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ABSTRACT

After 480 days of age, high-producing hens are likely to be subject to ovarian aging, mainly due to oxidative
stress. In this study, the amelioration of ovarian aging in chickens, using a plant antioxidant, lycopene, was
investigated. The activity of the Nrf2/HO-1 pathway in chicken ovaries at different ages (90, 150, 280 and 580
days old) were compared to elucidate any age-related changes. Subsequently, the putative attenuating effect
of lycopene (100 ng/mL) on ovarian aging was evaluated through the establishment of a D-gal-induced aging
ovarian culture model. The cultured ovarian tissues of young (280 days) and old (580 days) hens were treated
with lycopene for 72 h to verify protective effects of lycopene on naturally aged ovaries. Results showed that
the Nrf2/HO-1 pathway was down-regulated during the ovarian aging process. Lycopene rescued the decreased
antioxidant capacity by increasing the activities of antioxidases and activating the Nrf2/HO-1 pathway in both
D-gal-induced and naturally aged ovaries. Moreover, lycopene promoted cell proliferation and inhibited
apoptosis in both D-gal-induced and naturally aged ovaries. Lycopene also alleviated D-gal-induced
mitochondrial damage in the living granulosa cells. In conclusion, lycopene can effectively ameliorate the
oxidative stress in aging hen ovaries via the activation of the Nrf2/HO-1 pathway.

INTRODUCTION oxygen species (ROS) generated during metabolic

activity, is one of the most dominant factors [7-9].

Overt signs of aging occur in the ovaries both earlier
and more rapidly than in any other organ. Female
fecundity is negatively correlated with increasing
chronological age [1]. Ovarian aging is characterized by
an age-related gradual decrease in both the quantity and
the quality of oocytes. Poor oocyte quality is the major
age-related contributing factor responsible for the
decline in female fertility [2,3]. In mammals, the
decline in oocyte quality is also known to be a major
cause of aneuploidy, miscarriages and birth defects
[4,5]. In domestic chickens, decline in egg production
also occurs with advancing age which causes a great
loss of income to the poultry industry [6].

Among all the inducing factors of ovarian aging,
oxidative stress, caused by the accumulation of reactive

Physiological ROS levels are considered to act to
maintain the normal signal transduction pathways in
folliculogenesis, oocyte maturation and ovulation [10],
but high ROS levels induce oxidative damage [11].
Growing evidence has shown that oxidative stress
caused by excessive ROS leads to the damage of
oocytes and granulosa cells within follicles. Studies
have demonstrated that ROS accumulation in the
ovaries leads to antral follicle destruction and oocyte
dysfunction in mice [12,13]. In the rat, oxidative stress
has been shown to induce granulosa cell apoptosis and
antral follicles atresia [14]. Numerous other studies
have demonstrated that oxidative stress is associated
with granulosa cell dysfunction and apoptosis and in an
age-related decline in female fertility [15,16]. As in
mammals, hens also undergo severe decreases in
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fecundity due to the increase in ovarian oxidative stress
during the aging process [17].

In normal cells, there is a complex antioxidant system
which makes use of antioxidant enzymes and biological
antioxidants. However, the ability of the antioxidant
system in the ovary to scavenge ROS decreases severely
during the aging process [18]. Hence, a variety of edible
compounds containing antioxidants have been screened
relating to their efficacy in aiding in the protection of
cells against oxidative stress. The antioxidant effects of
these food based compounds are exerted either by their
direct scavenging of free radicals or by their action of
increasing the endogenous cellular antioxidant potential
indirectly, via the activation of related signaling
pathways. Nuclear factor erythroid 2-related factor 2
(Nrf2) is well established as a critical transcription
factor that regulates antioxidant genes and is
responsible for the induction of various cellular defense
mechanisms against oxidative stress. Under normal
conditions, Nrf2 is localized in the cytoplasm and is
sequestered by its repressor kelch-like ECH-associated
proteinl (Keap 1). Under conditions of oxidative stress,
Keap] alters its conformation, thus becoming no longer
able to bind Nrf2 molecules. In this case, Nrf2
accumulates and enters the nucleus and activates the
transcription of its target genes [19]. Nrf2 can promote
the expression of antioxidative enzymes such as the
hemeoxygenase-1 (HO-1), which prevents cellular
apoptosis [20,21]. Salvianolic acid A can act to protect
RPE cells against oxidative stress through the activation
of Nrf2/HO-1 signaling [22]. However, as a reflection
of tissue antioxidant status, the expression of Nrf2 and
its downstream HO-1 in ovaries remains yet to be
elucidated and compared from hens of different ages.

The establishment of aging models is an effective
method for the study of many aging mechanisms. D-
galactose (D-gal) is a reducing sugar, which generates
advanced glycation end products (AGEs) in the
oxidative metabolism in vivo. Animals treated with D-
gal can be used to mimic natural aging [23]. In rodents,
the D-gal-induced aging model has been widely used
for the exploration of aging mechanisms and in the
screening for the anti-aging substances [24, 25].

In recent years, many natural plant extracts such as
resveratrol [26], hesperidin [27] and grape seed
proanthocyanidin extract [17] have been applied
towards reducing oxidative stress in the ovaries in order
to maintain normal function. Lycopene is a kind of
carotenoid compound that exists in tomatoes, water-
melon, pink grapefruit, guava and other red fruit [28]. It
possesses an extremely effective ability to scavenge free
radicals and provides protections against oxidative
damage in various tissues [29]. Dai et al. demonstrated

that lycopene attenuates colistin-induced nephrotoxicity
via the activation of the Nrf2/HO-1 pathway in mice
[30]. Lycopene ameliorates atrazine-induced oxidative
damage in the adrenal cortex by the activation of the
Nrf2/HO-1 pathway [31]. However, the antioxidant role
of lycopene has not been well elucidated in the
senescent ovaries of the laying hens.

