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ABSTRACT

A large panel of molecular biomarkers have been identified to predict the prognosis of hepatocellular
carcinoma (HCC), yet with limited clinical application due to difficult extrapolation. We here generated a
genetic risk score system comprised of 12 HCC-specific genes to better predict the prognosis of HCC patients.
Four genomics profiling datasets (GSE5851, GSE28691, GSE15765 and GSE14323) were searched to seek HCC-
specific genes by comparisons between cancer samples and normal liver tissues and between different
subtypes of hepatic neoplasms. Univariate survival analysis screened HCC-specific genes associated with overall
survival (OS) in the training dataset for next-step risk model construction. The prognostic value of the
constructed HCC risk score system was then validated in the TCGA dataset. Stratified analysis indicated this
scoring system showed better performance in elderly male patients with HBV infection and preoperative lower
levels of creatinine, alpha-fetoprotein and platelet and higher level of albumin. Functional annotation of this
risk model in high-risk patients revealed that pathways associated with cell cycle, cell migration and
inflammation were significantly enriched. In summary, our constructed HCC-specific gene risk model
demonstrated robustness and potentiality in predicting the prognosis of HCC patients, especially among elderly
male patients with HBV infection and relatively better general conditions.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common
type of the liver cancer. The incidence and death rate of
the liver cancer increase rapidly worldwide [1]. In
China, the liver cancer remains the third cause of
cancer-related deaths and the third commonly diagnosed
cancer [2]. Some therapeutic strategies such as curative
resection, liver transplantation, radiofrequency ablation
(RFA) and transarterial embolization (TAE) may be

promising for the treatment of HCC, whereas its
prognosis remains unsatisfactory due to high recu-
rrence and metastasis rates [3-6]. The underlying
mechanisms may involve epigenetic alterations and
genetic mutations, as well as lack of reliable gene
signatures [7-10]. It is hence of clinical importance to
construct a robust molecular model that can reliably
predict the prognosis of HCC and has the potential to
guide personalized therapeutic first-line treatment
strategies.
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Tremendous improvement has been made over the past
decade in seeking prognostic genetic biomarkers for
HCC [11]. In particular, the development of high-
throughput platforms including DNA microarrays and
RNA sequencing contributes greatly to the identifi-
cation of potential biomarkers and therapeutic targets
[12]. A large panel of genes have been reported to be
associated with clinical outcomes of HCC, and some
genetic prediction models have developed accordingly
[13-16]. Besides, other types of genetic forms, such as
long non-coding RNA (IncRNA) have been de-
monstrated to play a role in the pathogenesis of HCC
[17]. However, few of these genetic biomarkers have
been applied to clinical practice owing to lack of
general extrapolation and experimental or clinical
validation. Thus, identification of more reliable genetic
biomarkers that can accurately predict HCC prognosis
is still in the process of exploration and perfection.

Considering that HCC is an extremely heterogeneous
disease and targeted therapies and personalized
management become promising these days, the specific
genomic sub-classification of HCC patients is of great
significance for the improvement of prognosis
assessment [18]. Here, we attempted to identify specific
genes that are significantly dysregulated only in HCC
rather than in the other subtypes of the liver cancer like
intrahepatic cholangiocarcinoma (ICC) and the second-
dary liver cancer. Although therapeutic approaches for
ICC are similar to HCC, the clinical outcome is
relatively poorer than HCC, partly due to different
molecular pathologic mechanisms [19, 20]. As for the
metastatic liver cancer (MLC), colorectal cancer liver
metastasis (CRCLM) was adopted as an example here,
which was a common type of secondary liver cancer
[21]. Like other MLC, the treatment for CRCLM needs
multidisciplinary approaches because of complex
complications of primary cancer and secondary liver
cancer [22-24]. Though hepatectomy is an optimal
approach, the prognosis of CRCLM largely depended
on primary cancer that differed from HCC [25-28].
Therefore, the specificity of the prognostic model is
fetal to the precise prognostic prediction and therapeutic
decision-making of HCC. In this study, we aimed to
develop a specific, accurate and robust genetic
prognostic risk score system for HCC.

RESULTS
Identification of HCC-specific gene list

The overall workflow of this study is presented in
Figure 1A. After background correcting, normalization
and quality control of the selected raw profiles of four
datasets (GSE5851, GSE28691, GSE15765 and
GSE14323), 70 HCC samples, 75 CRCLM samples, 12

ICC samples and 19 normal control samples were
obtained and considered eligible for further analysis.
The relative expression of all samples pre- and post-
normalization is shown in Figure 2B. Next, we
compared three subtypes of the liver cancer samples
with control samples, respectively. Three lists of
dysregulated genes were identified and subjected to
Venn selection for cancer-specific genes. A total of
1103 HCC-specific genes were identified including 816
up-regulated and 287 down-regulated (Figure 1C). The
list of HCC-specific genes and their comparisons
between HCC and non-tumor samples are shown in
Supplementary Table S1. Moreover, gene ontology
analysis of these genes revealed that “positive
regulation of transferase activity”, “NGF signaling via
TRKA from the plasma membrane”, and “trans-
membrane receptor protein tyrosine kinase signaling
pathway” were significantly enriched biological
processes and pathways which might be associated with
HCC progression (Figure 2B). The protein-protein
interaction (PPI) network of HCC-specific genes and
top 20 significant enriched terms are presented in Figure
2A and Figure 2C.

