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ABSTRACT

Aging is associated with the accumulation of DNA damage. High expression of DNA repair genes has been
suggested to contribute to prolonged lifespan in several organisms. However, the crucial DNA repair genes
contributing to longevity remain unknown. Termite kings have an extraordinary long lifespan compared with
that of non-reproductive individuals such as workers despite being derived from the same genome, thus
providing a singular model for identifying longevity-related genes. In this study, we demonstrated that termite
kings express higher levels of the breast cancer susceptibility gene BRCA1 than other castes. Using RNA
sequencing, we identified 21 king-specific genes among 127 newly annotated DNA repair genes in the termite
Reticulitermes speratus. Using quantitative PCR, we revealed that some of the highly expressed king-specific
genes were significantly upregulated in reproductive tissue (testis) compared to their expression in somatic
tissue (fat body). Notably, BRCA1 gene expression in the fat body was more than 4-fold higher in kings than in
workers. These results suggest that BRCA1 partly contributes to DNA repair in somatic and reproductive tissues
in termite kings. These findings provide important insights into the linkage between BRCA1 gene expression
and the extraordinary lifespan of termite kings.

INTRODUCTION longevity [4]. In mammals, longer-lived species such

as humans and naked mole rats exhibit higher
expression of DNA repair genes than short-lived mice
[5]. Moreover, overexpression of several DNA repair

Genomic instability and DNA damage are hallmarks of
aging and number of aging-linked diseases in multi-

cellular organisms [1]. Indeed, the frequency of DNA
damage increases with age in humans, rodents, and flies
[2,3]. Aging-associated DNA damage is normally
repaired by various DNA repair proteins [4]. Thus,
these proteins are highly conserved in many organisms,
and they play important roles in organismal aging and

genes contributes to the extension of lifespan in the fly
Drosophila melanogaster [6]. These studies suggest
that efficient DNA repair system contributes to
extended longevity. However, the crucial DNA repair
genes contributing to extraordinary longevity are
unclear.
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In eusocial insects, such as ants, honeybees, and
termites, the lifespan of queens is more than 10-fold
longer than that of non-reproductive individuals (wor-
kers and soldiers) possessing the same genome, a fact
that has attracted significant attention [7-9]. In
contradistinction to the queens, reproductive male ants
and honeybees have a relatively short lifespan (2-3
months) [10,11]. Conversely, termite kings exhibit
extraordinary longevity similarly as the queens [12].
This illustrates that termite kings have an exceptional
anti-aging system. A previous study focusing on
somatic tissues reported that long-lived queens
displayed higher expression of DNA repair genes than
short-lived workers in the ant Lasius niger [13]. These
findings suggest that highly efficient DNA repair
mechanisms can also contribute to the extraordinary
longevity of termite kings.

The Japanese subterranean termite Reticulitermes
speratus is one of the most studied termites due to its
reproductive system [14]. A novel parthenogenetic
system known as asexual queen succession (AQS) was
revealed in R. speratus [15]. AQS allows queens to
extend their reproductive lifespan because a founding
queen (primary queen; PQ) is genetically immortal until
a colony dies due to the production of a large number of
nest queens (secondary queens; SQs) through
parthenogenesis. Conversely, a founding king (primary
king; PK) should continue to live even if queens are
replaced because mother—son inbreeding depression can
occur when the PK dies, reducing the genetic contribu-
tion to offspring [14,16,17]. Indeed, a previous study
has revealed that this king replacement does not often

Pyrimidine
8-Oxoguanine dimers

DGO I RN

Abnormal Abasic Single-strand Bulky adducts
bases sites breaks

Double-strand
breaks

occur in wild colonies of R. speratus [18]. It is thus
presumed that PKs in R. speratus have been exposed to
selection for inbreeding avoidance. As a previous study
reported that Reticulitermes termite queens surprisingly
live more than 11 years [19], the PKs of R. speratus
may have the potential to live for several decades.
Therefore, R. speratus provides an ideal model for
identifying the critical DNA repair genes contributing to
extended longevity.

In this study, we performed transcriptome analysis of
DNA repair genes using RNA sequencing (RNA-seq)
data obtained from all castes of R. speratus (both
females and males workers, soldiers, alates, young PQs
and PKs, and mature SQs and PKs) [20]. We
additionally investigated age-dependent expression
changes in male reproductives (male alates and young
and mature PKs). Furthermore, we investigated where
DNA repair genes were overexpressed in the termite
body using quantitative PCR (qPCR) analysis. This
study uncovered novel evidence that DNA repair
functions as an anti-aging mechanism in termite kings.