In the present study, the Nrf2/HO-1 pathway in hen
ovaries at 90 (D90), 150 (D150), 280 (D280) and 580
(D580) days old was compared to elucidate the
relationship between oxidative stress and the Nrf2/HO-1
pathway during the ovarian aging process. Sub-
sequently, a D-gal-induced aging ovarian model was
established to evaluate the protective effects of
lycopene against ovarian oxidative stress during ovarian
aging in vitro. Concurrently, cultured ovaries from
D280 and D580 hens were treated with lycopene to
verify the protective effects of lycopene on the ovarian
oxidative stress resulting from the natural aging process.
The results expand our knowledge about retarding
ovarian aging in poultry and extending the laying
periods of older hens.

RESULTS

Age-related changes in the activity of the Nrf2/HO-1
pathway

In a previous study we reported that the ovarian
antioxidant capacity decreased significantly in hens
during the aging process as a result of decreased
antioxidase and transcription of antioxidant genes as
well as increased oxidant levels in ovarian tissues [17].
In the present study, the expression of proteins related
to the Nrf2 pathway and the related downstream genes
were determined. The results of immunohistochemical
staining of the ovaries showed that the Nrf2 protein was
predominantly located in the cytoplasm from D90 to
D280. However, Nrf2 expression was reduced in the
cytoplasm and had trans-located to the nuclei in D580
hen ovaries (Fig. 1A). In addition, western blot analysis
confirmed that the expression of Nrf2, phosphorylated
Nrf2 (pNrf2) and HO-1 proteins were all down-
regulated significantly at D580 compared with their
expression in D150 and D280 hens. There were no
consistent changes of any significance in either the
expression of Keapl or the expression of NADPH:
quinone oxidoreductase 1 (NQO1) in D580 hen ovaries
as compared with ovaries from younger ovaries (Fig.
I1B). The mRNA abundance of Gcle, Gelm, Gpxl1, Txn
and Txnrd in the ovarian tissues increased from pullets
to laying hens then gradually decreased during the
subsequent aging process. The mRNA abundance of
Gcle, Gelm and Gpx!I in D580 ovaries was significantly
lower than those of the other three stages. The trans-
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cription of Txn and Txnrd were markedly lower in D90
and D580 ovaries than that in D150 and D280 ovaries.
Interestingly, the expression of Glrx in D580 ovaries
was markedly lower than those in the D150 and D280
ovaries while it was higher than in D90 ovaries (Fig.
1C). These results suggested that the Nrf2/HO-1
pathway had been down-regulated during the ovarian
aging process in hens.
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Effects of lycopene on the morphological and
ultrastructure changes of the D-gal-induced aged
ovarian tissues

In order to study the attenuating effects of lycopene on
ovarian aging, an in vitro D-gal-induced ovarian aging
model was established. HE staining showed that treat-
ment of ovarian tissues with 2.5 mg/mL D-gal for 72 h
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Figure 1. Age-related changes in the activity of the Nrf2/HO-1 pathway. (A) Immunohistochemistry of Nrf2
in the ovaries of hens aged 90, 150, 280 and 580 days, scale bar: 10 um, black arrowheads: Nrf2 located in the
nucleus. (B) Age-related changes in relative expression levels of Nrf2, pNrf2, Keapl, HO-1 and NQO1. (C) Age-
related changes in transcription levels of Nrf2/HO-1 downstream genes: Gclc, Gclm, Glrx, Gpx1, Txn, Txnrd. Values
are expressed as the meansts.e.. The relative abundance of each transcript was normalized to a B-actin and
expressed as fold change over D90 ovaries. Different lowercase letters indicate significant differences (P < 0.05).
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obviously induced the apoptosis of the granulosa cells irregular arrangement of the granulosa cells. These

[17]. In contrast to those of the control group, the adverse changes were all alleviated by the combined

structure of the growing follicles in D-gal-induced aged treatment of lycopene but treatment of 100 ng/mL lyco-
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Figure 2. Protective effects of lycopene on D-gal-induced aged ovaries. (A) Effect of lycopene on D-gal-induced morphological
changes of ovarian tissues, scale bar: 50 um. (B) Effect of lycopene on D-gal-induced ultrastructural changes of granulosa cells: the four
pictures in the lower row are the higher magnifications of the red squares from the four pictures in the upper row, respectively, scale
bar: 2 um (upper); 1 um (lower), red arrowheads: fragmented mitochondria. (C) Effect of lycopene on D-gal-induced decline of BrdU
index, scale bar: 20 um; (D) Relative expression of proteins related to cell proliferation. (E) Effect of lycopene on D-gal-induced increase
of TUNEL index, scale bar: 20 um. (F) Relative expression of proteins related to pro-apoptosis (Bax) and anti-apoptosis (Bcl-xL). Values
are expressed as the meanszts.e.. Different lowercase letters indicate significant differences (P < 0.05).
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logy of the granulosa cells and growing follicles (Fig.
2A). These results demonstrate that the impairment of the
granulosa and growing follicles in D-gal-induced aged
ovarian tissues could be reversed by lycopene in vitro.

In contrast to the control group, the mitochondria in the
living granulosa cells of the D-gal-induced aged ovarian
tissues were fragmented and swollen. As expected, the
phenomenon of mitochondrial fragmentation and swell-
ling in living granulosa cells was alleviated after 72 h
simultaneous treatment with lycopene and D-gal.
Meanwhile, no obvious difference was found in mito-
chondrial morphology between lycopene treatment and
the control groups (Fig. 2B). These data indicated that
lycopene could partially rescue the D-gal-induced ultra-
structural damages of the living granulosa.