Construction of HCC-specific gene risk score system

To explore the prognostic value of HCC-specific genes,
univariate survival analysis by Cox proportional hazards
models of each gene from the training data (GSE14520)
was conducted. All the genes with significant P values
were screened for next-step model construction.
Eventually, the score formula comprised of 12 optimal
genes was developed by LASSO: Risk score = 0.66 x
(expression value of RNF24) + (-0.61) x (expression
value of COPSS8) + 0.40 x (expression value of EWSRI)
+ (-0.40) x (expression value of SUGCT) + 0.38 x
(expression value of PCSKY5) + 0.35 x (expression value
of POLR3C) + 0.31 x (expression value of NRBPI) +
0.27 x (expression value of MNATI) + 0.18 X
(expression value of EIF5B) + (-0.15) % (expression
value of DUSPI0) + 0.08 x (expression value of
WASF1) + 0.07 x (expression value of CCDC884). In
this risk score system, three genes (COPSS, SUGCT and
DUSP10) were proved to be positively associated with
OS, while nine of them (EIF5B, MNATI, WASFI,
EWSRI, POLR3C, RNF24, PCSK5, NRBPI and
CCDC884) were negatively related to OS according to
the negativity or positivity of their coefficients. The
contribution of each gene made to this risk score model
was weighted by absolute value of coefficients. Every
patient would get a risk score according to the
expressions of the 12 HCC-specific genes of themselves
(Figure 3A). This risk score was considered to correlate
with the individual overall survival (OS). The median of
all patients’ scores used as the cut-off value divided the
whole group into the high-risk and the low-risk groups

WWWw.aging-us.com 2481

AGING



A GEO datasets
screening

/—*—W

[ GSE5851 GSE14323 ]

)
[ GSE15765 ] [ GSE28691 ]

 ——
Quality
control

82 PLC: 70 HCC+12ICC
75 MLC
19 Normal liver

(—A—\

One ICC
sample
ruled out

HCC specific genes
(HCC vs ICC vs MLC)

Differential expressed genes
(Tumor vs normal liver)

K—Y—J

[ Training dataset: ’

GSE14520

Construction of
prognostic risk score

Validation dataset:
TCGA-LIHC

(—}\—\

analysis

‘ Kaplan-Meier 1 ‘ Molecular J

functional analysis

Pre-normalization

Relative expression
(Log2-transformed)

GSM136578.CEL GSM136617.CEL GSM136656 CEL GSM305657.CEL GSM395688.CEL GSM395726 CEL

Post-normalization

Relative expression
(Log2-transformed)
8

GSM136578.CEL GSM136617.CEL GSM136656 CEL GSM395657.CEL GSM395688.CEL GSM395726 CEL

HCC vs Normal

Figure 1. Identification of HCC-specific gene list. (A) Overview of the overall design and analytic procedure of the study. (B)
Relative expression of all the included sample before (Upper & Red) and after (Lower & blue) RMA normalization. All the expression
value was transformed by “log2()” algorism. (C) Venn diagram among three lists of dysregulated genes between three different
subtypes of liver cancer (HCC, ICC and MLC) and normal liver. 1103 HCC-specific genes, 2963 ICC-specific genes and 1640 MLC-

specific genes were generated through Venn selection.

(Figure 3A). The OS and DFS status of each patient in
the training dataset was shown in Figure 3B and Figure
3C. From Kaplan-Meier analysis of GSE14520, high-
risk group was thought to be associated with poor
prognosis while low-risk group was predicted to have
the opposite outcome (Figure 3D & 3E).

Validation and development of 12 HCC-specific gene
signature for prognosis

To confirm the potentiality of the 12-HCC-specific gene
prognostic model, Kaplan-Meier curve was performed
to evaluate the association between the OS and DFS and
our gene signature in validation dataset (TCGA) (Figure
4A). The cut-off values of TCGA cohort was 8.9. From

the results, those high-risk patients had significantly
shorter survival and earlier recurrence (P < 0.01).

In order to investigate the prognostic value of the risk
score system in different patient groups with different
characteristics, we firstly performed univariate and
multivariate Cox regression analyses to confirm the
relevance between different characteristics including the
risk score and OS or DFS. From the Cox regression
results, the risk score (> 8.9) and the race (THE White)
were independent risk factors of OS (Table 1). And of
DFS, the risk score (> 8.9), TNM stage (higher grade)
and ECOG score (higher score) were independent risk
factors (Table 2). Secondly, stratified analyses based on
these clinical characteristics were carried out to identify
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the suitable patient groups of the risk score system
(Table 3). The cut-off value (8.9) of each subgroup for
survival analysis was consistent with the mother group.
The stratified results of the validation dataset showed
our HCC-specific gene signature was more applicable
to the elderly male patients with preoperative relatively
lower serum level of CRE (creatinine), AFP (alpha-
fetoprotein) and PLT (platelet) and higher serum level
of ALB (albumin) (Figure 4B, 4C, 4D, 4E, 4F and 4G).
Besides, this risk score system exhibited Dbetter
performance in predicting OS particularly in patients
with HBV infection and in early stage (Figure 4H & 4I).

