Supplementary Table 1. Multiple linear regression analysis to determine whether serum hsCRP level is independently associated with hand grip strength after the stratification according to smoking, drinking, and resistance exercise status in men.

Stratification	Dependent variable: hand grip strength		
	β	SE	Р
Smoking status			
Never smoking group	-0.190	0.233	0.417
Past smoking group	-0.225	0.104	0.032
Current smoking group	-0.399	0.201	0.048
Alcohol drinking status			
No drinking group	-0.224	0.086	0.010
Moderate drinking group	-0.253	0.165	0.129
Heavy drinking group	-0.583	0.364	0.113
Resistance exercise status			
No exercise group	-0.290	0.105	0.007
Intermittent exercise group	-0.249	0.256	0.334
Regular exercise group	-0.312	0.149	0.040

The Enter method is applied to this model with hand grip strength (kg) as a dependent variable, and with serum hsCRP level (mg/L) as an independent variable. Multivariable adjustment model includes age, body mass index, fasting plasma glucose, serum total cholesterol, and systolic blood pressure as confounding factors. Bold numbers indicate statistically significant values. β , regression coefficient; SE, standard error; hsCRP, high sensitivity C-reactive protein.