Effects of lycopene on the somatic cell proliferation
decline in the D-gal-induced aged ovarian tissues

D-gal treatment exerted a dose-dependent detrimental
effect on ovarian somatic cell proliferation [17].
Treatment with 2.5 mg/mL D-gal alone decreased the
BrdU index remarkably while lycopene treatment alone
did not result in any change in the BrdU index. In
addition, the decline of the BrdU index, as induced by
D-gal, was inhibited by lycopene supplementation (Fig.
2C). D-gal remarkably decreased the expression of
PCNA and CDK2, whilst lycopene reversed these
alterations. The expression of PCNA in the D-gal and
lycopene treatment group was significantly higher than
the control group. D-gal decreased the expression of
CCNDI1 and lycopene partially rescued this decrease.
However, this decrease was not restored for the control
group. Interestingly, treatment with lycopene alone
significantly increased the expression of PCNA but not
CDK2 or CCND1 (Fig. 2D). These data suggested that
the decline of somatic cell proliferation in the D-gal-
induced aged ovarian tissues was inhibited by lycopene
supplementation.

Effects of lycopene on cell apoptosis in the D-gal-
induced aged ovarian tissues

The results from the TUNEL assay showed that D-gal
treatment significantly increased the TUNEL index of
the ovarian tissues, while lycopene supplementation
reversed this increase. Treatment with lycopene alone
did not change the TUNEL index (Fig. 2E). Western
blot analysis of the apoptosis-related proteins showed
that the expression of Bax increased significantly, while
the expression of Bcl-xL decreased remarkably, in the
D-gal-induced aged ovarian tissues as compared to the
corresponding levels in the control group. Consistent
with expectations, the changes in the expression of Bax
and Bcl-xL were both normalized by simultaneously

supplementation with lycopene. Meanwhile, treatment
with lycopene alone decreased Bax expression and
increased Bcl-xL expression (Fig. 2F). These results
suggest that the increase of cell apoptosis in the D-gal-
induced aged ovarian tissues was prevented by lycopene
supplementation.

Effects of lycopene on the antioxidant capacity
decline in the D-gal-induced aged ovarian tissues

In order to clarify the effect of lycopene on the D-gal-
induced aged ovarian tissues, the activities of anti-
oxidant enzymes as well as the contents of malonal-
dehyde (MDA), hydrogen peroxide (H,0O,) and ROS in
ovarian tissues were measured from the four groups.
The results showed that the glutathione (GSH) contents
and the total antioxidant capacity (T-AOC) in the D-gal-
induced ovarian tissues were remarkably lower than
those of the control group. Meanwhile, the activities of
total superoxide dismutase (T-SOD), catalase (CAT)
and glutathione peroxidase (GSH-Px) decreased
significantly after 72 h treatment with D-gal. These
descending changes were all attenuated by simul-
taneous supplementation with lycopene. However,
neither treatment with D-gal alone, or D-gal combined
with lycopene, had any influence the activity of
glutathione S-transferase (GSH-ST). Meanwhile, T-
AOC and the activity of T-SOD had increased markedly
compared with control group levels after treatment with
lycopene alone for 72 h. MDA, H,0O, and ROS levels
also increased significantly in the D-gal-induced aged
ovarian tissues compared with equivalent levels in the
control group, while simultaneous administration of
lycopene prevented theses increases. Furthermore, 72 h
treatment with lycopene alone remarkably decreased the
contents of H,O, in the ovarian tissues (Fig. 3A). These
results indicated that the decline in the antioxidant
capacity of the D-gal-induced aged ovarian tissues was
prevented by simultaneous supplementation with
lycopene.

Effects of lycopene on the down-regulation of the
Nrf2/HO-1 pathway in D-gal-induced aged ovarian
tissues

To evaluate the effects of D-gal alone, or D-gal
combined with lycopene, on the Nrf2/HO-1 pathway in
ovarian tissues, the expression of Nrf2, pNrf2, HO-1
and NQOI1, and the mRNA abundance of Nrf2, HO-1
and their related downstream genes were determined.
The results showed that in the D-gal-induced aged
ovarian tissues, the expression of Nrf2, pNrf2 and HO-1
had decreased significantly while the expression of
NQO! had not changed remarkably. Simultaneous
treatment with lycopene prevented this decline in the
expression of Nrf2, pNrf2 and HO-1 effectively.
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Figure 3. Effects of lycopene on decreased antioxidant status in D-gal-induced aged ovarian tissues and
the activities of Nrf2/HO-1 pathway. (A) Effect of lycopene on decreased antioxidants status in the D-gal-induced
aged ovarian tissues. (B) Effect of lycopene on the down-regulated expression of Nrf2, pNrf2 and HO-1, and the mRNA
abundance of Nrf2 and HO-1. (C) Effect of lycopene on down-regulated mRNA abundance of Nrf2/HO-1 downstream
genes. Values are expressed as the meanszts.e.. Different lowercase letters indicate significant differences (P < 0.05).
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Meanwhile, the mRNA abundance of Nrf2 and HO-1
had both been markedly down-regulated in the D-gal-
induced aged ovarian tissues, where lycopene
supplementation was able to effectively suppress these
declines. Interestingly, compared with the control
group, treatment with either lycopene alone or lycopene
combined with D-gal, both significantly increased the
mRNA abundance of Nrf2 and HO-1 (Fig. 3B). The
mRNA abundance of Gcle, Gelm, Gsr, GpxI, Txn and
Txnrd had decreased remarkably compared to that of the
control, however, these descending changes were all
prevented by simultaneous lycopene supplementation.
The transcription of Gcle, Gelm, Gpxl and Txnrd in
ovarian tissues that had been treated with lycopene
alone or lycopene combined with D-gal were higher
than those of the control group (Fig. 3C). These data
implied that the inhibitory effects of the D-gal-induced
aging on Nrf2/HO-1 pathway were suppressed by
lycopene supplementation.

