXS directly attack
the protein producing, eventually, highly reactive
carbonyl derivatives by oxidation of the side chains of
lysine (Lys), arginine (Arg), proline (Pro), and
threonine (Thr) residues, particularly via metal-
catalysed oxidation, from the cleavage of peptide bonds
in the o-amidation pathway or by oxidation of glutamyl
residues. The main carbonyl products of metal-
catalysed protein oxidation are glutamic semialdehyde,
a product of oxidation of Arg, aminoadipic semi-
aldehyde, a product of Lys oxidation, 2-pyrrolidine, a
product of histidine (His) oxidation and 2-amino-3-
ketobutyric acid, a product of oxidation of Thr (Fig. 1E)
[12]. Carbonylation is site-specific; an iterative
statistical method has been proposed to identify
potential sites of carbonylation [13].

The second type of reaction involves the addition of
reactive aldehyde groups to the side chains of Cys, His,
or Lys residues via Michael addition (Fig. 1F). Reactive
carbonyl groups can be also generated through the
reaction of the amino group of Lys residues with
reducing sugars or their oxidation products
(glycation/glycoxidation products) [14].

Dimerization of tyrosyl radicals (Tyr) leads to the
formation of dityrosine (Fig. 1H). Products of oxidative
destruction of tryptophan (Try) include kynurenine and
N-formylkynurenine (Fig. 1I). All these products have
their characteristic fluorescence and their content can be
easily evaluated fluorimetrically [15, 16].

RNS can oxidize proteins and alter their biological
functions also in other ways. Nitration of amino acids,
such as tyrosine (Tyr) and, to a lesser extent, Try and
His, is an important form of protein modification that
occurs during NS [17]. Tyr, a nonessential aromatic
amino acid, carrying a hydroxyl group, is often exposed
hem vulnerable to nitration, as well as oxidation [18,
19].
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Figure 1. Selected non-enzymatic protein modifications. (A) oxidation of cysteine residues in proteins. Cysteine residues may be
oxidized to sulfenic, sulfinic and sulfonic derivatives or form disulfide bonds. Oxidation to sulfenic acid and formation of disulfides is
reversible; (B) modifications of cysteine residues in proteins: formation of nitrosocysteine and S-glutathionylation; (C) oxidation of
methionine forms methionine sulfoxide, which may be reduced back to methionine by methionine sulfoxide reductases (MSR); (D)
formation of hydroperoxides of valine, lysine and leucine; (E) formation of carbonyl derivatives of lysine, arginine, His and threonine; (F)
formation of 4-hydroxynonenal adducts of cysteine, His and lysine; (G) oxidative modifications of phenylalanine; (H) modifications of

tyrosine; (I) modifications of tryptophan.

The nitration of Tyr is mediated by RNS such as
ONOO/ONOOH and ‘NO, although nitration can also
by accomplished by heme peroxidases and nitrite [20].
The two main mechanisms of biological nitration, the
ONOO/ONOOH and the heme peroxidase pathways,
lead both to the formation of Tyr" and 'NO,, which
combine with diffusion controlled rates to form 3-
nitrotyrosine (3-NT; Fig. 1H). The oxidants leading to
Tyr" formation include CO;”, ‘OH or oxo-metal
complexes. Importantly, 'NO, alone is inefficient in
promoting nitration, because its reaction with Tyr to
produce Tyr" is slow compared to other processes that
'NO, undergoes. I. a., reaction with another Tyr" to form

3,3-dityrosine competes with the formation of 3-NT.
However, under certain conditions protein radicals can
be stabilized, e. g. when intra- and intermolecular dime-
rization is limited due to diffusional and spatial
constraints, both in aqueous and hydrophobic
compartments. In such cases reaction of Tyr with 'NO,
may be favoured. Another pathway competing with Tyr
nitration is the formation of 3-hydroxytyrosine, which
can be performed mainly by ‘OH or oxo-metal
complexes. An alternative radical mechanism for Tyr
nitration involves the reaction of a Tyr  with 'NO to
form 3-nitrosotyrosine followed by two-electron
oxidation to 3-NT [21].
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Table 1. Most important oxidative, nitrative and chlorinative modifications of proteins. After [11], modified.

Amino acid Modification Stability/Reversibility

Cysteine Oxidation of —SH to sulfenic acid (-SOH), sulfinic acid (- First stage, and in some cases
SO,H) or sulfonic acid (-SO;H) second stage reversible
Formation of a disulfide bond —SS- Reversible

Cysteine Nitrosylation [formation of (-SNO)] Reversible

Cysteine Glutathionylation Reversible

Tyrosine, tryptophan,
other amino acids

Protein radicals

May be reduced or react to
form further products

Glutamic acid,
tyrosine, lysine,
leucine, valine, proline,
isoleucine

Hydroperoxides

May be reduced; decompose
to further products

Histidine 2-Oxohistidine Irreversible
Lysine, arginine, Formation of carbonyl derivatives by direct oxidative attack | Irreversible
proline, threonine on amino-acid side chains (a-aminoadipic semialdehyde [Decarbonylation?]
from lysine, glutamic semialdehyde from arginine, 2-
pyrrolidone from proline, and 2-amino-3- ketobutyric acid
from threonine)
Lysine, cysteine, Formation of carbonyl derivatives by secondary reaction Irreversible

histidine with reactive carbonyl compounds derived from oxidation of
carbohydrates (glycoxidation products), lipids (MDA, 4-
HNE, ACR) and advanced glycoxidation and lipoxidation
end products
Methionine Methionine sulfoxide Reversible by methionine
sulfoxide reductases
Phenylalanine o-Tyrosine, m-tyrosine Irreversible
Tyrosine Hydroxylation to 3,4-dihydroxyphenylalanine Irreversible

Dimerization to dityrosine

Tyrosine, tryptophan,
histidine

Nitration [introduction of (-NO,)]

Irreversible [Denitration ?]

Tyrosine

Chlorination to 3-chlorotyrosine

Irreversible

Tryptophan

5-Hydroxytryptophan, 7-hydroxytryptophan, kynurenine, N-
formylkynurenine

Irreversible

Hypochlorous acid (HOCI) is the main player involved
in protein chlorination in vivo [16]. HOCI is generated
by the reaction of H,O, with chloride ions (CI)
catalysed by myeloperoxidase (MPO, EC 1.11.1.7) [22-
24]. For a long time, myeloperoxidase (MPO) was
regarded as the only human enzyme known to produce
HOCI at the physiological concentrations of chloride
(100-140 mM) [25]. Nevertheless, recent findings
revealed that another mammalian heme peroxidase,
peroxidasin 1, is capable of catalysing the oxidation of
chloride to HOCI, too. The enzyme is also known as
vascular peroxidase 1 [26-29]. Up to 80% of the H,O,
generated by activated neutrophils may be used to
produce local concentrations as high as 20-400 uM

HOCI within an hour [30, 31]. The pK, of HOCl is 7.59
[32], so at physiological pH values, HOCI exists in
equilibrium with its anion "‘OCl at approximately equal
concentrations. HOCI is a powerful oxidant and plays
an important physiological role. MPO-produced HOCI
is involved in innate immune response and Kkills
invading pathogens [33, 34]. Green et al. [35] showed
that the diminution of HOCI production observed with
decreasing Cl availability results in impaired killing of
bacteria. However, during chronic inflammation the
excessive production of HOCI leads to the host tissue
damage and plays a pathophysiological role in
inflammatory diseases [36]. Proteins are major targets
for HOCI, and the reactions of this oxidant with proteins
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result in side-chain modifications (mainly chlorination
of Tyr residues, Fig. 1H), cross-linking and backbone

fragmentation [37, 38].

PROTEIN CARBONYLATION IN AGING AND

AGE-RELATED DISEASES

Protein carbonyl content is the most general and broadly
used biomarker of oxidative protein damage and, more
generally, OS. However, protein carbonyls are impor-
tant not only as a biomarker for protein oxidation in
aging and disease. They have also been shown to impair
protein structure and function and to participate in the
etiology and progress of diseases and age-related
changes in the body [39, 40]. Carbonylation may alter
the conformation of the polypeptide chain, which leads
to partial or total inactivation of proteins. The con-
sequent loss of function or structural integrity of car-
bonylated proteins can have a wide range of down-
stream functional consequences and may underlie the
subsequent cellular dysfunctions and tissue damage
[41]. Protein carbonylation was demonstrated to modify
activities of enzymes and other protein functions like
DNA binding of transcription factors [42]. Carbonyla-
tion can lead to functional impairment of proteins
involved in insulin signaling, so the insulin signaling
pathway gets disrupted by carbonylation [43].

Another mechanism of protein carbonyl action involves
inhibition of proteasomal activity. While moderately
carbonylated proteins are degraded by the proteasomal
system, heavily carbonylated proteins form high-
molecular-weight aggregates that are not digested and
accumulate. Such aggregates of carbonylated proteins
are resistant to degradation and can inhibit proteasomes.
Neurodegenerative diseases are directly associated with
the accumulation of proteolysis-resistant aggregates of
carbonylated proteins in tissues [39].