A

PPI network of HCC-specific genes

Functional annotation of the established 12-gene
signature

Gene set enrichment analysis (GSEA) was carried out in
the high-risk group of the TCGA cohort to investigate
key biological and cellular processes linked with poor
prognosis. 16 in all significantly enriched BioCarta
pathways are listed in Figure 5SA. There were notable
enriched KEGG pathways in high-risk patients included
pathways connected with cell cycle like MCM pathway
(Figure 5B), NF-«xB signaling like MAL and TNFR1
pathways (Figure 5C) and classic MAPK-associated
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Figure 2. Gene ontology analysis of HCC-specific genes. (A) The PPl network of all the HCC-specific genes illustrated in
Cytoscape. Each node represented a protein translated by an HCC-specific gene. (B) Network of 20 top-score modules (clusters)
visualized in Cytoscape. Each cluster was made up of 10 best enriched GO terms within the threshold of Kappa-statistical similarity
(0.3). Each node represented one enriched term and was colored by P value. In the figure, 3 representative pathways and the clusters
they belonged to were marked. (C) The bar chart of 20 most enriched terms of HCC-specific genes arranged by -Logy, P value.
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pathways such as FAS, Rho and PYK2 pathways
(Figure 5D). These pathways mainly involved in cell
proliferation and migration that might contributed to
HCC metastasis and recurrence.

DISCUSSION

In this study, we identified and validated a twelve-
HCC-specific gene risk score system for predicting OS
and DFS of HCC by multistep comparisons and
screening. Firstly, to maintain the coincidence of all the
datasets, we employed four mRNA expression profiles
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Figure 3. Construction of HCC-specific gene risk score system using GSE14520. (A) HCC-specific risk score
analysis in GSE14520. (Upper) The distribution of the risk score of 242 included samples. (Lower) Heatmap of the
expression value of each gene in HCC-specific gene signature corresponding to each patient above. Red: high
expression; Blue: low expression. (B and C) Survival (B) and recurrence (C) status of every patient in the training dataset
(N=242). (D and E) Kaplan-Meier curves to compare OS (D) and DFS (E) of high-risk and low-risk groups in GSE14520.
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Table 1. Univariate/multivariate Cox regression analysis of clinicopathologic factors associated with

OS in TCGA cohort.

Variables Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Risk score (> 8.9/<8.9) 1.910(1.250-2.919) 0.003* 1.617(1.021-2.560) 0.040*
TNM stage (I/II/I1I/IV) 1.282(0.993-1.655) 0.057 — —
Hepatitis (HBV/HCV/neither) 0.751(0.527-1.069) 0.112 — —
Alcohol consumption (yes/no) 0.835(0.514-1.359) 0.469 — —
Gender (female/male) 0.773(0.504-1.185) 0.237 — —
Age (>50/<50) 1.967(1.043-3.710) 0.037* 1.454(0.711-2.971) 0.305
Cirrhosis (yes/no) 0.865(0.471-1.587) 0.639 — —
Albumin (<3.5/>3.5 g/dl) 1.378(0.834-2.277) 0.211 — —
Creatinine (<1.1/>1.1 mg/dI) 0.739(0.455-1.199) 0.221 — —
AFP * (€300/>300 ng/ml) 0.900(0.513-1.582) 0.715 — —
Platelet (<300/>300x10%/L) 0.753(0.466-1.216) 0.246 — —
Race (Asian/White) 0.760(0.638-0.904) 0.002* 0.766(0.630-0.930) 0.007*
BMI " (>25<25) 1.028(0.650-1.626) 0.905 — —
Family history (yes/no) 1.800(1.152-2.812) 0.010* 1.271(0.778-2.077) 0.339
ECOG* 1.406(0.956-2.066) 0.083 — —
Histological grade (G3-4/G1-2) 1.247(0.802-1.938) 0.327 — —

Abbreviations: OS, overall survival; HR, hazard ratio; 95% Cl, 95% confidence interval.

*: Statistically significant;
®: Alpha-fetoprotein;
b, body mass index;

“: Eastern Cooperative Oncology Group.

Table 2. Univariate/multivariate Cox regression analysis of clinicopathologic factors associated with

DFS in TCGA cohort.

Variables Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Risk score (> 8.9/<8.9) 1.841(1.358-2.494) <0.001* 1.483(1.038-2.117) 0.030%*
TNM stage (I/IV/III/IV) 1.727(1.441-2.070) <0.001* 1.568(1.274-1.929) <0.001*
Hepatitis (HBV/HCV/neither) 0.943(0.760-1.170) 0.592 — —
Alcohol consumption (yes/no) 1.061(0.767-1.468) 0.720 — —
Gender (female/male) 0.982(0.711-1.355) 0911 — —
Age (> 50/<50) 1.015(0.693-1.487) 0.940 — —
Cirrhosis (yes/no) 1.271(0.861-1.877) 0.228 — —
Albumin (< 3.5/> 3.5 g/dl) 1.033(0.702-1.519) 0.870 — —
Creatinine (< 1.1/> 1.1 mg/dl) 0.739(0.511-1.069) 0.109 — —
AFP?® (<300/> 300 ng/ml) 1.035(0.681-1.573) 0.873 — —
Platelet (< 300/> 300x10°/L) 1.415(0.976-2.052) 0.067 — —
Race (Asian/White) 0.787(0.575-1.078) 0.136 — —
BMI® (> 25/< 25 kg/m?) 0.882(0.643-1.211) 0.437 — —
Family history (yes/no) 0.920(0.655-1.292) 0.630 — —
ECOG* 1.697(1.406-2.049) <0.001* 1.389(1.138-1.695) 0.001*
Histological grade (G3-4/G1-2) 1.186(0.867-1.621) 0.286 — —
Abbreviations: DFS, disease-free survival; HR, hazard ratio; 95% Cl, 95% confidence interval.
*: Statistically significant;
®: Alpha-fetoprotein;
b, body mass index;
“: Eastern Cooperative Oncology Group.
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Figure 4. Validation and development of HCC-specific risk score system. (A) Kaplan-Meier curves of OS (Left) and DFS (Right) in the
validation dataset. (B, C, D, E, F and G) Kaplan-Meier curves of OS (Left) and DFS (Right) in the subgroups stratified by gender (Male) (B), age
(>50) (C), ALB (> 3.5 g/dl) (D), CRE (< 1.1 mg/dl) (E), AFP (< 300 ng/ml) (F) and PLT (< 300x10°/L) (G). (H and 1) Kaplan-Meier curves of OS in
the subgroups stratified by TNM stage (stage 1) (H) and HBV infection (1).