The oxidative stress prevention effect of lycopene on
D-gal-induced aged ovaries was dependent on the
induction of the Nrf2/HO-1 pathway

To characterize the molecular mechanisms underlying
the inhibitory effects of lycopene on oxidative stress in
the aged ovaries, the Nrf2/HO-1 pathway was activated
and inhibited by the activator (dimethyl fumarate,
DMF) [32] and the antagonist (ML385) [33],
respectively. Results showed that treatment with
lycopene alone intensively induced Nrf2, pNrf2 and
HO-1 expression, in a manner similar to DMF, an Nrf2
activator. In addition, the decline in the expression of
Nrf2, pNrf2 and HO-1 were normalized by the adminis-
tration of lycopene as well as with DMF (Fig. 4A). HE
staining showed that the structural damage of both
granulosa cells and growing follicles in the D-gal-
induced aged ovarian tissues were all rescued by
lycopene supplementation as well as with DMEF.
Treatment with lycopene or DMF alone did not change
the morphology of the growing follicles and granulosa
cells (Fig. 4B). The BrdU index and the expression of
PCNA, CDK2 and CCND1 were remarkably higher in
the lycopene and DMF groups. Meanwhile, the
inhibitory effects of D-gal on the BrdU index and
expression of PCNA, CDK2 and CCND1 were all
reversed by lycopene as well as by DMF (Fig. 4C-E).
The TUNEL assay showed that lycopene and DMF both
decreased the TUNEL index significantly compared
with that of the control. In addition, the increase of the
TUNEL index in the D-gal-induced aged ovarian tissues
was suppressed by either lycopene or DMF administra-
tion (Fig. 4E,G). Consistent with the results of the
TUNEL assay, the expression of Bax in lycopene and
DMF groups were markedly lower than those of the
control and the up-regulation of Bax expression in D-

gal-induced aged ovarian tissues was inhibited by
lycopene or DMF supplementation. The down-
regulation of Bcl-xL expression in D-gal-induced aged
ovarian tissues was normalized by lycopene or DMF
administration while treatment with lycopene or DMF
alone did not change the Bcl-xL expression (Fig. 4D).
Furthermore, D-gal treatment resulted in increased ROS
levels in ovarian tissues, and lycopene and DMF
supplementation both inhibited this increase (Fig. 4F).
These data demonstrated that the protective effect of
lycopene on aging ovarian tissues from oxidative stress
was similar to the effect of DMF, a known Nrf2 activator.

To further elucidate the role of Nrf2 in the protective
effects of lycopene on ovarian aging, we inhibited the
Nrf2/HO-1 pathway using ML385. After 72 h treatment
with ML385, significant decreases in expression of Nrf2,
pNrf2 and HO-1 were observed in the ovarian tissues
treated with or without D-gal and lycopene in com-
parison to the ovarian tissues treated without ML385
(Fig. 5A). Either D-gal or ML385 treatment damaged
the structure of the growing follicles and induced
granulosa cell apoptosis. In addition, the protective
effect of lycopene on the D-gal-induced morphological
damage was terminated by ML385 (Fig. 5B). The result
of BrdU staining showed that the BrdU index in the
ML385 group had decreased significantly as it also had
in the D-gal-induced aged group. The attenuating effect
of lycopene on the D-gal-induced decline in the BrdU
index was also abolished by ML385 supplementation
(Fig. 5C, E). Western blot analysis showed that the
treatment with D-gal or ML385 alone or in combination
for 72 h resulted in remarkably down-regulated the
expressions of PCNA, CDK2 and CCNDI. As
expected, the inhibitory effect of lycopene on D-gal-
induced decreases in the expressions of PCNA, CDK2
and CCND1 was blocked by ML385 treatment (Fig.
5D). Meanwhile, the result of the TUNEL assay showed
that TUNEL index increased markedly with D-gal and
ML385 treatment either alone or in combination. The
protective effect of lycopene on the increase of the
TUNEL index induced by D-gal was effectively
inhibited by ML385 (Fig. 5E,G). In addition, similar to
the D-gal-induced aged group, the expression of Bax
increased significantly while the expression of Bcl-xL
decreased significantly in the ML385 treatment group.
The restoration of the D-gal-induced changes in the
expression of Bax and Bcl-xL was blocked by ML385
simultaneous supplementation (Fig. 5D). Furthermore,
D-gal and ML385 treatments, alone or in combination,
resulted in increased ROS levels in the ovarian tissues.
The attenuating effect of lycopene on the increase of
ROS levels in the D-gal-induced aged ovarian tissues was
suppressed by ML385 (Fig. 5F). These data sug-gested
that the protective effect of lycopene on aged ovarian
tissues was abolished by the Nrf2 antagonist, ML385.
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Figure 4. Protective effect of lycopene on oxidative stress in aged ovarian tissues was similar to the effects of DMF. (A)
Relative changes in the expression of Nrf2, pNrf2 and HO-1 after treatment with D-gal alone or combined with DMF or lycopene. (B)
Changes in the morphology of ovarian tissues after treatment with D-gal alone or combined with DMF or lycopene, scale bar: 50 um. (C
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Figure 5. Protective effect of lycopene on the oxidative stress in the aging ovarian tissues was abolished by ML385. (A)
Relative changes in the expression of Nrf2, pNrf2 and HO-1 after treatment with D-gal, ML385 alone or combined with lycopene. (B)
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Lycopene is able to protect ovaries from oxidative
stress in vitro during the natural aging process

To evaluate whether treatment with lycopene was able
to protect naturally aging ovarian tissues from oxidative
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stress, D280 and D580 ovarian tissues were treated with
/ without lycopene for 72 h in vitro. The results showed
that treatment with lycopene for 72 h in vitro sig-
nificantly increased the GSH contents, T-AOC, and the
activity of GSH-ST in both D280 and D580 ovarian
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Figure 6. Effects of lycopene on the antioxidant capacity, cell proliferation and apoptosis in the ovarian tissues of
D280 and D580 hens in vitro. (A) Effect of lycopene on antioxidant capacity in ovarian tissues of D280 and D580 hens in vitro. (B)
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are expressed as the meansts.e. Different lowercase letters indicate significant differences (P < 0.05) for the same age.
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tissues. Meanwhile, after treatment with lycopene, the
activities of T-SOD, CAT and GSH-Px were increased
remarkably in D580 but not in D280 ovarian tissues. In
addition, lycopene treatment significantly decreased the
MDA contents and ROS levels in both D280 and D580
ovarian tissues. However, lycopene supplementation
only decreased the H,O, contents in D580 but not D280
ovaries (Fig. 6A). These results indicate that the decline
in ovarian antioxidant capacity that occurs during the
natural aging process, could be prevented by lycopene
supplementation in vitro.