It has been hypothesized that protein carbonylation is
reversible, and protein carbonyls can be removed by a
"decarbonylase" activity; thus, protein carbonylation
can play a role in cellular signaling. Thioredoxin was
postulated to be involved in protein decarbonylation
[44-46]. However, experimental support for this
hypothesis is scarce. Age-related increase in the protein
carbonyl content has been demonstrated in many
objects. Data from various laboratories demonstrated a
dramatic increase in the content of carbonylated
proteins during the last third of the lifespan of various
objects, 1. a., human dermal fibroblasts in culture [47],
human lens [48], rat liver [49], house fly [50] and
Caenorhabditis elegans [51]. Further examples of age-
related increase in the level of protein carbonyls are
given in Table 2.

Table 2. Examples of studies on the effect of aging on protein carbonyl level.

. Material or object o
Problem studied studied/methods Findings Reference
L . WI-38 fibroblasts, intermediate | Increase in the level of
Effect of replicative aging . .
o or middle-aged (PD between carbonylated proteins,
of fibroblasts in vitro on L . . [52]
rotein carbonyl level 25 and 39) and replicatively Prefgrentlal (;arbonylatlon of
p senescent (PD < 40)/OxyBlot | certain proteins
Effect of replicative aging | foreskin fibroblas s, Increase.d protein carbonyl .
and heat stress on protein . content in senescent cells and in
. middle-aged and senescent/ . [53]
carbonyl level in human heat stressed cells, without
OxyBlot
fibroblasts recovery
Effect Qf aging anq lgte Increased protein carbonyl level
onset dietary restriction on | BALB/c mice, 4-w old and 84- | in old mice, Reduction of protein [54]
the protein carbonyl level | old/DNPH assay and WB carbonyl level after 3-m calorie
in cerebral hemispheres restriction
Effect of aging on protein
carbonyl level of high- Female C57BL/6 J Enhanced protein carbonyl level
molecular weight protein | mice/Oxyblot, Protein in 22-m old vs 3-m and 12-m old [55]
aggregates isolated from Carbonyl Assay kit mice
the bone marrow and 5
. . Age-related increase in the
Effect of aging on protein | 5-m vs 30-m old rats/2D carbonyl content of man
carbonyl level of testis PAGE, WB, carbonyl detection ny Y [56]
. . o . proteins, decrease for some
mitochondria with biotin-hydrazide proteins
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Comparison of protein
carbonyl content in

Fast-twitch muscle contain twice
as many carbonylated

external intercostals and
quadriceps muscles

assay

of elderly women, but not of
elderly men

mitochondria of slow- Fisher 344 female rats/MS . . . [57]
twitch and fast-twitch m1.tochondr1al proteins as slow-
muscles twitch muscle
High correlation between age
Effect of age on protein 49 healthy subjects ia\? d ptr.otem carlb (;nyl l():o:ltent, 58
carbonyl content of of both sexes aged 17- 80 ega’ive correlation between [58]
erythrocyte membranes y/DNPH assay protein (;arb.onyl contept and
total antioxidant capacity of
plasma (FRAP)
Increased protein carbonylation
Effect of age on carbonyl Yoimg (3 m) and aged (24 m) in aged mice, especially of 59
content of mouse liver ?;%L /6 mice/2D PAGE. WB BiP/Grp78, protein disulfide [59]
’ isomerase (PDI) and calreticulin
Higher protein carbonylation in
Effect of age on protein hippocampus than in
carbonyl level in rat 4-m, 12-m and 22-m old cerebral cortex, [60]
cerebral cortex and rats/DNPH assay Increase in protein carbonyl level
hippocampus with age, attenuated by physical
exercise
Sarcoplasmic, . .
Effect of age and myofibrillar, and mitochondrial Increasqd mitochondrial (b.u tnot
sarcopenia on carbonyl subfractions from musculus myoﬁbrlllag or slarcoi) la:ml.ck)l 61
content of skeletal muscle | vastus lateralis biopsies of 16 gr?rtleln carbony! content wit [61]
subfractions }(I)(;l;ri)gl (ind 16 elderly persons/ Ngo egf’fec { of stage T sarcopenia
Effect of age and gender 273 healthy Chinese subjects Significant correlation of saliva
on protein carbonyl d between 20 and > | and plasma protein carbonyls 62
content in saliva and aged berween S an with age, [62]
79/ELISA ;
plasma No relation to gender
Protein carbonyl level of
gastrocnemius muscles
Effect of aging on protein | Muscles from 3, 15, 24, 27 and pnchanged lzeé[\;veet(llzg nd 15 m,
carbonyl level of mouse 29 m old female C57Bl/6J glcreasmgl a d dan - [63]
skeletal muscles mice/DNPH assay 0 age-related decrease in
protein thiol level or increase in
the levels of MDA and F2-
isoprostanes
Effect of age and physical :861 dpggt_léc;pargrslc?gg gth SCXES | Elevation of protein
exercise on the carbonyl i ricipan ts}; ed 90 v or carbonylation with aging, [64]
level of plasma proteins ﬁlore /IEZ)LIS A & y attenuated by physical activity
Effect of aging on the level No significant differences in the
of protein carbonyls in Muscle biopsies of 11 children | global level of protein carbonyls
human rectus abdominis 0-12 y old and 11 persons 52- | between the groups in both rectus | [65]
and vastus lateralis 76 y old/2D PAGE, WB abdominis and vastus lateralis
muscles muscles
Effect of age on protein Increased levels of protein
carbonyl content of 12 young and 12 elderly carbonyls in externsl intercostals
persons of both sexes/ DNPH [66]

DNPH, dinitrophenylhydrazine; 2D PAGE, two-dimensional polyacrylamide gel electrophoresis; MS, mass
spectrometry, PD, population doublings; WB, Western Blotting
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Many studies have demonstrated the existence of a
relationship between the level of protein carbonylation
in cells or tissues/organs and human or animal age and
lifespan, as exemplified below. The level of protein
carbonylation in human fibroblasts have been found to
increase exponentially with advancing age of donors
[67]. When mobility of fruit flies Drosophila
melanogaster was restricted by culturing under con-
ditions preventing flying, the lifespan of the insects was
increased 2 to 3-fold. Age-related accumulation of
protein carbonyls was slower in mobility-restricted flies
in comparison with control flies, which could fly and
had shorter lifespan [50]. Transgenic fruit flies which
overexpressed CuZn-superoxide dismutase (SOD1) and
catalase had prolonged lifespan. Accumulation rate of
protein carbonyls in these flies was slower than in
control flies whose lifespan was shorter [68]. Calorie
restriction was also demonstrated to slow down the rate
of protein carbonyl accrual. In calorie-restricted mice
which had lifespan increased by 35%, the rate of
accumulation of protein carbonyls in several tissues was
decelerated [69, 70].

Protein carbonylation is selective with respect to the
protein and this rule refers also to carbonylation during
aging and in age-related diseases. Approximately 10%
of the proteome is more prone to carbonylation during
ageing or disease than other proteins [71, 72]. In the
brains of patients affected with Alzheimer's disease
(AD) and Parkinson’s disease (PD), mitochondrial
MnSOD superoxide dismutase (SOD2) is one of the
major targets of oxidative damage [73]. In turn,
aconitase was found to be the only protein in the
mitochondrial matrix that exhibited an age-associated
increase in carbonylation in D. melanogaster. The
accumulation of carbonyl groups was accompanied by
an approximately 50% loss in aconitase activity [74].
Interestingly, the set of proteins that become carbo-
nylated differs in various species. For example, aging-
associated protein carbonylation was only seen in two
proteins in mouse blood plasma, albumin and
transferrin, while in the rat plasma, only albumin and o-
macroglobulin showed significant progressive age-
dependent carbonylation [75]. There are several
possible explanations for this specificity of carbony-
lation. One is the presence of a transition metal on the
protein, another being the localisation of proteins to be
carbonylated close to ROS generating sites. However,
in general the molecular basis for the apparent
specificity of protein carbonylation still remains unclear
[76].

Elevation of the protein carbonyl level has been
reported for many diseases. Protein carbonylated levels
are widely used index to determine the extent of
oxidative modification of proteins both under in vivo

and in vitro conditions. Increased protein carbonyl
levels were found in the cerebrospinal fluid of patients
with multiple sclerosis [77] and in blood plasma of
patients with multiple sclerosis [16] as well as
myasthenia gravis [78]. In multiple sclerosis, increased
level of protein carbonyls was also found in the brain
white and gray matter [79].

The large volume of literature and heterogeneity of
results makes a comprehensive understanding of the
changes occurring in human brain in AD elusive. In
AD, the increase in protein carbonylation level was
different in various regions of the brain. It was
increased by 42% in hippocampus and by 37% in the
inferior parietal lobule, with respect to cerebellum,
which shows little degenerative changes in this disease
[80]. Some specifically carbonylated proteins in AD
brain were identified in different stages of the process,
including the exacerbate mild cognitive impairment
(MCI) and early AD stages [81-84].

What’s more, a new meta-analysis defines the pattern of
changes in OS related markers by brain region in human
AD and MCI brain tissue. Protein carbonylation was
significantly increased in the occiput and in the
hippocampus in AD, while there were no significant
changes noted in other brain regions [85]. Shen et al.
evaluated the levels of total protein carbonyls and
identified the oxidative modification proteins in the sera
of 3xtransgenic AD mice. Their results suggested that
OS is an early event in the development of AD, and
analysis of specific serum protein oxidation may be
more plausible for the search of AD biomarkers [86].
Brain samples of patients with Huntington disease
showed increased carbonylation of more than a dozen of
proteins including glial fibrillary acidic protein,
aconitase, enolase 1 and creatine kinase B, glycolytic
enzymes and mitochondrial proteins related to ATP
production [87]. Increased level of protein carbonyls
was also found in the spinal cord of G93A-SODI1
transgenic mice, an animal model of amyotrophic lateral
sclerosis (ALS) [88].