RESULTS

Digital transcriptome analyses of DNA repair genes
in R. speratus

Aging-associated DNA damage including abnormal
bases, abasic sites, 8-oxoguanine, single-strand breaks
(SSBs), bulky adducts, pyrimidine dimers, double-
strand breaks (DSBs), interstrand cross-links, and
genomic mismatches are generally repaired by various

Interstrand
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DNA damage response (DDR)
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Figure 1. Types of DNA damage and the associated repair pathways. Examples of DNA lesions (top), activation of the DNA
damage response (DDR, middle), and the most relevant DNA repair pathways responsible for the removal of the lesions (bottom).
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pathways such as base excision repair (BER), SSB
repair (SSBR), nucleotide excision repair (NER),
homologous recombination (HR), non-homologous
end-joining (NHEJ), mismatch repair (MMR), and
alkylation damage repair (ADR) [4,21-26] (Fig. 1).
Using RNA-seq, we identified 127 putative DNA re-
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pair genes including 50 DNA damage response
(DDR) genes, 26 HR genes, 16 NER genes, 11 NHEJ
genes, 9 ADR genes, 7 MMR genes, 4 genes related
to various DNA repair-related pathways, 3 BER
genes, and 1 SSBR gene in R. speratus (Tables S1
and S2).

DNA repair
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Figure 2. Differential transcriptome analysis of DNA repair genes among castes. The heatmap shows the differential
expression of 127 DNA repair transcripts among castes in Reticulitermes speratus. Workers and soldiers are non-reproductive
individuals. Alates, young primary queens (PQs) and primary kings (PKs), and mature secondary queens (SQs) and PKs are
reproductives. After nuptial flight, a pair of female and male alates establishes a new colony and starts to produce offspring
sexually as a PQ and PK, respectively. The relative expression level is indicated by the mean normalized count per million, ranging
from white to red. The tree at the left corresponds to the hierarchical clustering of cluster-averaged expression (clusters i-iv).
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Digital transcriptome analysis indicated that the
expression of 97 genes differs among castes (FDR <
0.05; Fig. 2 and Table S3). We then identified four
clusters of genes with significantly varied expression
among castes (clusters i—iv). The clusters had tendencies
for high gene expression in young PQs (cluster i);
young PQs and mature PKs (cluster i7); young PQs, SQs
and mature PKs (cluster #ii); or mature PKs (cluster iv).
Consequently, we identified 21 mature PK-specific
genes including nine HR repair genes, six DDR genes,
two NHEJ repair genes, two MMR genes, one NER
genes, and one ADR gene in cluster iv (Table 1).
Moreover, principal component analysis (PCA) largely
confirmed the results of clustering (Fig. S1 and Table
S4). Thus, RNA-seq analysis revealed that mature PKs
had superior DDR and HR repair pathways relative to
the other castes (Fig. 3A and 3B). MMR and ADR
signals are also activated in PKs (Fig. 3C). Moreover,
we revealed that the expression of 93 genes (including
40 DDR genes, 19 HR genes, 9 NER genes, 7 NHEJ

Table 1. King-specific gene list.

genes, 6 ADR genes, 5 MMR genes, 4 genes related to
various DNA repair-related pathways, and 3 BER
genes) increases significantly with age in male
reproductives (Table S5). These 93 genes included the
aforementioned 21 mature PK-specific genes.

Caste-specific expression analysis of DNA repair
genes

We performed whole-body qPCR analysis to investigate
whether termite kings have higher DNA repair gene
expression than other castes. We focused on BRCAI,
MCPH1, MHLI1, and XRCC3 among mature PK-
specific genes because these genes had higher
expression in cluster iv and they play important roles in
genome maintenance. Whole-body qPCR revealed that
mature PKs and SQs have higher expression of
RsBRCAI, RsMCPH]I, and RsMLH]I than workers and
soldiers (n = 6, P < 0.05; Figs. 4A—C). RsXRCC3 was
highly expressed only in PKs (n =6, P < 0.05; Fig. 4D).