The results of western blot analysis showed that
lycopene treatment remarkably up-regulated the Nrf2,
pNrf2 and HO-1 expression in both D280 and D580
ovaries. The mRNA abundance of Nrf2 and HO-I had
also increased significantly in D280 and D580 ovaries
(Fig. 6B). In addition, the transcription of Gcle, Gelm,
Gpx1 and Txnrd in D280 and D580 ovaries were up-
regulated remarkably compared to those of the control.
However, lycopene treatment increased the mRNA
abundance of Glrx and Txnrd only in D580, but not
D280 ovaries (Fig. 6C). These data demonstrated that
lycopene supplementation could activate the Nrf2/HO-1
pathway in the naturally aged ovaries.

After treatment with lycopene for 72 h in vitro, the
expression of PCNA, CDK2 and CCNDI1 in D580
ovaries was increased markedly, while only the expres-
sion of PCNA in D280 ovaries was up-regulated
significantly. Furthermore, lycopene supplementation
remarkably down-regulated the expression of Bax and
up-regulated the expression of Bel-xL in the D580 hen
ovaries. The Bax expression in D280 ovaries decreased
significantly while Bcl-xL expression had not changed
after lycopene supplementation (Fig. 6D). These results
suggested that lycopene supplementation could main-
tain the homeostasis of cell proliferation and apoptosis
in ovaries during the aging process.

DISCUSSION

Female fertility is governed by the functional lifespan of
the ovaries. This lifespan is mainly determined by the
size of the oocyte reserve, something that has already
been established prior to birth, as well as by the rate of
endowment depletion [34,35]. Female fecundity is one
of the first of the physiological functions negatively
influenced by aging. Ovarian aging is accompanied by
an age-dependent reduction in the ovarian follicle
reserve and the decline in quantity and quality of the
oocytes [2,3]. Growing evidence demonstrates that
female mice and humans both exhibit an age-related
decline in ovarian follicle reserve and oocyte quality
[36]. One of the main causes of ovarian aging is
oxidative stress that is induced by the gradual accumu-

lation of ROS and an age-related decrease of the anti-
oxidants in the ovary [8]. In a similar manner to
mammals, a precipitous age-related decline in the egg
production appears in laying hens, accompanied by a
decrease in ovarian antioxidant capacity at the later
laying stages [17]. Meanwhile, ovarian aging greatly
shortens the ovarian functional lifespan and reduces the
commercial values of the laying hens. However, there
has been remarkably little focused study on ovarian
aging mechanisms in laying hens. The elucidation of the
mechanisms underlying ovarian aging and attenuation
of oxidative stress may result in prolonging ovarian
lifespans, and thus increasing laying performance.

Accumulating evidence has supported the idea that the
supplementation of edible antioxidants is an efficient
measure to attenuate the oxidative stress in the ovary
[37,38]. Lycopene is a member of carotenoid family of
compounds found in tomatoes and other red fruits and
vegetables. It has been shown to be a great scavenger of
free radicals and a potential antioxidant attributing to
the 11 conjugated bonds within the molecule [39,40].
As one of the most effective antioxidants found in
plants, lycopene is widely used for protection against
oxidative stress-mediated tissue injury. A previous
study has demonstrated that lycopene protects cardio-
myocytes from the oxidative damage of mtDNA
induced by ischemia/reperfusion-injury in rats [41].
Orally administrated lycopene also attenuated diethyl-
nitrosamine-induced hepatocarcinogenesis by modulat-
ing the Nrf-2/HO-1 and Akt/mTOR pathways in the rat
[42]. Sahin et al. reported that lycopene activated
antioxidant enzymes and a nuclear transcription factor
system in heat-stressed broilers [43]. However, the
antioxidant role of lycopene in senescent ovaries of the
laying hens has not been clearly elucidated. In the
present study, we investigated the effects of aging on
the activity of the Nrf2/HO-1 pathway by comparing the
expression of related proteins and genes in ovaries of
hens in different laying stages. Then we investigated the
protective effects of lycopene against oxidative stress in
the D-gal-induced aged ovarian tissues. Furthermore,
we verified the potential attenuation of lycopene on the
oxidative stress in naturally aged ovaries. Our results
indicated that the activity of the Nrf2/HO-1 pathway in
the ovaries decreases significantly during natural aging.
We showed that lycopene supplementation was able to
effectively alleviate the oxidative stress in aged ovaries
via the activation of the Nrf2/HO-1 pathways in laying
hens (Fig. 7).

Nrf2 is a redox-sensitive transcription factor that
confers cytoprotection against oxidative stress. The
expression of Cat, Sod and HO-1 and synthesis of GSH
are all regulated by Nrf2 [44,45]. Activation of the
Nrf2/HO-1 pathway could lead to increased levels of
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Figure 7. Schematic diagram summarizing the mechanisms underlying the attenuating effect of
lycopene against ovarian oxidative stress during the aging process in chickens. The Nrf2/HO-1 pathway was
down-regulated in the natural aging process in the laying hens. Lycopene attenuated the oxidative stress in aging

ovaries via the activation of Nrf2/HO-1 pathway.

GSH, CAT and SOD in mouse kidneys [30,46].
Previous studies have demonstrated that Nrf2 expres-
sion and its target genes exhibit an age-dependent
decrease [47,48]. In line with these findings, our results
revealed that despite the increased translocation of Nrf2
protein from the cytoplasm to nuclei in D580 ovarian
tissues compared with those of younger stages,
however, down-regulation of Nrf2, pNrf2, HO-1 and
their downstream genes appeared in D580 hen ovarian
tissues. The reason for these results may be that Nrf2
remains inactive whilst in the nucleus. These data are in
accordance with our previous study that the ovarian
antioxidant status was decreased in the laying hens
during the aging process [17].