Of 12 identified genes in this prognostic model, three associated with gastric cancer and kidney cancer
(COPSS8, SUGCT and DUSP10) played a protective role [29,30]. It has been proved in murine models that
in HCC patients, and by contrast the other nine (EIF5B, COPS8 deficiency can impair ubiquitin-proteasome
MNATI, WASFI, EWSRI, POLR3C, RNF24, PCSK3J, system (UPS) in the liver and the heart, respectively
NRBPI and CCDC88A) acted as risk factors for HCC. [31,32]. UPS is critical to protein degradation and
COPSS8 (COP9 signalosome subunit 8) encodes a highly homeostasis that is important to normal liver function
conserved protein complex that has been reported to be [33]. SUGCT (succinyl-CoA: glutarate-CoA transfe-
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rase) was demonstrated to be related to mitochondrial
diseases and glutaric aciduria type III that might play a
role in hepatic energetic metabolism [34-36]. DUSPI0
(dual specificity phosphatase 10) negatively regulate
mitogen-activated protein kinase (MAPK) family, novel
members of cellular proliferation and differentiation
[37]. A recent study showed downregulation of
DUSPI10 was associated with HCC metastasis [38].
EIF5B, one of eukaryotic translation initiation factors,
was demonstrated to be involved in cell-cycle arrest in
case of up-regulation [39,40]. MNATI, a factor of the
CDK-activating kinase (CAK) enzymatic complex, is
vital to transcription. MNATI was correlated with poor
prognosis of several types of cancer including breast
cancer, gastric cancer and colorectal cancer [41-43].
WASF1, also known as WAVEI, is a member of the
Wiskott-Aldrich syndrome protein (WASP)-family
highly expressed in brain and testis [44]. EWSRI
(Ewing sarcoma breakpoint region 1 gene) has relation
with gene expression, cell signaling and translocation,
which is momentous to tumorigenesis [45]. There is
evidence that POLR3C (RNA polymerase III subunit C)
was be associated with virus infection [46]. RNF24
(ring finger protein 24) encode a membrane protein that

can interact with transient receptor potential cation
channel subfamily C (TRPC) proteins [47]. The study
by Wang et al. showed that RNF24 correlated with the
occurrence of esophageal adenocarcinoma [48]. PCSK5
(proprotein convertase subtilisin/kexin type 5) was
found to be dysregulated in different subtypes of triple-
negative breast cancer (TNBC) [49]. A recent study by
Bajikar et al. demonstrated PCSKS5 can inhibit TNBC
metastasis by mediating retention of growth-
differentiation factor 11 (GDF11) [50]. NRBPI (nuclear
receptor binding protein 1) acts as a tumor suppressor
and is commonly downregulated in a series of cancers
such as breast cancer [51,52]. However, in prostate
cancer, NRBPI was highly expressed and correlated
with poor survival [53]. CCDC88A4 (coiled-coil domain
containing 88A) regulates cytoskeleton remodeling and
cell motility. Recent studies have suggested that
CCDC884 played a role in metastasis and radio-
resistance of HCC [54,55]. Of the 12 genes, 7 genes
(EIF5B, MNATI1, WASFI1, POLR3C, RNF24, PCSK5
and NRBPI) were first reported to be associated with
HCC prognosis in this study, which might give a few
hints for future research into molecular mechanisms of
HCC.

Table 3. Stratified analysis of overall and disease-free survival in TCGA samples.