Numerous data point to the role of RCS as both
propagators and products of oxidative damage in
neurodegenerative diseases, especially in AD [89]. In
AD, the concentration of free 4-HNE was reported to be
increased in the plasma and cerebrospinal fluid [90],
whereas ACR content was higher in the amygdala and
hippocampus/parahippocampal gyrus of AD patients
[91]. MDA accumulation has been detected in the
cytoplasm of astrocytes and neurons in both normal
ageing and in AD patients [92]. Increased concentra-
tions of MDA (in blood plasma and serum) and 4-HNE
(in the plasma and cerebrospinal fluid) have also been
reported for PD patients [91]. 4-HNE levels are
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significantly elevated in the sera and spinal fluid of
ALS patients and positively correlate with the extent of
the disease but not with the rate of progression, which
suggest 4-HNE and carbonyl bearing 4-HNE-protein
adducts as possible biomarkers of the disease [77, 93].

Methods of protein carbonylation analysis

The generally used method of quantifying carbonyl
groups is based on the reaction with 2,4-dinitro-
phenylhydrazine (DNPH). This compound reacts with
carbonyl groups, forming the stable 2,4-dinitro-
phenylhydrazone. Dinitrophenyl group (DNP) adduct
can be detected by different methods. The DNP group
itself absorbs ultraviolet light, so the total carbonyl
content of a protein or mixture of proteins can be
quantified by a spectrophotometric assay [94].
Alkalinization of the medium may bring absorption
maximum of the DNP group from 370 nm (UV) to 450
nm (visible region) [95].

The assay of carbonylated proteins has been simplified
by the availability of commercial antibodies specific for
DNP, which allow for their detection by immuno-
blotting. Dot blot analysis allows for a very sensitive
quantification of the total level of protein carbonylation
in a sample [96]. Immunoblotting assays based on the
use of anti-DNP antibodies have been developed as an
attempt to identify oxidatively damaged proteins in
human tissues and body fluids. The carbonyl content in
individual proteins is estimated by one-dimensional
(1D) or two-dimensional (2D) sodium dodecyl sulfate
(SDS) gel electrophoresis followed by Western blot
immunoassay (Oxyblot). These two methods have
significantly higher sensitivity and specificity than all
other total carbonyl assays, but are still semiquantitative
[11]. An alternative to immunochemical detection of
DNP derivatives of carbonylated proteins is the reaction
with a fluorescent reagents reacting with carbonyl
groups such as fluorescein-5-thiosemicarbazide [97] or
fluorescent hydrazides [98, 99]. Fluorescent hydrazides
such as coumarin hydrazine were also used for detection
of protein carbonyls in living cells [100].

DNP assay of protein carbonyls can be also combined
with protein fractionation by high-performance liquid
chromatography (HPLC) to obtain better sensitivity and
specificity than measuring total carbonyls in a protein
mixture [11]. Mass spectrometry (MS) allows for
precise identification of carbonylated proteins and
characterization of the carbonylation sites [101].
Proteomic tools provide a promising way to decode
disease mechanisms at the protein level and help to
understand how carbonylation affects protein structure
and function. Recently, Havelund et al. (2017) proposed
a peptide-centric approach for identification and

characterization of up to 14 different types of
carbonylated amino acids in proteins. The use of
diagnostic biotin fragment allows MS/MS data analysis
to pinpoint sites of biotin labeling and improve the
confidence of carbonyl peptide assignments [102].

NITRATIVE PROTEIN MODIFICATIONS IN
AGING AND AGE-RELATED DISEASES

It should be noted that protein Tyr nitration is observed
in vivo in healthy tissues, indicating that there is a basal
flux of RNS; nevertheless, physiological nitration levels
are typically low. Possible biochemical consequences of
protein Tyr nitration involve changes in activity
(usually loss, but sometimes gain of function), induction
of immune responses, interference with tyrosine-kinase-
dependent pathways, alteration of protein assembly and
polymerization, and effects of protein turnover: either
facilitation of protein degradation or induction of
formation of proteasome-resistant protein aggregates,
depending on the dose [103, 104].

Furthermore, protein Tyr nitration is also associated
with physiological aging and pathophysiology of
several age-related diseases such as atherosclerosis,
multiple sclerosis, AD, PD, ALS, cystic fibrosis,
asthma, lung diseases, myocardial malfunction, stroke,
chronic hepatitis, cirrhosis, diabetes, etc. [105].
Increased content of nitrates, nitrites, and free 3-NT
were also found in the cerebrospinal fluid of subjects
with neurodegenerative diseases and have been pro-
posed as functional biomarkers of neurodegeneration
[16, 106].

Two faces of 'NO: implications for brain aging

Nitric oxide and other RNS appear to play crucial roles
in the brain such as neuromodulation, neuro-
transmission and synaptic plasticity, but are also in-
volved in pathological processes such as neuro-
degeneration and neuroinflammation. Nitric oxide is a
short-lived gaseous physiological messenger, which is
highly diffusible and lipophilic in nature [107]. As an
important neurotransmitter and signaling molecule, 'NO
is involved in numerous physiological processes
throughout the nervous system. Apart from guanylate
cyclase, 'NO targets include ion channels, which are
involved in setting neuronal excitability and calcium
homeostasis, additional to its involvement in physio-
logical plasticity processes (long-term potential-tion;
long-term depression), which can include the N-methyl-
D-aspartate  receptor-mediated  calcium-dependent
activation of neuronal ‘NO synthase [108].

Nevertheless, 'NO possesses a controversial effect on
cell viability by acting both in protection against
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apoptogenic stimuli, and by inducing apoptosis when
produced at elevated concentrations. Moreover,
excessive generation of ‘NO, favors the formation of
reactive ONOO/ONOOH and NO, species that can
mediate nitration of aging brain proteins [109]. Acute
and chronic inflammation result in increased NO
formation and NS. It is well documented that 'NO and
its toxic metabolite, ONOO/ONOOH, can inhibit
components of the mitochondrial respiratory chain
leading to cellular energy deficiency and, eventually, to
cell death. Within the brain, the susceptibility of
different brain cell types to NO and ONOO/ONOOH
exposure may be dependent on factors such as the
intracellular glutathione  (GSH) concentration and
cellular stress resistance signal pathways [110].

‘NO toxicity: regulation by glutathione

GSH is the most abundant low molecular weight thiol in
mammalian cells and acts as the major cellular
antioxidant. Aquilano et al. [111] reported that GSH
may constitute the most important buffer of 'NO
toxicity in neuronal cells, and demonstrated that the
disruption of cellular redox buffering controlled by
GSH makes neuronal cells susceptible to endogenous
physiological flux of 'NO. GSH levels in the brain
decline  progressively during aging and in
neurodegenerative disorders, such as AD or PD [112,
113]. It has been proposed that the decrease in GSH
concentration could be mainly a consequence of the
formation of protein mixed disulfides. The intracellular
depletion of GSH can induce cellular stress in "NO-
producing cells through a ‘NO-dependent mechanism,
resulting in such effects as induction of DNA damage,
inhibition of cytochrome ¢ oxidase activity,
accumulation of S-nitrosocysteine and increased
nitration of protein Tyr residues. What’s more, ‘NO
seems to be the main mediator of cell proliferation
arrest through the extracellular signal-regulated kinase-
1/2-p53 signaling pathway and apoptosis through the
translocation of mitochondrial apoptosis-inducting
nuclear factor [111].

Tyrosine nitration of synaptic proteins

Synaptic proteins can  undergo extensive
posttranslational modifications. Numerous evidence
suggests that aging and diseases can induce nitrative
stress via excessive ‘NO production. NS can lead to
uncontrolled S-nitrosylation/Tyr nitration, which can
represent crucial pathological features that contribute to
the onset and progression of various neurodegenerative
diseases, including AD or PD [110, 111].

It has been suggested that phosphorylation and nitration
of protein Tyr residues plays a role in signaling path-

ways at the nerve terminal and affects functional
properties of proteins involved in the synaptic vesicle
(SV) exo-endocytotic cycle [114]. Protein conforma-
tional changes induced by 'NO have strong impacts on
protein-protein interactions in the docking/fusion steps
of vesicle release. Depending on the concentration of
‘NO and the reversibility of protein nitration, the
consequences for neuronal signaling are important and
relevant in physiology and pathology. According to Di
Stasi and coworkers [115], ONOO/ONOOH causes Tyr
nitration of SNAP-25 and Munc-18, two presynaptic
proteins, which are involved in sequential steps leading
to vesicle exocytosis. Notably, these effect were
strongly reduced in the presence of NaHCO;, indicating
that  ONOO/ONOOH acts mainly intracellularly.
Synaptophysin, one of the most abundant integral
proteins of SV membrane, can be also nitrated (on
Tyr250) and the formation of the synaptophysin/
dynamin complex is impaired following ONOO
/ONOOH exposure [114, 116]. Mallozzi et al. [114]
have identified by LC-MS/MS analysis one major
nitration site at Tyr354 in dynamin I isolated from
synaptosomes treated with ONOO/ONOOH. LC-
MS/MS analysis revealed also that in untreated synap-
tosomes dynamin I showed a basal level of nitration on
Tyrl25, Tyr541 and Tyr669; however, the low
physiologic nitration level of these sites did not affect
dynamin I functional properties. Instead, Tyr354 was
nitrated only after ONOO/ONOOH treatment of
synaptosomes implying that this site-specific post-
translational modification likely accounts for dynamin I
dysfunction. Vrljic et al. [117] detected nitration in 6 of
11 surface accessible Tyr residues of synaptotagmin 1
[three in the C2A domain (Tyr151, Tyr216 and Tyr229)
and three in the C2B domain (Tyr311, Tyr364 and
Tyr380)]. Synaptotagmin 1 is a Ca> sensor for SNARE
(soluble N-ethylmaleimide sensitive factor attachment
protein receptor)-mediated, Ca2+—triggered synaptic
vesicle fusion in neurons. Integration of the peak
intensity for the individual synaptotagmin 1 peptides
suggests a stoichiometry for the 3-NT modifications of
1-10% depending on the site, with the exception of
Tyr151, which appears to be ~100% modified since an
unmodified form was not identified [108].