The D-gal-induced aging model also relates to that of
oxidative stress as there is a clear relationship between
the activities of decreased antioxidases and the
increased level of oxidants [24]. In the present study,
we observed in the D-gal-induced aged ovarian tissues
that the contents of GSH, T-AOC, and the activities of
T-SOD, CAT and GSH-Px had decreased significantly,
whereas the levels of MDA, H,O, and ROS increased
remarkably, as compared to the controls. In addition, D-
gal treatment damaged the morphology of growing
follicles and the granulosa cells as well as that of the

mitochondria in the living granulosa cells. All these
adverse changes were suppressed by the simultaneous
supplementation of lycopene.

Apoptosis is an essential process for organ growth,
development and the maintenance of normal
homeostasis. However, excessive apoptosis caused by
elevated intracellular ROS production may induce organ
dysfunction [49]. Our results showed that in the D-gal-
induced aged ovarian tissues, the TUNEL index and the
expression of Bax increased significantly, while the
expression of Bcl-xL decreased significantly. However,
lycopene supplementation reversed these changes by
increasing the Bcl-xL expression and decreasing the
Bax expression. Meanwhile, BrdU incorporation and
western blot analysis demonstrated the inhibition of
somatic cell proliferation in the D-gal-induced aged
ovarian tissues was suppressed by lycopene adminis-
tration.

The activation of the Nrf2/HO-1 pathway upregulates
the expression of many antioxidant genes and alleviates
oxidative stress in the tissues [42]. Reichard et al.
demonstrated that HO-1 induction by Nrf2 requires
inactivation of the transcriptional repressor BACHI1
[50]. The protective effect of lycopene against oxidative
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stress is via the activation of the Nrf2/HO-1 pathway
[41-43]. Yang et al. reported that lycopene suppressed
the activation of the TNFa-induced signaling pathway
through upregulation of the Nrf2-mediated HO-1
expression in endothelial cells [51]. The Nrf2/HO-1
pathway represents the prime target for chemo-
prevention of cisplatin-induced nephrotoxicity by
lycopene [52]. In this study, D-gal treatment sig-
nificantly decreased the expression of Nrf2, pNrf2, HO-
1 and the mRNA abundance of the Nrf2, HO-1 and the
downstream genes. These data were in line with the data
in vivo that the Nrf2/HO-1 pathway was down-regulated
during the ovarian aging process in laying hens.
Simultaneous supplementation with lycopene rescued
the descending changes, and treatment with lycopene
alone up-regulated the expression of Nrf2, HO-1 and
downstream Gcle, Gelm, Gpx1 and Txnrd significantly,
as compared to the controls. In order to elucidate the
mechanism of the protective effect of lycopene related
to oxidative stress, DMF and ML385 served as an
activator and a small molecule inhibitor of Nrf2, respec-
tively. These results showed that the protective effect of
lycopene on aging ovarian tissues from oxidative stress
was similar to the effect of DMF, whereas the protective
effect of lycopene on aging ovarian tissues against
oxidative stress was abolished by ML385 treatment.

The results of the verification experiments showed that
lycopene improved the antioxidant capacity in D580
hen ovarian tissues in vitro and maintained the
homeostasis between cell proliferation and apoptosis via
the activation of the Nrf2/HO-1 pathway.

In summary, this study demonstrated that the Nrf2/HO-
1 pathway was down-regulated in the natural aging
process in the laying hens. Lycopene attenuated
oxidative stress in both D-gal-induced aging and natural
aging ovaries by the activation of the Nrf2/HO-1
pathway. This study provides first-hand evidence of the
potential utilization of lycopene in the protection
against ovarian aging in laying poultry. However, this
study was conducted in vitro. The protective effects of
lycopene on egg laying performance of older laying
hens is still lacking. We aim to continue to explore the
protective effects of lycopene on ovarian aging in laying
hens through field studies.

MATERIALS AND METHODS
Reagents

D-gal was purchased from Aladdin Industrial
Corporation (Shanghai, China); lycopene was from
Sigma-Aldrich (St. Louis, USA). Dimethyl fumarate
(DMF) and ML385 were from MedChemExpress
(Shanghai, China). Antibodies against Nrf2 (ab31163),

PCNA (ab29) and Bax (ab5714) were purchased from
Abcam (Cambridge, UK). Antibodies against pNrf2
(ET1608-28) was purchased from Hangzhou HuaAn
Biotechnology Co., Ltd. (Hangzhou, China). Antibodies
against Keapl (SC-365626), NQO1 (sc-271116) and -
Tubulin  (sc-365791) were from Santa Cruz
Biotechnology (Dallas, USA). Antibodies against Bcl-
xL (BA0413), CDK2 (PB0562) and CCND1 (BA0770)
were obtained from Boster Biological Technology Co.
Ltd. (Wuhan, China). All other chemicals were pur-
chased analytical grade.

Animals and tissue culture

The Hyline brown hens (Gallus domesticus) used in this
study were raised in a local farm and subjected to
conventional feeding and management conditions. All
animal experiments were performed in accordance with
the recommendations in the Animal Care and Use
Guidelines and were approved by the Animal Care and
Use Committee on the Ethics of Animal Experiments of
Zhejiang University. Sample collection was performed
from 90 (D90), 150 (D150), 280 (D280) and 580
(D580) days old hens that reflected four different laying
stages, Before laying, Early laying, Peak laying and
Later laying periods. Hens were slaughtered by cervical
bleeding post-anesthesia. Ovarian tissues without
follicles of over 1 mm in diameter were collected for the
following analyses.