Characteristics Overall survival Disease-free survival
High-risk / low-risk HR (95% CI) P value High-risk / low-risk HR (95% CI) P value
Overall 154/173 1.905 (1.248-2.910) 0.0023* 164/170 1.811(1.329-2.466)  <0.0001
%
TNM stage
Stage | 68/94 2.502 (1.295-4.835) 0.0049* 63/95 1.643 (0.9616-2.806) 0.0509
Stage 11 36/38 1.383 (0.5167-3.700) 0.5161 39/37 1.098 (0.5908-2.041) 0.7632
Stage 111 38/26 2.263 (0.9245-5.539) 0.0524 49/25 1.714 (0.9881-2.972) 0.0592
Hepatitis
HBV 44/50 3.622 (1.398-9.384) 0.015* 44/48 1.736 (0.9153-3.294) 0.0873
HCV 25/29 2.661 (0.8091-8.750) 0.0644 23/28 1.263 (0.5953-2.682) 0.5234
Non-hepatitis 81/84 1.643 (0.9681-2.790) 0.0539 90/84 2.157 (1.421-3.276) 0.0002*
Alcohol consumption
Yes 40/54 2.235(0.8735-5.719)  0.0464* 49/58 3.069 (1.736-5.426)  <0.0001
%
No 110/109 0.807 (1.107-2.951) 0.0188* 108/102 1.429 (0.9693-2.105) 0.0691
Gender
Male 94/123 2.192 (1.243-3.863) 0.0041* 103/124 1.920 (1.304-2.826) 0.0003*
Female 60/50 1.420 (0.7451-2.704) 0.2847 61/46 1.711 (1.008-2.903) 0.048*
Age
<50 32/32 1.553 (0.4715-5.112) 0.4636 38/30 1.765 (0.8905-2.497) 0.0972
> 50 122/141 1.828 (1.165-2.868) 0.0075* 126/140 1.808 (1.278-2.558) 0.0004*
Cirrhosis
Yes 34/42 3.445 (1.244-9.539) 0.0237* 33/42 0.9595 (0.522-1.764) 0.8938
No 5177 1.323 (0.7002-2.500) 0.3701 52/74 1.866 (1.114-3.125) 0.0114*
Albumin (g/dl)
<35 44/38 2.379 (1.030-5.495) 0.061 41/36 1.203 (0.6193-2.337) 0.5811
>35 87/117 1.911(1.102-3.312) 0.0139* 82/116 1.784 (1.183-2.691) 0.0028*
Creatinine(mg/dl)
<11 87/108 1.888 (1.102-3.234) 0.0171* 81/105 1.665 (1.097-2.529) 0.0113*
>1.1 47/48 2.148 (0.9684-4.765) 0.0507 44/45 1.428 (0.7646-2.668) 0.2451
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Alpha-

fetoprotein(ng/ml)
<300 79/125 2.379 (1.334-4.243)
>300 45/18 2.148 (0.7583-6.082)
Platelet(x10°/L)
<300 101/120 2.421 (1.413-4.147)
> 300 34/38 1.338 (0.5988-2.988)
Race
Asian 65/63 4.354 (1.719-11.03)
White 76/95 1.612 (0.9556-2.720)
BMI*
<25 78/71 2.331(1.201-4.523)
>25 62/91 1.858 (0.9573-3.608)
Family history
Yes 52/57 1.723 (0.9518-3.118)
No 48/52 1.882 (1.073-3.301)
ECOG®
=0 63/95 2.958 (1.476-5.931)
>0 47/52 1.454 (0.6708-3.150)
Histological grade
G1/2 73/127 1.445 (0.805-2.596)
G3/4 77/45 3.357 (1.698-6.636)

0.0011* 76/121 1.770 (1.147-2.731) 0.0044*
0.2203 41/17 1.425 (0.665-3.054) 0.3896
0.0013* 95/119 1.527 (1.016-2.295) 0.0337*
0.4481 31/34 1.772 (0.9258-3.391) 0.0671
0.0041* 83/65 2.046 (1.270-3.297) 0.0034*
0.0623 69/91 1.901 (1.234-2.928) 0.0015*
0.0175* 93/71 1.472 (0.9494-2.281) 0.0855
0.0454* 56/87 2.549 (1.546-4.204)  <0.0001
*
0.0669 85/91 1.543 (0.8052-2.957) 0.1744
0.0214* 101/90 1.639 (1.099-2.446) 0.0135*
0.002* 59/93 1.463 (0.889-2.408) 0.1159
0.3143 62/52 2.165 (1.353-3.463) 0.001*
0.1908 82/126 1.936 (1.256-2.983) 0.0008*
0.0042* 78/43 1.684 (1.033-2.747) 0.0457*

Abbreviations: HR, hazard ratio; 95% Cl, 95% confidence interval.
*. Statistically significant;

% body mass index;

®. Eastern Cooperative Oncology Group.

Gene enrichment analysis in the high-risk patients
showed pathways involved with cell cycle, inflam-
mation and migration were significantly enriched.
Minichromosome maintenance (MCM) proteins are a
group of ATPase, fundamental to the replication of
DNA and the process of cell cycle [56]. Tumor necrosis
factor receptor-1 (TNFR1) is the receptor of tumor
necrosis factor (TNF), if activated, can cause pro-
liferation or death of cells in different cellular context
[57]. One of key roles of TNFRI1 is to trigger NF-xB
signaling by activating IkB kinase (IKK) complex [58].
MAL is an adaptor protein in the activation of Toll-like
receptor 4 (TLR4)/ NF-xB pathway [59]. NF-xB is a
nuclear transcription factor that acts as a regulator in
various biological and pathological processes including
inflammation, cell apoptosis, immune responses and
tumorigenesis [60—62]. The mitogen-activated protein
kinase/ extracellular signal-regulated (MAPK/ERK)
pathway was a novel oncogenic pathway in most can-

cers [63]. MAPK mediates cellular apoptosis by
Fas/FasL. signaling pathways [64]. Rho is a kind of
small GTP-binding protein triggering transduction of
signaling cascades of MAPK pathways [65]. Proline-
rich kinase-2 (Pyk2) is a non-receptor protein tyrosine
kinase which participates in several pathways including
MAPK and regulates cell proliferation, differentiation,
adhesion and migration [66]. In a word, the findings of
GSEA indicated that the HCC-specific gene signature
might have potentials in the regulation of cell apoptosis,
inflammatory res-ponses, invasion and metastasis of
HCC.