Amyloid beta (A) is a critical factor involved in the
pathogenesis of AD. It was demonstrated that con-
tinuous intracerebroventricular infusion of AP1-40
induced a time-dependent expression of the inducible
nitric oxide synthase (iNOS) and an overproduction of
‘NO in the rat hippocampus. The pathophysiological
significance of the overproduction of ‘NO for brain
function was manifested by an impairment of nicotine-
evoked acetylcholine (ACh) release and memory
deficits [118]. Tran et al. [119] found that chronic AB
1-40 infusion caused a robust ONOO/ONOOH forma-
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Table 3. Selected proteins nitrated in Alzheimer’s disease.

1, H'— transporting
ATPase, o-enolase,
fructose-1,6-bisphosphat
e aldolase

(average age at death of 86
+ 4 years).

digestion, MS

compared with age-matched
controls

Nitrated protein Material Methodology Major observations Ref.
Nitration of enolase and
Male Wistar rat synaptic proteins mediated by
Enolase synaptosomes WB H,0,, NO, and amyloid  heme [127]
peroxidase activity
Immunoprecipitates from
hippocampus (9
individuals) and frontal Nitro-triosephosphate isomerase
. WB,
Nitro-triosenhosphat cortex (13 individuals) of T . forms large beta-sheet
: with healthy subjects (4 : Nitro-triosephosphate isomerase | [128]
tyrosines 164 and 208, and 9 individuals microscopy, . .
close to the catalytic site) . ’ Atomic force binds tau monomers and induces
respectively); Human . tau aggregation to form paired
embryonic kidney cells TIICToscopy helical filaments
overexpressing mutant
triosephosphate isomerase
Brain samples; normal
control subjects: 4 females
and 2 males, average age Protein nitration is higher in the
at death of 81 +6.4 Ys Slot blot, inferior parietal lobule (IPL) and
Brain proteins ?mHQStIC mild cognitive Immunohistoche | hippocampus in MCI than in [120]
impairment (MCI) mistry control subjects
patients, 4 females and 2
males, average age at
death of 88 £3.8 y
o-Enolase, IPL i . d
‘Friosephosphate for atrllzjizesspemmens use Identification of six targets of
isomerase, protein nitration in AD suggests
neqropolypeptlde h3, B- il];en;251320§;§ g\?;n five | WB, MS a role of protein modification by [129]
actin, L-lactate tp | subiect. RNS in the progression of AD
dehydrogenase, y-enolase | OOl Subjects
o-Enolase,
glyceraldehyde-3- Immunoprecipit
phosphate ation, WB, MS
dehydrogenase, ATP Hippocampal samples Nitration of proteins in AD
synthase alpha chain, . . . .
. from six AD patients and hippocampus may be involved [130]
carbonic anhydrase-II, . . .
. six age-matched controls in the mechanisms of AD
voltage-dependent anion
channel-protein
(hippocampus)
Peroxiredoxin 2, triose
phosphate isomerase,
glutamate IPL samples from four
dehydrogenase, early AD (EAD) patients The level of nitrated proteins in
neuropolypeptide h3, (79 £ 2 years) and four WB, 2D PAGE, | the IPL of early AD patients
phosphoglycerate mutase | age-matched controls In-gel trypsin increased by 18% increase [131]

2D PAGE, two dimensional polyacrylamide gel electrophoresis; IPL, inferior parietal lobule;MS, mass spectrometry; WB,

Western Blotting
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tion and subsequent Tyr nitration of hippocampal
proteins. Immunoprecipitation and Western blot
analyses revealed that synaptophysin is a main target of
Tyr nitration. These findings suggest that the Tyr
nitration of synaptophysin is related to Ap-induced
impairment of ACh release.

Tyrosine nitration of brain proteins

Nitric oxide participates in the regulation of the daily
activities of cells as well as in cytotoxic events. Tyr
nitration is one specific form of protein modification
that is associated with age-related neurodegenerative
diseases [120]. Protein nitration enhances Af
aggregation in a rodent model of AD [109]. By
mediating Tyr nitration at the ortho position, ONOO™
/ONOOH modification of proteins can block later
phosphorylation events, thereby inducing protein
dysfunction [121], some researchers have proposed that
dynamic interplay between nitration and phospho-
rylation may be required for some normal biological
functions, and Tyr nitration can contribute to
differentiation of neuronal cell types and to neurite
elongation.

The microtubule-associated tau protein is unfolded and
finely soluble under physiological conditions, but in the
brain tissue of AD changes in its conformation occur,
affecting its solubility. Horiguchi et al. demonstrated
the presence of nitrated tau protein in pretangles,
neurofibrillary tangles, as well as tau inclusions in AD
brain. Tau contains five Tyr residues (located at 18, 29,
197, 310, and 394), that can undergo nitration to initiate
a range of ‘tauopathies’ [122]. In AD patients, the N-
terminal tyrosine residues of the tau protein (Tyrl8
and Tyr29) are more susceptible to nitrative modifica-
tions than other tyrosine residues (Tyr197 and Tyr394)
[123]. Tau nitration at Tyr197 and Tyrl8 has been
reported to enhance disease progression in a range of
neuro-degenerative disorders [124], whereas nitration at
Tyr29 appears to be a specific characteristic of AD
[123].

It was found that nitration of other proteins perturbs pH
regulation, energy metabolism, and mitochondrial
functions, and may be involved in the mechanisms of
neuronal loss and progression of AD. In particular, such
nitrated proteins were identified in the AD hippocampus
as a-enolase, carbonic anhydrase II, glyceraldehyde-3-
phosphate dehydrogenase, ATP synthase a-chain and
voltage dependent anion channel protein 1 (VDAC-1),
using a redox proteomics approach. Nitration of ATP
synthase a-chain and VDAC-1 is associated with mito-
chondrial dysfunction and neuronal cell death in the AD
hippocampus. Moreover, nitrated proteins are usually
tagged for selective destruction in proteasomes, but in

AD this pathway may be defective due to oxidation of
ubiquitin carboxy-terminal hydrolase L-1 in the inferior
parietal lobule and hippocampus [122, 125, 126]. Main
brain proteins nitrated in AD are listed in Table 3.

It should be noted that aging is an important risk factor
for human a-synucleinopathies such as PD. There is a
link between aging, o-synuclein (aSyn) abnormalities
and enhanced vulnerability to neurodegenerative
processes. It was also reported that phospho-Ser 129
and nitrated aSyn are formed within dopaminergic
neurons of the monkey substantia nigra in the course of
normal aging [132]. Schildknecht et al. [133]
hypothesized that under physiological conditions aSyn
may act as an intracellular scavenger of oxidants,
catalytically regenerated, and performs an important
protective role before the onset of disease or during
aging. aSyn is a 140 amino-acid protein, originally
identified in association with synaptic vesicles in the
presynaptic nerve terminals and has been shown to
interact with membranes both in vitro and in vivo. It is
predominantly expressed in the brain (in the neocortex,
hippocampus, substantia  nigra, thalamus, and
cerebellum, accounting for approximately 1% of brain
weight) and is also present in other cells and tissues,
including erythrocytes [134]. aSyn is involved in the
modulation of synaptic activity through regulation of
assembly of SNARE-complex of presynaptic vesicles,
regulation of neurotransmitter release, regulation of cell
differentiation and phospholipid metabolism [135].
Susceptibility to PD may be linked to modulation of
aSyn protein expression. Furthermore, nitration of aSyn
was associated with enhanced propensity of this protein
to aggregate. Burai et al. [136] examined the site-
specific incorporation of 3-NT at different regions of
aSyn. They found that depending on the site of
nitration, various nitrated aSyn species exhibit distinct
structural and aggregation properties and exhibit
reduced affinity to negatively charged vesicle
membranes. Intermolecular interactions between the N-
and C-terminal regions of aSyn play critical roles in
mediating nitration-induced oligomerization of aSyn. In
mutants, in which Tyr39 is not available for nitration,
the extent of cross-linking is limited mostly to dimer
formation, whereas mutants in which Tyr39 is available,
along with one or multiple C-terminal tyrosines remain
nitrated. Nitrated aSyn was observed to induce adaptive
immune responses that exacerbate PD pathology in the
mouse MPTP model of PD [137]. Increased nitrated
aSyn is present in peripheral blood mononuclear cells
of idiopathic PD patients compared to healthy
individuals [138]. These studies provide evidence for a
direct link between nitrative damage and the onset and
progression of neurodegenerative synucleinopathies.
More recently, Kleinknecht et al. [139] reported that
Syn can be nitrated and form stable covalent dimers

WWWw.aging-us.com

AGING



originating from covalent crosslinking of two Tyr
residues. Nitrated Tyr residues, but not dityrosine-
crosslinked dimers, contribute to aSyn cytotoxicity and
aggregation. Analysis of Tyr residues involved in
nitration and crosslinking revealed that the C-terminus,
rather than the N-terminus of aSyn, is modified by
nitration and dityrosine formation. These data suggest
that C-terminal Tyr133 plays a major role in aSyn
aggregate clearance by supporting the protective Ser129
phosphorylation for autophagy and by promoting
proteasomal clearance. C-terminal Tyr nitration in-
creases pathogenicity and can only be partially detoxified
by aSyn dityrosine dimers. It seems that complex
interplay between Ser129 phosphorylation and C-
terminal Tyr modifications of aSyn likely participates in
PD pathology. Table 4 shows data on a-synuclein
nitration in PD.