For tissue culture, ovaries from D90 pullets were placed
in ice-cold DMEM-F12. The ovarian cortex was
dissected from the surface of the ovaries and cut into
blocks (1-2 cm’). Each block was cultured on Millipore
filters and placed into a well of a 24-well plate con-
taining 500 pL complete DMEM-F12 supplemented
with 5% chicken serum, 10 pg/mL insulin, 5 pg/mL
transferrin, 30 nM selenite (Sigma-Aldrich), 100
mg/mL streptomycin and 100 U/mL penicillin. D-gal
power was dissolved in DMEM-F12 medium directly.
Lycopene was dissolved in medium containing 0.1%
tetrahydrofuran (Sigma-Aldrich). All of the cultures
were maintained in a humidified atmosphere with 5%
CO, at 38.5°C. The medium was replaced every 24 h.
For senescence induction, a modified D-gal treatment
protocol was used. Briefly, the cultured tissues were
treated with D-gal in a gradient concentration from 1.25
mg/mL to 5 mg/mL to induce oxidative damage. Based
on the evaluation of tissue morphology, cell prolifera-
tion and apoptosis rates [17], tissue fibrosis and
antioxidant capacity, the dose of 2.5 mg/mL D-gal was
chosen as the optimal concentration in the subsequent
experiments (Supplementary Figure 1). Likewise,
lycopene, in a gradient concentrations from 1 to 1000
ng/mL, was screened for its optimal concentration under
D-gal induced stress. Based on the evaluation of tissue
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morphology and cell proliferation, 100 ng/mL lycopene
was determined as the optimal concentration for the
following formal experiments. The ovarian cortical
blocks were divided randomly into four groups and
were treated with D-gal (2.5 mg/mL), lycopene (100
ng/mL) and D-gal+lycopene for 72 h. After 48 h of
culture, bromodeoxyuridine (BrdU, Sigma-Aldrich) was
added into the complete medium at 20 pg/mL. After 72
h of treatment, ovarian tissues were collected for the
subsequent determinations. Ovarian tissues for bio-
chemical analysis, qRT-PCR and Western blot were
cultured for 72 h without BrdU incorporation. For the
activation and inhibition of the Nrf2, 3 uM DMF or 6
uM ML385 was supplemented into the medium,
respectively, with minor adjustment according to the
references [29, 30].

Morphological and ultrastructural observations

After 72 h culture, the ovarian blocks were fixed in 4%
neutral paraformaldehyde solution for 24 h at 4°C,
dehydrated in a grade ethanol, then cleared in xylene
and embedded in paraffin. The embedded samples were
sectioned at 5 pum and mounted slides. The paraffin
sections of ovarian tissues were used for subsequent
immunohistochemistry, BrdU and TUNEL detection.
Hematoxylin and eosin (H&E) staining was performed
using standard protocols.

The specimens of ovarian tissues were fixed with 2.5%
glutaraldehyde in phosphate-buffered saline (PBS) for
24 h at 4°C after 72 h of culture. The specimens were
then post-fixed with 1% Osmium tetroxide (OsO4) in
PBS for 1.5 h at room temperature and rinsed in PBS.

Table 1. Sequences of the primers for PCR.

After dehydration in ascending concentration of ethanol
and infiltration with a propylene oxide-Araldite
mixture, the samples were embedded in Araldite. The
blocks were sectioned using a Leica EM UCT7 ultra-
microtome (Leica Microsystems GmbH, Wetzlar,
Germany) and the ultrathin sections were mounted on
copper coated grids. The ultrathin sections were stained
with uranyl acetate and alkaline lead citrate for 5 to 10
min. Finally, the cell ultrastructure was observed using
a transmission electron microscope (Tecnai G2 Spirit
120KV FEI Company, Hillsboro, USA).

Measurements of oxidative parameters

After the 72 h treatment in vitro, ovarian cortical blocks
were hemogenized in PBS and then centrifuged at 800 g
for 20 min at 4°C. The supernatants were used for the
determination of total protein concentration and the
measurements of the GSH, T-AOC, T-SOD, CAT,
GSH-Px, GSH-ST, MDA and H,0, according to the
manufacturer’s instruction with kits (Nanjing Jiancheng
Bioeng Ins, Nanjing, China). For the measurement of
ROS levels, cultured tissues were digested into a single
cell suspension and were then used for the
determination of total protein concentration and the
ROS levels according to the protocols with the ROS
Assay Kit (Nanjing Jiancheng Bioeng Ins).

Quantitative Real-time PCR analysis

Total RNA was isolated from cultured ovarian tissues
using TRIzol (Takara, Shiga, Japan). 2 pg RNA was
used for reverse transcription using a RevertAid First
Strand ¢cDNA Synthesis Kit (Thermo Fisher Scientific,

Gene name Accession Primer sequence (5°-3”) Product size
number (bp)

Gcle XM _419910.4 GGACGCTATGGGGTTTGGAA 122
AGGCCATCACAATGGGACAG

Gcelm NM _001007953.1 CCATAGGCACCTCTGACCTTG 110
CGGCATCACGCAACATGAAG

Glrx NM_205160.1 GAACCGTCCCTCGTGTGTTT 93
GACGTAGCATCATGGGGAGC

Gpxl NM 001277853.1 AGTACATCATCTGGTCGCCG 137
CTCGATGTCGTCCTGCAGTT

Txn NM _205453.1 GTGCATGCCAACATTCCAGT 118
CTCCATGGCGGGAGATTAGAC

Txnrdl NM 001030762.2 ATGGAGCAAACAAACGTGCC 119
CCCGCGTAAAGCCTTTGAAC

Nrf2 NM _001030756.1 CTGCTAGTGGATGGCGAGAC 132
CTCCGAGTTCTCCCCGAAAG

HO-1 NM _205344.1 AGCTTCGCACAAGGAGTGTT 106
GGAGAGGTGGTCAGCATGTC

f-actin NM_205518 ACACCCACACCCCTGTGATGAA 136

TGCTGCTGACACCTTCACCATTC
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San Jose, USA). Quantitative real-time polymerase
chain reaction (QRT-PCR) was performed using SYBR®
Premix Ex TaqTM Kit (Takara) on an ABI 7500HT
Real-time PCR detection system (Applied Biosystems,
Foster City, USA). The qRT-PCR conditions were as
follows: 95°C for 10 min and then 40 cycles of 95°C for
30 s, 64°C for 34 s, and 72°C for 30 s. Comparisons of
expression levels were determined by delta CT methods
normalized to f-actin. The sequences for forward and
reverse primers are listed in Table 1.