Gene symbol Full gene name Signal
RFC3 Replication factor C subunit 3 DDR
RFC4 Replication factor C subunit 4 DDR

TOPBPI DNA topoisomerase 2-binding protein 1 DDR
ATR Serine/threonine-protein kinase ATR DDR
ATM Serine-protein kinase ATM DDR

CHK2 Serine/threonine-protein kinase Chk2 DDR
ERCCI1 DNA excision repair protein ERCC-1 NER

BRCA1 Breast cancer type 1 susceptibility protein HR

MCPH1 Microcephalin HR

XRCC3 X-ray repair cross-complementing protein 3 HR

CDK1 Cyclin-dependent kinase 1 HR
HELQ Helicase POLQ-like HR
RMI1 RecQ-mediated genome instability protein 1 HR
GENI1 Flap endonuclease GEN HR
SLX4 Structure specific endonuclease subunit SL.X4 HR
RADS54-like DNA repair and recombination protein RAD54-like HR
APLF Aprataxin and PNK-like factor NHEJ
SMARCALI SWI/SNF-related matr1x-assoc1a.1ted acjtln—deper}dent regulator of chromatin NHEJ
subfamily A-like protein 1
MLH1 DNA mismatch repair protein Mlhl MMR
MSH4 MutS protein homolog 4 MMR
MGMT Methylated-DNA—protein-cysteine methyltransferase ADR

DDR, DNA damage response; NER, nucleotide excision repair; HR, homologous recombination; NHEJ, non-
homologous end-joining; MMR, mismatch repair; ADR, alkylation damage repair. The genes written in bold were

used for quantitative PCR analysis in this study.
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Figure 3. Schematic model for accelerated DNA repair pathways in termite kings. (A-C) DNA damage
response (DDR; A), homologous recombination and non-homologous end-joining (HR and NHEJ, respectively; B),
and mismatch repair and alkylation damage repair (MMR and ADR, respectively; C) are shown as schematic
models. The proteins encoded by the king-specific genes (cluster iv in Figure 2) are highlighted in bold.

Tissue-specific expression
workers and reproductives

analysis in termite analysis in workers and mature reproductives. The testis
of PKs displayed the highest RsBRCAI expression
among all termite tissues (n = 6, P < 0.05; Fig. 5A). In

To determine whether these repair genes are expressed addition, the fat body of PKs displayed higher
in the termite body, we performed tissue-specific qPCR RsBRCAI expression than that of workers and SQs (n =
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6, P <0.05; Fig. 5A). RsMCPH1 expression was higher
in the ovaries and testes than in the fat body except in
all castes excluding PKs (n = 6, P < 0.05; Fig. 5B).
Meanwhile, RsMLHI and RsXRCC3 expression was
higher in the ovaries and testes than in the fat body (n =
6, P < 0.05; Figs. 5C and 5D). Furthermore, we assess-
ed the expression levels of RsCDK/ and RsMGMT,
which are also considered as mature PK-specific genes,
and these tended to be higher in the ovaries and testes
than in the fat body, but there were no statistically
significant differences (n = 6; Figs. 5E and 5F).
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DISCUSSION