Nitration and aging

It has been extensively documented that increased
nitration is often connected to the development of age-
related diseases. High concentrations of peroxynitrit-
rous acid may affect modulation of mitochondrial
respiration that can act as platform for development of
prevalent neurodegenerative diseases. Proteomic ana-

Table 4. a-Synuclein nitration in Parkinson’s disease.

lysis by ESI-MS/MS had shown that flotillin-1 and a-
tubulin are nitrated in the rat in the course of aging. Age
dependent accumulation of 3-NT on skeletal muscle
glycogen phosphorylase b (Ph-b) is reported in an
experimental rat model (106, 140). Results of selected
studies on protein nitration in aging are shown in
Table 5.

Methods used to measure the level of nitrated
proteins

Among the many technologies available, the most
effective and dependable method for the quantification
of 3-NT are gas chromatography-mass spectrometry
(GC-MS/MS) and liquid chromatography-mass
spectrometry (LC-MS/MS). GC-MS/MS and LC-
MS/MS based methods showed that the concentration
of 3-NT in human plasma is on the threshold of the
picomolar (pM) to nanomolar (nM) range and changes
only very little upon disease or intervention. These
important findings are suitable to serve as the gold
standard and as a measure to test the reliability of
alternative techniques, such as GC-MS, high perfor-
mance liquid chromatography (HPLC) with electro-
chemical detection, or immunological assays.

Nltrat.ed Materials Methodology Major observations Reference
Protein
Microglia activation and
proinflammatory cytokine expression
enhanced in the substantia nigra of
] elderly rats following intrapallidal
Male Fischer 344 rats, 3- | o/ blotting, | lipopolysaccharide administration,
aSyn month-old vs 16-month- ELISA Greater nitration of aSyn in the [140]
old substantia nigra of 16-month-old
rats vs 3-month-old rats,
accompanied by a higher expression
level of INOS
WB,
Twelve-month-old male | Immunostaining,
nTg, SYN Tg, and SYN- Sequential Neuroinflammation and Syn
aSyn null mice; primary biochemigal pathology are linked mechanistically |[141]
neuronal and glial fractionation, to the onset and progression of PD
cultures. Immunoelectron
microscopy
a-Syn Squirrel monkeys of 2
(nitration of | age groups: <10y (69 | Immunohistoche Age-related elevations of modified
Tyr125 and | years, n=4) and >16 (17— | mistry protein [132]
Tyr136) 19y, n=3).

Tg, transgene; WB, Western blotting
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Table 5. Selected results of nitroproteomic studies of aging.

Material Methods Nitrated Protein Findings Reference
Male Wistar rats aged 6 Quadriceps protein 3-NT levels hlgher' in all protein fractions
WB . of skeletal muscle in old male rats, [165]
m (adult) and 25 m (old) fractions . . . . .
especially in the mitochondrial fraction
Young (19-22 w) and - . .
old (24 m) CSTBL//6 SDS PAGE, Hepatic proteins Slgnlﬁcgntly hlgher. level of Tyr nitration [166]
. WB of proteins in old mice vs young mice
male mice
ONOOH-treated Hsp70, actin, and tubulin
Actin.tubulin nontoxic for motor neurons and PC12 cells.
PC12 cell culture WB, MS HC 7 (’) Lll_l . 9 0’ ONOOH-treated Hsp90 induced [167]
SprEHSP death in ~40% of PC12 cells and 60% of
motor neurons
Young adult (4-5 m), Age-dependent nitration and loss of
middle-aged (10 and 16 SERCA2a nitrated at function of the rat skeletal-muscle SR
c-age WB, HPLC-MS y Ca’*-ATPase isoforms SERCA1 and [168]
m) and old (26-28 m) Tyr294 and Tyr295
; SERCA2a
Fisher 344 male rats
18 male F344 rats were SERCAZ2a,
711 m old (young aconitase, f-enolase, | oo 26 0o a0c-associated increase in
adult), 22-25 m old WB carbonic anhydrase ni?ro osineigmo dified proteins [169]
(old), and 27-30 m old 111, triosephosphate tyr p
(very old) isomerase
LDL receptor related . .
Male F344 BN/F1 rats WB, MS/MS protein 2, CNP and Age—dependent accumulation of nitrated [170]
aged 5, 22, and 34 m proteins
others
Young (4 m) and old (24 Nltrated proteins accumulatte at a faster rate
. a-Fructose aldolase, | in old compared to young tissue,
m) Fisher344 rats and . . . -
WB, MALDI- triosephosphate Nitrated proteins are subject to proteasomal
young (6 m) and old (34 . . [171]
: TOF MS isomerase, GAPDH degradation,
m) Fisher 344 /BN F1 .. . .
rats and others Proteasomal activity declines with
increasing age
Tropomyosin 1 - o
17 Fisher 344/BN F1 neurofbromin, | theh sbundance ireases with age,
rats (10-34 moldand 7- | WB, MS/MS cadherin EGF-LAG, | 1.5 to 2 fold increase in protein nitration in [172]
5 mold) .
seven pass G type 34-m vs 5-m old animals
receptor 2
Profilin 1, Significant modification of vascular
Young (4-6 m old) and WB. MALDI polymerase I, endothelial cytoskeleton, which potentially
aged (24-26 m old) male T OF’—MS Transcript release contributes to barrier dysfunction, [173]
C57BL/6 mice factor, peroxiredoxin | increased vascular permeability and
6, and others pulmonary oedema
CNP, 2,3-cyclic nucleotide 3-phosphodiesterase; MS, mass spectrometry; WB, Western blotting
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The various antibody assays also need to be validated
by these GC-MS/MS or LC-MS/MS methods [141].
Quantitative MS-based analysis is essential for the
elucidation of the stoichiometry of the specific tau Lys-
directed posttranslation protein modifications that
correlate with AD neuropathology. Multiple Reaction
Monitoring (MRM) is a targeted mass spectrometry
(MS)-based technology that is becoming increasingly
utilized for protein quantification. MRM-based
approaches have been used to determine the relative
abundance of tau polyubiquitylation in human AD brain
and global tau in human CSF. In contrast to MS-based
discovery proteomics experiments, MRM entails the
targeted, simultaneous measurements of peptides that
serve as surrogates for the protein targets of interest.
MRM-based assays are considered to be the “gold
standard” for MS-based targeted protein quantification
since they are highly specific, precise, and accurate, and
they can be multiplexed (hundreds of peptides can be
quantified in a single assay), standardized and readily
reproduced. A targeted proteomics method that is
similar to MRM is parallel reaction monitoring (PRM)
wherein an accurate mass and high-resolution mass
spectrometer is used to permit the parallel detection of
all target product ions [142].

CHLORINATIVE PROTEIN MODIFICATIONS
IN AGING AND AGE-RELATED NEURODEGE-
NERATIVE DISEASES

Chlorinative stress undoubtedly contributes to the
pathogenesis of neurodegenerative diseases [143]. In
brain, chloride ions are present at the concentration of
102 — 10" M [144]. HOCI can be generated with the
activation of microglia and myeloperoxidase secretion
[145-148]. Moreover, infiltration of monocyte/macro-
phage and neuronal expression of myeloperoxidase also
contribute to the formation of HOCI [149, 150]. Suppo-

sedly, the brain has poor defence system against HOCI
[79,151,152]. Thus, the toxicity of HOCI towards
central nervous system tissue was shown [153-155].
Furthermore, MPO was reported to be expressed with
increased levels in the cerebral tissue of patients
affected by AD [156] and 3-chlorotyrosine as a
biomarker of HOCI production was detected in proteins
from AD hippocampus. The level of 3-chlorotyrosine in
the samples from diseased brain was three-fold higher
compared to control samples [150]. Halogenation has a
clear effect on the self-assembly of the amyloid B
peptide aggregates [157]. However, it can be concluded
that a role of protein chlorination in neurodegenerative
diseases is not analysed completely yet.

ADVANCED PROTEIN OXIDATION PRODUCTS
(AOPP) IN AGING AND AGE-RELATED DISEASE

A special class of protein modification products,
consisting  of  oxidized, dityrosine-containing,
crosslinked proteins formed mainly by reactions of RXS
with plasma proteins, predominantly albumin, are so-
called advanced oxidation protein products (AOPP). In
vivo, the generation of chlorinated oxidants is a feature
of phagocytic cells containing MPO [158, 159]. Witko-
Sarsat et al. [160] first reported elevated plasma level of
AOPPs in uremic patients. High levels of AOPPs were
detected in patients on maintenance hemodialysis,
followed by those on peritoneal dialysis. Patients with
advanced chronic renal failure not yet on dialysis had
almost three times higher AOPP levels than healthy
subjects.