However, there are some limitations for this present
study. First, the combination of samples for screening
HCC-specific genes was small. Second, we constructed
risk score system merely based on the gene expression
levels, without considering the mutation, methylation,
or other genetic events of genes that probably have an
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Figure 5. Functional enrichment of HCC-specific gene signature in high-risk patients of TCGA series. (A) The bar chart of 16
significantly enriched BIOCARTA pathways through GSEA. (B, C and D) Significantly enriched pathways associated with cell cycle (B), TNF-
kB signaling (C) and MAPK pathway (D).

effect on the initiation and progression of cancer. Third,
nearly 90% of patients in the discovery dataset had
HBYV, so the risk score system was established based on
an HBV background. And further stratified analysis in
validation cohort also demonstrated that this prognostic
model was more applicable to HBV patients. Last but
not the least, our HCC prognostic signature still needs
to be validated in a larger population of patients from

various backgrounds.

In conclusion, we constructed and confirmed an HCC-
specific prognostic risk score system comprised of 12

genes. This risk score system could serve as a
potential predictor for OS particularly in elderly male
patients with HBV infection but in relatively better
general conditions by risk-dependent stratification.
From the results of functional annotations, pathways
involved in cell cycle, NF-kB- and MAPK-associated
pathways were significantly enriched, which might
help better understand the molecular mechanisms
underlying the initiation and progression of HCC.
Moreover, our data provide new promising evidence
on prediction biomarkers and targeted therapy for

HCC.

WwWw.aging-us.com

2489

AGING



.MATERIALS AND METHODS
Microarray data collection and pre-processing

All microarray datasets were retrieved from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/)_and the
Cancer Genome Atlas (TCGA, http://cancergenome.nih.
gov/) [67]. GSES851, GSE28691, GSE15765 and
GSE14323 from GEO were conducted through GPL571
(Affymetrix Human Genome UI133A 2.0 Array).
GPL571 platform was comprised of 22277 unique
probes and tested more than 13500 genes
(http://www.affymetrix.com/support/technical/byproduc
t.affx?product= hgul33-20). We selected 75 CRCLM
samples from GSE5851 (61) and GSE28691 (14), 70
HCC samples and 13 ICC samples from GSE15765 and
19 normal liver tissue samples from GSE14323 for
integrated normalization and analysis. One of ICC
samples, GSM395714, was ruled out through quality
control. GSE14520, as the training series downloaded
from GEO database, included 247 HCC samples, 239
non-tumor tissue samples and 2 normal liver samples
from healthy donors and was conducted by GPL571
and GPL3921 (Affymetrix HT Human Genome
UI133A Array), respectively. All the tumor samples
(n=247) from GSE14520 were used as the training
dataset. The raw fluorescence intensity profiles
(*.CEL) of all the selected data from GEO were
downloaded and normalized and further transformed to
expression values through RMA algorism in the R
environment (v3.4.3) [68]. 357 HCC samples from
TCGA cohort were included as the validation group. The
mRNA-seq data were preprocessed and submitted into
analysis as the upper quantile normalized FPKM values.

Screening of HCC-specific genes and gene ontology
analysis

Differentially expressed genes (DEGs) between tumor
groups (HCC, ICC and CRCLM) and normal group
were obtained from GSE5851, GSE28691, GSE15765
and GSE14323. Only fold change (FC) > 1.5 and P
value for t-test < 0.05 were considered statistically
significant. We then carried out Venn selection of
cancer-specific genes among three DEG lists of the
three types of hepatic neoplasms by Venny 2.1.0
(http://bioinfogp.cnb.csic.es/tools/venny/).  Univariate
survival analysis based on Cox proportional hazards of
the HCC-specific genes was performed and genes with
significant P values (< 0.05) from Log-rank tests were
selected. Gene ontology (GO) analysis of HCC-
specific genes was performed by Metascape, a user-
friendly web tool for gene annotation and also a plugin
of Cytoscape.

LASSO statistical modeling

The 12-HCC-specific gene signature was derived from
the least absolute shrinkage and selection operator
(LASSO). LASSO is a linear regression algorism
capable of variable selection and regularization
simultaneously [69]. We carried out LASSO fitting
method based on a series of A using ‘glmnet’ package in
the R environment (v3.4.3) [70]. The coefficients of
each gene in risk score system were generated based on
the expressions of each tissue sample in R studio at the
same time.

Confirmation and evaluation of risk score system

The HCC risk score model was validated and evaluated
in TCGA cohort and the primary dataset (GSE14520).
Univariate and multivariate Cox regression analyses
were carried out with the validating series to estimate
the association between various clinical characteristics
containing the risk score and OS or DFS. Then stratified
analysis based on clinical information was conducted in
TCGA series. The median of TCGA cohort was
accepted as optimal cut-off values to divide each group
into the high-risk and the low-risk subgroups for
survival analysis. All Kaplan-Meier curves were plotted
and P values and hazard ratio (HR) with 95%
confidence interval (CI) from log-rank tests were
generated in GraphPad Prism 7.0.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was one of
computational methods to identify significantly
enriched biological processes and pathways. GSEA was
carried out by the JAVA program
(http://www .broadinstitute.org/gsea) based on Molecu-
lar Signature Database (MSigDB) [71]. Here, BioCarta
(http://cgap.nci.nih.gov/Pathways/BioCarta Pathways)
pathway was enriched through GSEA in both high-risk
and low-risk groups [72]. Each gene set would get an
enrichment score (ES) that represented the number of
overexpressed genes in this gene set. The false
discovery rate (FDR) and the FWER P value of the
gene sets < 0.05 were considered statistically
significant.