Our analysis demonstrated that mature PKs exhibit
higher expression of the BRCA1 gene than other castes
in R. speratus. BRCALI is one of the most studied DNA
repair genes, particularly in cancer research. Mutation of
the gene is linked to familial breast and ovarian cancers
[27]. To date, BRCA1 has been implicated in various
biological processes, including microRNA biosynthesis
[28], antioxidant signaling [29], and homologous DNA
repair [30]. However, the role of BRCA1 in organismal
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Figure 4. Higher expression of DNA repair genes in termite reproductives. (A) There were significant
differences in RsBRCA1 expression among castes of Reticulitermes speratus (n = 6; P < 0.001). RsBRCA1 expression is
higher in reproductives than in non-reproductives (n = 6; P < 0.05). (B) There were significant differences in RsSMCPH1
expression among castes of R. speratus (n = 6; P < 0.001). RsMCPH1 expression is higher in reproductives than in non-
reproductives (n = 6; P < 0.05). (C) There were significant differences in RsMLH1 expression among castes of R. speratus
(n =6; P <0.001). RsMLH1 expression is higher in reproductives than in non-reproductives (n = 6; P < 0.05). (D) There
were significant differences in RsXRCC3 expression among castes of R. speratus (n = 6; P < 0.001). RsXRCC3 expression is
higher in PKs than in non-reproductives (n = 6; P < 0.05). Black and gray bars indicate female and male individuals,
respectively. Error bars represent the standard error of the mean. Different letters (a—c) over the bars denote
significant differences at P < 0.05. W, workers; S, soldiers; SQ, mature secondary queens; PK, mature primary kings.
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ovaries and the fat body (n = 6; P < 0.05). RsBRCA1 expression is higher in the fat body of PKs than in that of workers and SQs (n = 6; P
< 0.05). (B) There were significant differences in RSMCPH1 expression between these tissues (n = 6; P < 0.001). RsMCPH1 expression
is higher in ovaries and testes than in the fat body of workers and SQs (n = 6; P < 0.05). (C) There were significant differences in
RsMLH1 expression between these tissues (n = 6; P < 0.001). RsMLH1 expression is higher in the ovaries and testes than in the fat
body of workers and reproductives (n = 6; P < 0.05). (D) There were significant differences in RsXRCC3 expression between these
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significant differences in RSMGMT expression between these tissues (n = 6; P < 0.05), post-hoc tests revealed no significant
differences (n = 6). Black and gray bars indicate females and males, respectively. Error bars represent the standard error of the mean.
Different letters (a—c) over the bars denote significant differences at P < 0.05. FB, fat body; Ova, ovary; Tes, testis.
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aging and longevity has remained mostly unclear. The
present study suggests that BRCA1 plays an important
role in the extraordinary longevity of termite kings. Our
findings suggest that BRCA1 can partly contribute to
efficient DNA repair in both somatic and reproductive
tissues in termite kings.

BRCAT is known to have a role of RAD51-mediated
HR repair [30]. A previous study reported that the
accumulation of RADS51 onto resected DSBs is the
cause of HR defects in older flies [3]. Thus, our results
indicated that BRCA1 may be a key upstream regulator
of the age-related accumulation of RADS51 and the
subsequent HR defects. Consistent with this finding,
BRCA1 gene overexpression can reduce age-related
DSB accumulation and increase cell survival in mouse
oocytes [31]. This data provides support for the
assertion that BRCA1-regulated HR strongly influences
DNA repair efficiency in termite kings with age.

BRCA1, MCPHI1, XRCC3, and MLHI1 are known to
have roles in meiotic progression and the maintenance
of genomic stability [32-35]. The germline genome is
vulnerable to the accumulation of deleterious mutations
during meiotic DNA replication. If those mutations are
not eliminated in reproductive cells, errors could be
passed to offspring, which is linked to an increased risk
of diseases in future generations [36]. Therefore, our
findings indicate that strong evolutionary pressures
potentially led to the high expression of DNA repair
genes in reproductive tissues, especially in the long-
lived organisms having the long reproductive periods.
Indeed, long-lived humans display lower germline
mutation rates than short-lived mice due to high DNA
repair gene expression [37]. Additionally, DNA damage
levels were lower in long-lived termite queens than in
short-lived workers [38]. It is necessary to examine
whether mature PKs and SQs have lower levels of DNA
damage in reproductive tissues than short-lived species
in future research.

The fat body plays major roles in metabolic and
reproductive functions in insects [39]. Increased
metabolism and reproduction are considered to generate
oxidative stress [40—42], which is known to be a cause
of DNA damage [43]. The cost of egg production is
generally higher than the cost of sperm production [44],
suggesting that the fat body of termite queens with
long-term reproductive activity may be exposed to
strong oxidative stress in comparison to that of the
kings. Nevertheless, we found that the fat body of
termite kings expressed higher levels of RsBRCAI than
that of the queens in the present study. Furthermore, we
demonstrated that the fat body of the kings does not
show high expression levels of RsCDKI, which is
critical for M-phase entry in mitosis [45]. These

findings indicate the possibility that an increased
BRCAL expression is associated with greater longevity
and not with cellular stress caused by increased
metabolism, reproduction, and mitosis in the fat body of
termite kings.