Size exclusion chromatography of uremic plasma has
isolated high-molecular-weight (600 kDa) and low-
molecular-weight (80 kDa) AOPPs. The high molecular-
weight AOPPs were mostly formed of albumin aggre-
gates, likely resulting from disulfide bridges and/or

Table 6. Chosen results of studies on the effect of aging and neurodegenerative diseases

on the AOPP level in blood serum or plasma.

Subjects studied AOPP level Reference
Alzheimer disease Increased (106.5+£27.3 vs 87.5£37.8 uM) [161]
Chronic schizophrenia Increased (211.2£159.4 vs 191.7+ 146.3 uM) | [162]
Parkinson disease Increased (65.6 vs 45.6 uM) [163]
Postmenopausal vs premenopausal | Increased (118.6£59.1 vs 61.6 £ 16.4 M) [164]
women

Systemic sclerosis Increased (109.1 vs 75.5 uM) [165]
Rats, 9-m old (adult) vs 3-m old Increased (8.3+£2.7 vs 6.8£2.3 uM) [166]
(young)

Rats, 22-m old (old) vs 3-m old Increased (16.1+ 4.8 vs 6.8+2.3 uM) [167]
(young)

Rats, 22-m old vs 2-m old Increased (198.5+44.9 vs 129.3£27.2 uM) [168]
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dityrosine crosslinking. The low molecular weight of
AOPPs contained albumin in the monomeric form

[160].

Exemplary values of AOPP obtained in studies of aging
and neurodegenerative diseases are reported in Table 6.

AOPPs were first recognized as markers of oxidative
stress. However, it was reported that AOPPs can also
promote ROS production, which leads to a vicious
circle. AOPPs activate NADPH oxidase via the protein
kinase C-dependent pathway inducing an excessive
generation of intracellular superoxide in various renal
cells (podocytes, endothelial cells, mesangial cells, and
tubular epithelial cells) [169].

AOPPs are assayed spectrophotometrically at 340 nm
after treatment samples with KI [160, 170]. A kinetic
AOPP assay has been proposed [171], but a limited
correlation was found to exist between results obtained
by the classical and kinetic assay [172].

BRAIN PROTEIN MODIFICATIONS BY 4-
HYDROXY-2,3-TRANS-NONENAL IN AGING
AND NEURODEGENERATIVE DISEASES

Post-mitotic neurons are notably vulnerable to lipid
peroxidation since the brain has high levels of poly-
unsaturated fatty acids, high levels of redox transition
metal ions, high oxygen consumption, relatively low

n-6 fatty acids

levels of low-molecular weight anti-oxidants and
antioxidant enzymes. Peroxidation of polyunsaturated
fatty acids, especially linoleic acid, linolenic acid and
arachidonic acid by non-enzymatic processes leads to
the formation of aldehydes, among them 4-HNE is
present at very low concentration in plasma, in the
range of 0.28-0.68 uM under physiologic conditions,
but its concentration in cells, where it is produced, may
be higher (<5 uM) [173]. 4-HNE concentration can be
increased as much as by 100 times under OS conditions
[174]. Esterbauer's group demonstrated that 4-HNE
formation from arachidonic acid is greater in the
presence of NADPH-dependent microsomal enzymes
[175]. 4-HNE possesses three reactive functions: a
C2=C3 double bond, a C1=0O carbonyl group and a
hydroxyl group on C4. These functions make this
electrophilic  molecule highly reactive toward
nucleophilic thiol and amino groups. 4-HNE can enter
the reaction of Michael addition to thiol or amino
groups, which involves the C3 of the C2=C3 double
bond or can form Schiff bases between the C1 carbonyl
group and primary amines. The kinetics of the Schiff
base formation is slow and reversible, making Michael-
adducts predominant adducts of 4-HNE to proteins. 4-
HNE reacts mainly His, Cys and Lys residues in
proteins [176, 177] (Fig. 1F, Fig. 2). The formation of
the 4-HNE-protein adducts is a bio-active marker of
pathophysiological processes [178-180]. 4-HNE forms
Michael adducts with enzyme peptidylprolyl cis/trans-
isomerase Al (Pinl), which catalyzes conversions of
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phospho-serine and phospho-threonine-proline from cis
to trans conformation. These adducts were detected by
matrix-assisted laser desorp-tion ionization/time-of-
flight/time-of-flight (MALDI-TOF/TOF) mass spectro-
metry at the active site residues His157 and Cys113,
with Cysl13 being the primary site of 4-HNE
modification [181-185]. Protein modifica-tions by 4-
HNE impairs glutamate and glucose transport, disrupts
Ca”" homeostasis, damages choli-nergic neurons thus
impairing visuospatial memory and induces apoptosis in
PC12 cells (cell line derived from a pheochromocytoma
of the rat adrenal medulla) and cultured rat hippocampal
neurons [186-188]. Nam et al. (2014) compared N-
methyl-D-aspartate receptor type 1 (NMDAR1) and 4-
HNE in the hippocampus of D-galactose (D-gal)-
induced and naturally aging models of mice [189].
These authors observed an age-dependent reduction of
NMDARI and an increase in 4-HNE in the dentate
gyrus, CA1 and CA3 regions of the hippo-campus via
immunohistochemistry and Western blot analyses. In
the D-gal-induced chemical aging model they noted
similar changes in NMDARI1 and 4-HNE although the
degree of reduction/increase in NMDAR1/HNE was not
as severe as that in the naturally aged mice.

4-HNE-protein adducts were found to be elevated in
brain tissues and body fluids of AD, PD, Huntington
disease as well as ALS subjects [190, 191]. 4-HNE-His
adducts were reactive with AP core of sensile plaques
and neurofibrillary tangles [179]. Hardas et al. (2013)
detected oxidative modification of lipoic acid, a key co-
factor for a number of proteins including pyruvate
dehydrogenase and a-ketoglutarate dehydrogenase, by
4-HNE in AD brain [192]. In another study, 4-HNE-
Lys adducts were increased in neurons containing
neurofibrillary tangles, but also in pyramidal neurons
located in the hippocampal tissue sections in AD [193].
The formation 4-HNE adducts with the neuronal
glucose transporter GLUT3 and the mitochondrial ATP
synthase a subunit in AD brain leads to reduced glucose
utilization and energy production in AD [194, 195].
Studies conducted by Sultana et al. suggest that 4-HNE-
modification of a-enolase, heme oxygenase 1, Collapsin
Response Mediator Protein-2 and ATP synthase subunit
a are critical in the progression of AD [196]. These
authors hypothesized that 4-HNE modification can be
not a random event, but occurs on specific proteins,
which, in turn, display altered func-tions. The formation
of 4-HNE adducts with a-enolase could inhibit the
conversion of plasminogen to plasmin and the
degradation of AP. In AD brains, the increase of OS
leads also to increases of Nrf2 activity as well as,
consequently, increases of heme oxygenase 1 level.
Heme oxygenase 1 catalyzes the degradation of heme
and represents the rate-limiting enzyme in bilirubin
production [197]. Collapsin Response Mediator Protein-

2 (dihydropyrimidinase-related protein-2) plays an
important role in cytoskeletal organization, axono-
genesis, axon outgrowth, membrane trafficking and
neuronal polarity [198]. The oxidative modification of
Collapsin Response Mediator Protein-2, such as
formation adducts with 4-HNE, can play an important
role in shortening of axons as well as loss of synapses in
AD. ATP synthase subunit o, a part of complex V
responsible for mitochondrial-resident ATP synthesis.
ATP synthase o might by modified by 4-HNE in AD
brain, which causes the reduced activity of ATP
synthase and reduced ATP levels in AD brain compared
to age-matched controls [196]. According to recent
study, klotho gene therapy in senescence-accelerated
mouse prone-8 (SAMPS8) reduced memory deficits,
neuronal loss, synaptic damage and 4-HNE levels, and
increased mitochondrial SOD-2 and catalase expression.
Additionally, the up-regulation of klotho expression
decreased Akt and Forkhead box class O1 (FoxOl1)
phosphorylation. The role of 4-HNE adducts in ALS
progression has been recently reviewed by Zarkovic
group [180]. ALS is a progressive neurodegenerative
disorder characterized by weakness and spasticity,
caused by the loss of lower and of upper motor neurons
and by secondary neurogenic amyotrophy of striated
muscles. An in vitro study demonstrated that 4-HNE
impairs the glutamate and glucose transport and the
choline acetyltransferase activity in cultured motor
neurons [199], while human autopsy materials have
shown increased levels of 4-HNE, which modifies
astrocytic glutamate transporter EAAT2 (excitatory
amino acid transporter 2) impairing glutamate transport
in ALS. Moreover, 4-HNE is able to target SODI in
ALS [200]. Kabuta et al. (2015) reported that TDP-43, a
major component of ubiquitin-positive inclusions in
ALS, is bound by 4-HNE, therefore inducing both
proteins into toxic aggregates [201].