Statistical methods

Statistical analyses were performed using STATA/SE
software (v12.0). False discovery rate (FDR) was
applied to compare the expression of genes between
tumor and non-tumor samples. FDR or P value < 0.05
was considered statistically different.
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SUPPLEMENTARY TABLE

Table S1.

probeset ID gene symbol gene title LogFC* | FDR"

202983 at HLTF helicase-like transcription factor 1.81 3.41E-29

210131 x at SDHC suc.cmate dehydrogenase co.mplex, subunit 1 44 2 14511E-26
- - C, integral membrane protein, 15kDa

212554 at CAP?2 g:::s,t;ldenylate cyclase-associated protein, 2 780 9.60115E-25

210417 s_at PI4KB phosphatidylinositol 4-kinase, catalytic, beta 1.32 6.89657E-24

32811 at MYOI1C myosin IC -0.89 1.70433E-23

219129 s at SAP30L SAP30-like 1.36 2.14227E-22

202004 x at SDHC succinate dehydrogenase co.mplex, subunit 117 2 75767E-22
- - C, integral membrane protein, 15kDa

221486 _at ENSA endosulfine alpha 0.98 9.6368E-22

203715 _at TBCE tubulin folding cofactor E 1.56 3.24734E-21

210460 s at PSMD4 proteasome (prosome, macropain) 26S 1.46 438618E-21
—— subunit, non-ATPase, 4 ) )

39817 s_at DNPHI 2-deoxynucleoside 5'-phosphate N- 1.04 | 4.38313E-21

- hydrolase 1

216399 s at SCAPER ]SEii)hase cyclin A-associated protein in the 101 1 04988F-20

203526 s _at APC adenomatous polyposis coli 1.20 9.10187E-20

221711 s_at BABAMI BRISC and BRCA1 A complex member 1 0.86 1.20476E-19

215150 _at YODI1 YODI deubiquitinase 1.15 1.55484E-19

cyclin-dependent kinase inhibitor 2C (p18, )

204159 at CDKN2C inhibits CDK4) 2.02 1.46634E-19

212853 at DCUNID4 DCNI, defective in cullin neddylation 1, 128 | 3.24184E-19
- domain containing 4

217782 s at GPS1 G protein pathway suppressor 1 0.95 3.07795E-19

MIR6743 /// microRNA 6743 /// RIC8 guanine nucleotide
221647 s _at RICSA exchange factor A 0.75 3.4838E-19
208938 at PRCC pap1ll.ary renal cell carcinoma (translocation- 117 125881E-18
associated)

201618 x at GPAAI glycosylphosphatidylinositol anchor 1.03 2 00464E-18
- - attachment 1

205655 _at MDM4 MDM4, p53 regulator 1.12 3.08052E-18

210360 s_at MTSS1 metastasis suppressor 1 1.87 4.9371E-18

202916 s at FAM20B ]f3am1ly with sequence similarity 20, member 1.09 47876E-18

203565 s at | MNATI ggﬁ CDK-activating kinase assembly 081 |  4.82027E-18

201106 _at GPX4 glutathione peroxidase 4 0.86 1.28092E-17

211465 x at | FUT6 fucosyltransferase 6 (alpha (1,3) 14| 1.56646E-17
— = fucosyltransferase)

219311 at CEP76 centrosomal protein 76kDa 1.05 1.84281E-17

217881 s at CDC27 cell division cycle 27 1.38 2.2452E-17

211251 x at NFYC nuclear transcription factor Y, gamma 0.97 2.8815E-17

221703at | BRIPI BRCA T interacting protein C-terminal 099 |  429341E-17
- helicase 1