Previous studies described that the long longevity and
survival of termites are associated with efficient anti-
oxidant systems [38,46,47]. Thus, although the
antioxidant system of termite kings remains unclear, it
is estimated that an efficient antioxidant system can
prevent the accumulation of DNA damage and con-
tribute to the greater longevity of the kings.
Interestingly, a recent study has identified that long-
lived reproductives have strong defense systems against
transposons as a potential source of DNA damage in
comparison to short-lived major workers in the termite
Macrotermes bellicosus [48]. In addition, long-lived ant
queens reportedly display a higher expression of DNA
repair genes than short-lived workers [13]. These
findings support the hypothesis that the extraordinary
longevity of organisms is associated with increased
biomolecule homeostasis. However, it is necessary to
carefully assess how the reproductives achieve longer
lifespans than the non-reproductive individuals in
eusocial insects, which has been argued in some studies
[49-51]. Therefore, further studies are required to
evaluate the biological function of BRCA1 in the lon-
gevity of termites using genetic tools, such as CRISPR-
Cas9, RNA interference, and transgenic systems.
Overall, our study provides new insights into the
maintenance mechanisms of biomolecule homeostasis
and their links to extraordinary longevity.

MATERIALS AND METHODS
Sample collection

Animal ethics committee approval was not required for
this study, which used insects. For RNA-seq analysis,
alates were extracted from three colonies in secondary
forests in Kyoto, Japan, from April to May 2013. One
male and one female alate were randomly selected from
each colony, and five pairs were created for each colony
and kept at 25°C under darkness. They were extracted
from each incipient colony after 6 months, and they
were regarded as young PQs and PKs. Workers,
soldiers, and mature SQs and PKs were collected from
four colonies in secondary forests in Kyoto and Shiga,
Japan, from July to October 2013. For qPCR analysis,
12 R. speratus colonies (workers, soldiers, and mature
SQs and PKs) were collected from secondary forests in
Yamaguchi and Shiga, Japan, from May to June in 2016
and 2017. Because of the rare appearance of mature
PQs in nature [15], we used SQs as mature queens in
this study. Whole bodies or separated tissues (reproduc-
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tive tissues and fat body) of the termites were
temporarily preserved at —80°C. Female and male
workers and soldiers were separated on the basis of the
shape of the caudal sternite using a stereoscope. R.
speratus is not an endangered or protected species; thus,
no specific permits were required for the described field
studies, and no specific permissions were required for
the locations for termite sampling given that they are
public lands.

De novo transcriptome assembly

We analyzed a transcriptomic database of both male and
female of workers, soldiers, and alates, young PQs and
PKs, and mature SQs and PKs of R. speratus, which
was constructed via RNA-seq in our previous study
[20], to compare the expression levels of DNA repair-
related genes among castes. Total RNA was extracted
from the whole body of each individual of each
reproductive caste (alates, young PQs and PKs, and
mature SQs and PKs) using an RNeasy mini kit
(Qiagen) following the standardized instructions from
the manufacturer. For workers and soldiers, 10
individuals of each sex were pooled to extract a
sufficient amount of RNA, and we performed RNA-seq
analysis on a total of 60 samples. In accordance with a
previously described procedure [52] for first-strand
cDNA synthesis, RNA-seq was performed using the
[Nlumina HiSeq 2000 at the Okinawa Institute of
Science and Technology Graduate University. After
trimming the raw sequencing reads, the remaining reads
from all samples were assembled de novo using Trinity
version trinityrnaseq r2012-04-27 [53,54], which
generates transcriptomic assemblies from short read
sequences using the de Bruijn graph algorithm. In a
previous study [20], further details of the methods as
well as a summary statistics of assembly are provided.
Sequence data were deposited in the DNA Data Bank of
Japan under the BioProject PRIDB3531, which contains
links and access to sample data through the BioSample
SAMDO00026264-SAMDO00026323 and the Sequence
Read Archive DRR030795-DRR030854.

Annotation of DNA repair-related genes

Targets of DNA repair-related genes were selected on
the basis of previously reported genes in animals [4].
The peptide sequences of DNA repair-related proteins
of Z. nevadensis, Bombyx mori, and D. melanogaster
were obtained from the National Center for
Biotechnology Information (http://www.ncbi.nlm.nih.
gov/) and used as BLAST queries for our peptide
database with an e-value cutoff of 1E—60 (Table S1).
Analyses of protein families, domains, and motifs were
performed using InterProScan in Blast2GO software
v5.1.13 [55] (Table S2). Furthermore, to confirm the