It should be mentioned that 4-HNE has also crucial role
in aSyn-induced cytotoxicity and neuro-inflammation
[202]. These aldehydes can also promote the formation
of aSyn oligomers with defined structural properties.
Although, 4-HNE modifies oSyn immediately,
primarily the His50 residue, oligomer formation only
occurs with prolonged incubation times (> 24 h) and
involving fewer cross-linking events. 4-HNE can bind
to aSyn at an acidic pH, but these modifications cannot
promote oligomerization even with increased incubation
times [203]. The current objective of research in the
field of contribution of 4-HNE-protein adducts is
characterization the interactions of 4-HNE with redox
sensitive cell signalling proteins. 4-HNE is involved in
aging-related signaling pathways, such as NF-xB, AKT,
Nrf2 and mTOR. Other signaling pathways involved in
aging, for example related to growth factor signaling
EGFR, PDGFR and others are also modified by 4-HNE.
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Understanding how modulation of activities of these
signaling pathways contributes to physiological aging
and neurodegenerative diseases may pave the way for
new therapeutic strategies.

Assay of 4-HNE-protein adducts

The gold standard in studies of protein modifications by
lipid peroxidation products, including 4-HNE, in
proteomic studies is mass spectrometry, €. g. matrix-
assisted laser desorption ionization/time-of-flight/time-
of-flight (MALDI-TOF/TOF), ESI-MS or LC-ESI-CID-
MS/MS [204-206]. Antibodies against the His adduct of
4-HNE has allowed for facile detection and quan-
tification of 4-HNE-modified proteins by immuno-
chemical techniques (immunoblotting, immunocyto-
chemistry, immunohistochemistry and immuno-electron
microscopy.

Two variants of the 4-HNE-ELISA assay have been
developed, both of which are based on the 4-HNE-His
monoclonal antibodies. The differences between these
two assays concern the analytical protocols and the
albumin-HNE standards used, allowing very sensitive
determination of low amounts of the 4-HNE-protein
adducts (the assay denoted HNE-His ELISA Fine) even
below 0.025 nmol 4-HNE-His/mg of protein and the
one able to detect higher amounts, above 1.5 nmol 4-
HNE-His/ mg of protein (the assay denoted HNE-His
ELISA Stress) [207].

ROLE OF OXITATIVE STRESS IN THE BLOOD
BRAIN BARRIER AGING

The blood brain barrier (BBB) separates the brain and
blood with a large surface area (between 12 and 18 m’
in the average human adult) [208, 209]. The opposing
membranes of endothelial cells are connected by tight
junctions, which are formed through an intricate
network of interacting proteins such as claudins,
occludin, junctional adhesion molecules and cyto-
plasmic proteins [210]. Nitta et al. (2003) demonstrated
that claudin-5 is a critical determinant of BBB
permeability [211]. In the process of healthy aging an
increased “leakage” of BBB may occur, not only due to
alteration of thickness of basal lamina, endothelial cells,
morphology of pericytes and astrocytes, but also as a
result of the changes in expression of transporter
proteins at the endothelial cell layer of BBB [212].
Bors et al. (2018) reported that the number of tight
junctions decreases, the thickness of basal lamina
increases as well as the size of astrocyte endfeet extends
with advanced age. These authors also demonstrated
that the function of P-glycoprotein 1 (P-gp, ABCBI
Abcbla/Mdrla), the most important efflux transporter
located on the Iuminal surface of brain capillary

endothelial cells is reduced in old Wistar rats [213].
Reduced BBB expression of P-gp was associated with
increased brain parenchymal AP40 and AB42 levels in
aged rats [214], in agreement with the idea that P-gp is
an important efflux transporter to remove A from the
CNS [215]. Pan et al. (2018) showed that low density
lipoprotein receptor-related protein 1 (LRP-1) expres-
sion declines with age, which may contribute to AP
accumulation [209]. Van Assema et al. (2012) studied
in vivo effects of gender and aging on human BBB P-gp
function in a large sample size using PET and (R)-
[”C]verapamil. These authors reported that decreased
BBB P-gp is found with aging; nevertheless, effects of
age on BBB P-gp function differ between men and
women [216].

The function of BBB can be impaired by ROS/RNS,
and these effects are partly mediated by products of
lipid peroxidation [217]. The major secondary lipid
peroxidation product, 4-HNE can impair the BBB
function via the decrease of GSH [218]. Wang et al.
(2012) reported that overexpression of actin-
depolymerizing factor (ADF) blocks the oxidized low-
density lipoprotein (ox-LDL)-induced disruption of
endothelial barrier. Furthermore, siRNA-mediated
downregulation of ADF expression aggravated ox-
LDL-induced disruption of endothelial barrier and ROS
formation. ADF seems to be a key signaling molecule in
the regulation of BBB integrity and suggest that ADF
might be used as a target to modulate diseases
accompanied by ox-LDL-induced BBB compromise
[219]. It should be also mentioned that several studies
suggest a link between synucleinopathies and the
cholesterol metabolite 27-hydroxycholesterol (27-
OHC). 27-OHC is the major cholesterol metabolite in
the blood that crosses BBB, and its levels can increase
following hypercholesterolemia, aging and OS, which
are all factors for increased synucleinopathy risk. 27-
OHC can increase aSyn levels and causes the inhibition
of the proteasomal function and reduction in heat shock
protein 70 levels as potential cellular mechanisms
involved in regulation of aSyn [220].

REMOVAL OF MODIFIED PROTEINS

The level of posttranslationally modified proteins is a
resultant of the rate of protein modification and rate of
removal of modified proteins. Aging, as well as several
age-related diseases are associated with a decreased
ability to maintain proteostasis [221]. All cells have a
number of quality control mechanisms in order to
maintain the stability and functionality of their pro-
teome. The proteostasis network includes both protein
stabilization mechanisms (major heat shock proteins)
and protein degradation systems (proteasome and
lysosome) [222-224]. In addition, there are several
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modulators of proteotoxicity (like MOAG-4), that
operate through distinct pathways [42]. All these
systems work in concert to restore the structure of
denatured proteins or to promote their degradation,
thus preventing the accumulation of damaged com-
ponents and ensuring the continuous renewal of the
intracellular polypeptides. Many studies have shown
that aging is accompanied by failure of proteostasis
[225], while chronic exposure to denatured or
aggregated proteins contributes to the development of
age-related neuro-degenerative diseases such as AD and
PD [221, 226].

The proteasome

The proteasome is a fundamental multicatalytic enzyme
complex, which facilitates the degradation of normal as
well as abnormal, damaged, denatured and redundant
cellular proteins. Proteasomes are located in different
cellular compartments (cytoplasm, nucleus and
endoplasmic reticulum) and represent approximately up
to 1% of the total cellular protein content. The central
role of the proteasomes is demonstrated by their
participation in numerous and diverse cellular functions,
including the regulation of transcription factor
abundance, cell cycle and cellular differentiation. The
main proteasomal complex is the 30S/26S proteasome
and is composed by the 20S catalytic "core" and the 19S
regulatory "cap" (summarized in [227]).

The 20S proteasome is a barrel-like structure composed
of 28 protein subunits that form a complex of 700 kDa.
The two outer rings comprise seven different o subunits,
while the interior rings consist of seven B subunits,
creating an al-7/B1-7/B1-7/a1-7 layout. The external o
rings control the entry of proteasome’s substrates into
the P rings, the site of the proteolytic activity. The a-
subunits are additionally responsible for the binding of
different factors that regulate the activity and specificity
of the catalytic core. Three of the seven B subunits,
namely B1, B2 and B5, are proteolytically active, having
different substrate specificity. Specifically, 1 has a
caspase-like activity (CL or PGPH), B2 a trypsin-like
(TL) and B5 a chymotrypsin-like activity (CT-L). The
protein hydrolysis occurs after acidic peptide bonds,
basic amino acids and hydrophobic amino acids,
respectively [228].

The 19S regulatory complex is composed of 19
different subunits that form two heteromeric rings,
known as "base" and "lid" [182]. It is responsible for
binding, deubiquitination and translocation of the
protein substrate in the 20S core. The base is composed
of nine subunits, 6 of which (Rptl1-6) possess ATPase
activity [230]. Rpnl, Rpn2 and Rpnl3 are 3 non-

ATPases that are necessary for the proper function of
the 19S complex. In addition, since they act as
polyubiquitin receptors, these subunits are responsible
for the recognition of the ubiquitinated protein substrate
[231]. The "lid" bridges the gap between the 20S and
the 19S proteasomal particles. This structure is
evolutionary conserved and consists of nine RPN sub-
units (Rpn3, 5 -9, 11, 12 and 15). The "lid" is very
flexible structure, necessary for the positioning and the
deubiquination of the substrate by the deubiquitinating
subunit Rpnl11 [232]. Thus, the 19S regulatory complex
acts as a very versatile device, which facilitates the
access of the protein substrate to the core of the 20S
proteasome in an ATP-dependent manner.

The 26S/30S proteasome is formed by the 20S catalytic
core and the 19S regulatory particle. One or two
regulatory complexes may bind on the catalytic core,
forming the 26S or the 30S complexes, respectively.
The substrates of the 26S proteasome are identified by
labeling with multiple ubiquitin molecules. The
ubiquitin is attached via a three-step procedure, which
requires the action of E1 (ubiquitin activation), E2
(ubiquitin conjugation) and E3 (ubiquitin ligase)
ligases. Polymeric ubiquitin chains are produced by the
repeated action of the E1, E2 and E3 enzymes. The
multi-ubiquitin chains signal the identification of the
protein substrate for degradation. Upon recognition of
the substrate, the poly-ubiquitin chains are removed by
deubiquitinating enzymes (DUBs) [226]. The overall
mechanisms of ubiquitination and proteasomal
degradation are known as the ubiquitin-proteasome
system (UPS system) (Fig. 3).