Immunohistochemistry

Immunohistochemistry (IHC) was carried out following
standard procedures. Briefly, antigen retrieval was
performed in a 10 mM sodium citrate buffer (pH6.0) for
20 min followed by an endogenous peroxidase block
using 3% hydrogen peroxide. Blocking was performed
in 5% goat serum (Boster Bioengineering Co., Ltd.,
Wuhan, China) for 20 min at room temperature. Tissue
sections were incubated overnight at 4°C with primary
antibody against Nrf2 (1:200). Biotinylated secondary
antibodies were used, followed by incubation with
horseradish peroxidase-conjugated streptavidin. Sec-
tions were then exposed to Diaminobenzidine (DAB) to
develop color. Sections were counterstained with
hematoxylin for 3 min.

Western blot

Ovarian tissue lysates were prepared using ice-cold
RIPA supplemented with proteinase inhibitors and lysed
for 20 min. Protein concentrations were determined
using a BCA protein assay kit (Nanjing Jiancheng
Bioeng Ins). 20 pg protein was loaded on SDS-PAGE
gel and separated by electrophoresis and transferred to a
polyvinylidene difluoride (PVDF) membrane
(Millipore, Bedford, USA). After blocking, the blots
were probed with corresponding primary antibodies
with optimized conditions and then incubated with the
secondary antibody. Immunological signals were
detected by enhanced chemiluminescence (ECL) Kit
(Bio-Rad, Hercules, USA) using a ChemiScope 3400
Mini machine (Clinx, Shanghai, China). The band
intensities were quantified using Quantity one software
and the results were normalized to f-Tubulin.

Immunofluorescence staining

For BrdU detection, deparaffinized and rehydrated,
ovarian tissue sections were first performed in a 10 mM
sodium citrate buffer for 20 min at 100°C for antigen
retrieval. Subsequently, the sections were denatured
using 2 M HCI for 30 min at 37°C, then neutralized in
0.1 M sodium tetraborate for 10 min at room tempera-
ture. After blocking with 5% goat serum, tissue sections

were incubated with mouse anti-BrdU monoclonal
antibody (1:200, G3G4, DSHB, USA) overnight at 4°C,
followed by incubation with goat anti-mouse secondary
antibody (1:500) conjugated to TRITC (Invitrogen,
Carlsbad, USA) for 1 h at 37°C. The sections were
subsequently stained with 4°,6-Diamisino-2-phenylindole
(DAPI, Sigma-Aldrich) for cell nuclei and imaged on a
fluorescence microscope. The number of BrdU positive
cells (red) was counted and expressed as a percentage of
the BrdU labeling cells over the total number of ovarian
cells within the same fields (BrdU index).

TUNEL analysis

The apoptosis of cells was detected using a TUNEL
Brightgreen Apoptosis Detection Kit (Vazyme,
Nanjing, China) according to the manufacture’s
instruction. For the calculation of TUNEL index, five
fields of each section were randomly selected for
counting the number of the TUNEL positive cells
(green), and the apoptosis index was calculated as the
percentage of the green labeling cells over the total
number of ovarian cells (TUNEL index).

Statistical analysis

All experiments were repeated at least three times. Data
were analyzed by one way ANOVA with post hoc
Dunnett’s test and independent samples #-test using the
SPSS 20.0 software (SPSS Inc., Chicago, USA) and
presented as meants.e. Results were considered
statistically significant at P < 0.05.
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SUPPLEMENTARY MATERIAL

The D-gal induced damage of ovarian tissue
morphology, the inhibition of cell proliferation, and the
promotion of cell apoptosis, all exhibited a dose-
dependent increase. The results of Masson staining
showed that after treatment with 2.5 mg/mL D-gal for
72 h, the degree of ovarian tissue fibrosis was similar to
that in D580 ovarian tissues. In addition, the antioxidant
capacity of ovarian tissues treated with 2.5 mg/mL D-
gal decreased to the level of the D580 ovaries. Based on
the evaluation of tissue morphology, cell proliferation
and apoptosis rates [17], tissue fibrosis and antioxidant

capacity, the dose of 2.5 mg/mL D-gal was chosen as
the optimal concentration in the subsequent experiments
(Supplementary Figure 1). Likewise, four gradient
concentrations of lycopene (from 1 ng/mL to 1000
ng/mL) were screened for the optimal concentrations
under D-gal-induced damage. Lycopene, at the two
concentrations (100 and 1000 ng/mL), significantly
reduced the ovarian tissue damage induced by D-gal.
Based on the tissue morphology, cell proliferation and
apoptosis rates, 100 ng/mL of lycopene was selected as
the optimal concentration in the following experiments
(Supplementary Figures 2-4).
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Supplementary Figure 1. Effects of D-gal on ovarian tissue fibrosis, antioxidant capacity, cell proliferation and
apoptosis. (A) Representative morphology of D580 ovarian tissues and ovarian tissues after 72 h of culture in control and
the 1.25-5 mg/mL D-gal group, performed by Masson staining, scale bar: 50 um. (B) Levels of T-AOC, T-SOD, MDA and ROS
in D580 ovarian tissues and ovarian tissues after 72 h of culture in control, 1.25-5 mg/mL D-gal group. (C) Expression levels
of PCNA, Bax and Bcl-xL in ovarian tissues after 72 h of culture in control and 1.25-5 mg/mL D-gal groups.
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Supplementary Figure 2. Protective effect of lycopene on D-gal-induced ovarian
morphological change by HE staining. Scale bar: 50 um.
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Supplementary Figure 3. Protective effect of lycopene on D-gal-induced ovarian cell proliferation decline
as revealed by BrdU staining. DAPI staining was performed to stain the nucleus. Scale bar: 20 um.
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Supplementary Figure 4. Protective effect of lycopene on D-gal-induced ovarian cell apoptosis by TUNEL
assay. DAPI staining was performed to stain the nucleus. Scale bar: 20 um.
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