identity of the BRCAI1 gene RsBRCAI, we performed
multiple amino acid sequence alignments with
CLUSTALW and conducted phylogenetic analyses
using the molecular evolutionary genetics analysis
software MEGA7 [56] (Fig. S2). Gene evolutionary
history was inferred using the maximum likelihood
method based on the JTT matrix-based model [57],
which is the best model based on the Bayesian
information criterion. BRCA1 homologs of mammals
(Homo sapiens and Mus musculus), a worm
(Caenorhabditis elegans), ants (Harpegnathos saltator,
Ooceraea  biroi, Pogonomyrmex barbatus, and
Camponotus  floridanus), bees (Apis florea and
Dufourea  novaeangliae),  wasps  (Copidosoma
floridanum and  Nasonia  vitripennis), sawflies
(Neodiprion lecontei and Athalia rosae), termites (R.
speratus and Z. nevadensis), beetles (Aethina tumida
and Dendroctonus ponderosae), and butterflies (Papilio
machaon, B. mori, Spodoptera litura, and Helicoverpa
armigera) were analyzed.

Abundance estimation and analyses of differential
expression

The expression levels of DNA repair genes were
estimated using RSEM v1.2.8 [58] separately for the
filtered reads from each sample. Raw read counts
generated by RSEM were normalized using the trimmed
mean of M-value normalization method [59]. Their read
counts were then used for differential expression
analyses among castes using the “edgeR” package
v3.4.2 [60] in R software v3.2.2. Heatmaps and
hierarchical clustering (Euclidean distance; Ward’s
linkage) were generated using ‘“heatmap.2” in the
“gplots” package, and PCA was performed using the
“prcomp” function in R software v3.2.2.

qPCR

We designed primer pairs for each of the DNA repair
genes using Primer3 v1.1.4 [61] (Table S6). Using an
RNeasy mini kit, total RNA was extracted individually
from the whole bodies and separated tissues of workers
and soldiers (three pooled individuals) and from the
whole bodies and separated tissues of mature SQs and
PKs. ¢cDNA was synthesized from RNA using a
PrimeScript™ RT reagent kit (Takara) and preserved at
—20°C. qPCR was performed using an Applied
Biosystems” StepOne™ system (Thermo) with Power
SYBR™ Green PCR master mix (Thermo). All pro-
cedures were performed in accordance with each
manufacturer’s protocol. Nicotinamide adenine dinuc-
leotide dehydrogenase subunit 5 (ND5) was selected as
the reference gene. Relative expression levels were
calculated using a typical AACt method. We performed
six colony replicates for this experiment.
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Statistical analysis

R software v3.2.2 was used for statistical analyses in
gPCR experiments. Normality and homogeneity
assumptions for these qPCR data were evaluated by the
Shapiro—Wilk test and Bartlett’s test, respectively (P <
0.05). We used the Kruskal-Wallis test followed by the
Mann—Whitney U test with Holm’s correction for
multiple comparisons. All data in graphs are presented
as the mean + standard error of the mean, and all P
values calculated are provided here. The different letters
(a—c) over the bars denote significant differences at P <
0.05.
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Figure S1. Principal component analysis (PCA) of DNA repair-related gene expression among castes.
(A) Scree plot illustrating the proportion of variance accounted for by each PC. (B) Scores and loading biplots of DNA
repair-related genes and termite castes (red arrows) along PCs are shown. PC1 indicates the mature PK-specific
genes (PC factor loadings are provided in Table S4). The genes presented in bold were used for qPCR analysis.
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Figure S2. Maximum likelihood molecular phylogenetic tree of BRCA1 homolog sequences. The
evolutionary history of the BRCA1 homolog was inferred using the maximum likelihood method based on the JTT
matrix-based model. The tree with the highest log likelihood (-9518.81) is shown. The percentage of trees in which
the associated taxa clustered together is shown above the branches. Initial tree(s) for the heuristic search were
automatically obtained by applying Neighbor-Joining and BioNJ algorithms to a matrix of pairwise distances
estimated using a JTT model and then selecting the topology with a superior log likelihood value. A discrete gamma
distribution was used to model the evolutionary rate differences among the sites (5 categories [+G, parameter =
1.8985]). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 1.34% sites). The tree
is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 21
amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 231.
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Please browse Full Text version to see the data of
Supplementary Tables:

Table S1. Target gene information.

Table S2. Predicted protein families, domains, and
motifs.

Table S3. Statistical analysis of differential expression
among the termite castes.

Table S4. Factor loadings for each principal
component.

Table S5. Statistical analysis of age-dependent
expression changes in termite kings.

Table S6. Primer sequences.
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