Besides the constitutive proteasomes, there are specific
specialized proteasomes, formed when the B1, p2 and
B5 catalytic subunits become de novo substituted by Bl1i,
B2i and B5i subunits, respectively. These subunits are
induced in response to the immunomodulatory cytokine
interferon-gamma (IFN-gamma). The immunoprotea-
somes, as they are termed, besides their main role in
antigen presentation, are involved in adaptation to OS
and in selective degradation of oxidized proteins during
aging, possibly in response to chronic inflammation (as
summarized in [226]).

Proteasome and aging

During aging proteostasis collapses [223], resulting in
the accumulation of denatured, aggregated or oxidized
proteins, which in turn causes cellular damage and
impairment of tissues [233]. The proteasomes, being the
main proteolytic cellular system responsible for the
elimination of nonfunctional or excessive proteins, hold
a pivotal role in aging [234].
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Figure 3. Overview of the ubiquitin (Ub)/proteasome system and its substrates in relation to aging. Ub
conjugation is mediated by a series of enzymes. The Ub-activating enzyme E1 transfers Ub to the active site of the E2 Ub-
conjugating enzyme and the E3 Ub-ligase ligate Ub to the target protein. The ubiquitinated protein is targeted to the 26S
proteasome for degradation. The 26S proteasome consists of the 20S catalytic core and of one or two 19S regulatory particles.
The 20S proteasome consists of 28 subunits that are divided to two outer a and two central B rings. The immunoproteasome is
induced in response to the immunomodulatory cytokine interferon-gamma (IFN-gamma) or in response to the increased OS
that is observed during aging. The age-related elevation of OS also causes oxidative damage to proteins, such as
carbonylation. In addition, the excessive *NO production during aging can lead to aberrant S-nitrosylation/tyrosine nitration.
Nitrated proteins are prone to aggregation and may contribute to the onset and progression of various neurodegenerative

diseases, including AD or PD.

The accumulation of aggregated or carbonylated proteins inhibit proteasomal activity

contributing the observed proteasomal dysfunction during aging and to the advancement of age-related pathologies.

Young cells and organisms are characterized by an
effective preservation of proteostasis. However, this
ability is reduced during normal aging. This is
evidenced by the increased accumulation of oxidatively
modified proteins in senescent cells and tissues, which
is indicative of the impairment of protein quality control
and of protein degradation systems. Senescent cells
have higher levels of proteins bearing modifications,
such as oxidative carbonylation, oxidized Met and
glycation. Studies in vivo and in vitro have shown that
both the expression and function of the proteasome

are negatively affected by aging. Proteasome dys-
function during aging results not only due to the
reduced expression of proteasome subunits and the
impaired assembly of proteasomal complexes, but also
because of the aggregated proteins that inhibit its
function. Specifically, the reduction of proteasome
activity during aging has been detected in numerous
aged human tissues (muscles, lenses, skin, lympho-
cytes) or other mammalian tissues/organs such as the
heart, muscles , spine, brain, liver, adipose tissue and
retina (reviewed in [235]).
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The activities of the proteasomes decline in senescent
human fibroblasts, as a result of a reduction in
expression of  subunits [236]. Moreover, it has been
shown that the partial inhibition of the proteasomes in
young cells causes a pS53-mediated premature senes-
cence [237]. On the other hand, the accumulation of
damaged proteinaceous materials such as lipofuscin
[238] or of protein aggregates [239] during aging,
impairs proteasome function. Furthermore, studies in D.
melanogaster have shown that the age-related distur-
bances of the 26S proteasome assembly lead to
decreased proteasomal activity [240, 241]. Notably the
naked mole, which is an extremely long-lived rodent,
has high levels of proteasome activity, which may
contribute to proteostasis maintenance and consequently
to the extremely increased lifespan of these animals
[242]. Similarly, fibroblasts derived from healthy
centenarians have functional proteasomes, with
characteristics similar to those of proteasomes from
younger donors [243]. Accordingly, human embryonic
stem cells (hESCs), that have an unlimited proliferative
capacity, exhibit high proteasome activities, as com-
pared to their differentiated counterparts [244].
Recently, the age-related decline of proteasome content
and activities, along with the altered proteasome
assembly, has been linked with the senescence-related
loss of hMSC stemness [245]. Collectively, these
studies demonstrate that aging is tightly connected with
failures in biosynthesis, assembly and function of the
proteasome.

Proteasome activation

Proteostasis failure is an important determinant of the
aging process and is caused by a progressive decline of
the respective defense systems. As such, interventions
that promote proteostasis may delay aging and reduce
the incidence of age-related diseases [246]. For
instance, the activation of epidermal growth factor
(EGF) signaling extends longevity in nematodes, by
increasing the expression of various components of the
ubiquitin-proteasome system [247]. Likewise, the
enhancement of proteasome activity by deubiquitination
inhibitors or by proteasome activators increases the
replicative lifespan of yeast Saccharomyces cerevisiae
[248]. In addition, the overexpression of the B5 catalytic
subunit [228] or of the 19S subunit Rpn6 [249] confers
an increased lifespan in C. elegans.

Similar approaches for activating proteasomes have also
proved successful in mammals. The genetic activation
of the proteasome has been achieved by the stable
overexpression of the catalytic B5 subunit in the
fibroblast cell lines WI-38/T and IMR90 [236]. These
transfectants have increased ability to degrade oxidized
proteins effectively, improved resistance to OS, while

the primary IMR90 cells display a 15-20% prolongation
of their lifespan. Similarly, the restoration of normal
levels of catalytic proteasome subunits ameliorates the
aging phenotype in fibroblasts from elderly donors
[250]. Overexpression of B5 also promotes proteolysis
and resistance to oxidative stress in human epithelial
cells [251] and in promyelocytic leukemia HL60 cells
[236]. Similar data have been reported in other cell
types using different proteasome subunits. For instance,
the overexpression of f6 in human bronchial epithelial
Beas2B cells increases the activity of the proteasome
and protects against the endoplasmic reticulum (ER)
stress induced by cigarette smoke [252]. Moreover, an
elevation in expression levels of hUMP1/POMP, a
chaperone facilitating proteasome assembly, results in
increased proteasome activity and protects the cells
from OS [205]. Similarly, an increase of PA28 levels in
mouse cardiomyocytes stimulates the degradation of
denatured proteins, protecting from heart proteinopathy
[254]. Additionally, the overexpression of the regula-
tory 19S subunit Rpn6/PSMDI11 enhances the assembly
of 26S proteasome in human embryonic stem cells
(hESCs) [243]. Remarkably, it has been recently
revealed that overexpression of the B5 proteasome
subunit in human Wharton-Jelly derived mesenchymal
stem cells (WJ-MSCs) resulted not only in increased
proteasome activity and assembly, but also induced the
expression of additional 26S proteasome subunits. The
enhanced proteasome activity was maintained even after
extensive culture, protecting the stem cells form the
age-related increase of oxidative damage, as indicated
by the reduced levels of ROS and of oxidatively
modified proteins. Importantly, proteasome activation
doubled the replicative lifespan, improved the
expression of the core pluripotency factors and enhanc-
ed the differentiation capability towards adipocytes,
osteocytes and chondrocytes of both young and
senescent WJ-MSCs [245].

As genetic manipulation is not always feasible for
clinical applications, there has been an effort towards
the identification of natural or synthetic proteasome
activators with antioxidant and anti-aging properties.
Substances that directly induce the activity of the
proteasome include pollen [255, 256], oleuropein [256],
curcumin [258] and the synthetic peptide PAPI
(Proteasome Activating Peptide-1) [259]. A different
approach concerns the use of compounds that activate
the transcription of proteasomal subunits. It is known
that the transcription factor Nrf2 (Nuclear factor
(erythroid-derived 2)-like 2) induces the expression of
antioxidant enzymes including proteasomal subunits
[260]. Treatment with 18a-glycyrrhetinic acid (18-
GA) activates Nrf2, which in turn induces proteasome
function and results in an enhancement of lifespan of
both human fibroblasts [261] and C. elegans nematodes
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[262]. Likewise, treatment with quercetin increases the
CT-L proteasomal activity of human fibroblasts and
increases their resistance to OS [263]. Finally, activa-
tion of Nrf2 by sulforaphane increases pluri-potency
and self-renewal capacity of hESCs [264]. The analysis
of the role of proteostasis maintenance mechanisms in
aging, is essential for the rational design of inter-
ventions to improve the quality of human life in old age
(‘healthspan’), including the treatment of age-related
diseases.

PERSPECTIVES

Abundant evidence demonstrates accumulation of
products of protein modifications by ROS, RNS and
RXS during aging of humans and model organisms and
enhanced accumulation of such products in age-related
diseases. New methods of analysis, based mainly on the
MS technique, became available allowing for more
precise identification of protein modifications and
perhaps introduction of specific disease markers.
Elucidation of the role of such modifications in aging-
related changes and in the progress of diseases is more
difficult. Are they only markers or aging and diseases or
play a primary role in their development? There are
reasons to not exclude the second possibility as these
modifications adversely affect protein functions and
interactions. Prospective and intervention studies may
be helpful in this respect and may point to the possible
role of specific protein modifications as possible early
disease markers.
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