214163 at HSPBI1 lllelzat shock protein family B (small), member 113 493963E-17
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222265 at TNS4 tensin 4 -0.75 8.27649E-17
206474 at CDK17 cyclin-dependent kinase 17 0.63 8.69675E-17
218909_at RPSGKC1 ribosomal protein S6 kinase, 52kDa, 176 | 1.04284E-16
- polypeptide 1
218107 _at WDR26 WD repeat domain 26 1.08 1.10986E-16
200093 s at | GBA///GBAP] | Blucosidase, beta, acid /// glucosidase, beta, 172 | 1.10626E-16
—— acid pseudogene 1
207125 at ZNF225 zinc finger protein 225 0.63 1.12671E-16
212570 at ENDOD1 endonuclease domain containing 1 -0.84 1.2042E-16
210399 x at | FUT6 fucosyltransferase 6 (alpha (1,3) 120 | 1.37322E-16
— = fucosyltransferase)
207304 _at ZNF45 zinc finger protein 45 1.11 1.53842E-16
208973 at ERI3 ERII1 exoribonuclease family member 3 0.92 2.1801E-16
211060 x at GPAAI glycosylphosphatidylinositol anchor 0.95 2 55463E-16
- = attachment 1
218079 s at GGNBP2 gametogenetin binding protein 2 0.94 2.76087E-16
201754 at COX6C cytochrome ¢ oxidase subunit Vic 0.76 3.31423E-16
207645 s at | CHDIL chromodomain helicase DNA binding 142 | 4.12203E-16
- = protein 1-like
220003 _at LRRC36 leucine rich repeat containing 36 -0.79 5.90651E-16
212415 at Septin-6 septin 6 1.79 8.02104E-16
212413 at Septin-6 septin 6 1.23 1.05307E-15
204600 _at EPHB3 EPH receptor B3 -0.84 1.04527E-15
LOC100996668 /// | uncharacterized LOC100996668 /// zinc
210875 s _at ZEBI1 finger E-box binding homeobox 1 1.22 1.088SE-15
221078 s _at CCDCS88A coiled-coil domain containing 88A 1.09 1.1472E-15
212487 at GPATCHS G patch domain containing 8 -0.79 1.39083E-15
202596 at ENSA endosulfine alpha 0.90 1.48188E-15
RK aurora kinase A pseudogene 1 /// RAB3
202374 s _at AU PS1/// GTPase activating protein subunit 2 (non- 0.97 1.70461E-15
RAB3GAP2 )
catalytic)
200043 s at PSMB4 proteasome (prosome, macropain) subunit, 0.96 1.91236E-15
- beta type, 4
202585 s at NFX1 nuclear transcription factor, X-box binding 1 0.94 2.19399E-15
202839 s at NDUFB7 NADH dehydrogenase (ubiquinone) 1 beta 0.85 2 52093E-15
— = subcomplex, 7, 18kDa
212839 s at TROVE2 TROVE domain family, member 2 0.60 2.50941E-15
204301 at KBTBDI1 kelch repeat and BTB (POZ) domain 164 | 2.70468E-15
- containing 11
209177 at NDUFAF3 NADH dehydrogenase (ubiquinone) 0.70 |  2.76847E-15
- complex I, assembly factor 3
216267 s_at TMEMI115 transmembrane protein 115 1.25 3.18831E-15
GPRS89A /// G protein-coupled receptor 89A /// G
220642 x_at GPR89B protein-coupled receptor 89B 1.14 3-46463E-13
203036 _s_at MTSSI1 metastasis suppressor 1 1.19 3.43813E-15
215158 s at DEDD death effector domain containing 0.81 3.43867E-15
216218 s at PLCL2 phospholipase C-like 2 1.17 3.65733E-15
204906_at RPSGKA2 ribosomal protein S6 kinase, 90kDa, 082 |  3.87422E-15
- polypeptide 2
213242 x_ at CEP170B centrosomal protein 170B -0.84 3.89443E-15
201771 at SCAMP3 secretory carrier membrane protein 3 1.08 4.21174E-15
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215773 x at PARP2 poly (ADP-ribose) polymerase 2 0.84 4.23472E-15
203515 _s_at PMVK phosphomevalonate kinase 0.90 5.23647E-15
206206 _at CD180 CD180 molecule -0.68 5.21883E-15
222045 s at PCIF1 PDX1 C-terminal inhibiting factor 1 0.76 5.28646E-15
211220 s at HSF2 heat shock transcription factor 2 0.61 5.96772E-15
37022_at PRELP prohr'le/arglnme-rlch end leucine-rich repeat -1.00 5.93428F-15
protein
217847 s at THRAP3 t3hyr01d hormone receptor associated protein 0.78 5.99118E-15
203013 at ECD ecdysoneless homolog (Drosophila) 0.94 6.23892E-15
205661 s at FLADI flavin adenine dinucleotide synthetase 1 1.36 8.53762E-15
210635 s _at KLHL20 kelch-like family member 20 1.28 8.62145E-15
218037 at FAMI34A family with sequence similarity 134, 093 |  120747E-14
- member A
216293 at CLTA clathrin, light chain A -0.81 1.30517E-14
203556 _at ZHX2 zinc fingers and homeoboxes 2 1.01 1.84173E-14
210012 s at EWSR1 EWS RNA-binding protein 1 0.87 1.9622E-14
203776 _at GPKOW G patch domain and KOW motifs 0.83 2.06291E-14
37577 at ARHGAP19 Rho GTPase activating protein 19 0.79 2.47379E-14
215690 x_at | GPAAL glycosylphosphatidylinositol anchor 091 | 2.98627E-14
- = attachment 1
203454 s at ATOX1 antioxidant 1 copper chaperone 1.08 3.07285E-14
212092 at PEG10 paternally expressed 10 3.54 3.55223E-14
214298 x_at Septin-6 septin 6 1.37 3.82465E-14
209365 s _at ECM1 extracellular matrix protein 1 -1.30 4.0429E-14
215420 at IHH indian hedgehog -1.07 4.47E-14
215099 s at RXRB retinoid X receptor, beta 0.97 4.5952E-14
207361 at HBP1 HMG-box transcription factor 1 0.60 5.09087E-14
solute carrier family 7 (amino acid
202752 x_at SLCTAS transporter light chain, L system), member 8 -091 >-906359E-14
211205 x at PIPSKIA phosphatidylinositol-4-phosphate 5-kinase, 1.02 6.40865E-14
- = type I, alpha
212640 _at PTPLB protein tyrosine phosphatase-like (proline 102 |  6.40152E-14
instead of catalytic arginine), member b
212159 x at AP2A? adaptgr-related protein complex 2, alpha 2 0.67 6.56532F-14
- = subunit
217932 at MRPS7 mitochondrial ribosomal protein S7 0.81 7.18957E-14
200743 s _at TPP1 tripeptidyl peptidase I 0.97 7.17219E-14
210706_s_at RNF24 ring finger protein 24 -0.77 8.2877E-14

* logFC was the logarithm Fold Change as HCC tissue being compared with non-tumor tissue. +/- represented up-
/down- regulated expression level in HCC.

®: False discovery rate.
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