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INTRODUCTION 
 
Human cognition relies to a great extent on the function 
of the frontal cortical lobe, which is disproportionately 
enlarged in humans compared to other primates. 
Moreover, age-associated cognitive deficits, including 
forgetfulness, distractibility, inflexibility, and impaired 
executive functions, all likely reflect frontal cortical 
dysfunction [1-7]. This reduced cognitive function in 
older people predisposes them to neurodegenerative 
diseases, such as Alzheimer's disease (AD) and 
Parkinson's disease. Understanding the genetic causes 

behind aging could potentially provide an effective way 
to detect and monitor the progression of aging, which 
could enable people to grow old more gracefully.  
 
Despite the significance of brain aging, the existing 
knowledge on the molecular mechanisms underlying 
biological aging remains limited, especially in humans. 
This is in part because most studies basically entail a 
comparison between “young” and “old” individuals, 
and it is a challenge to obtain samples from older but 
healthy adults. Another important difficulty is the 
heterogeneity among studies. This inconsistency is most 
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cortical Hdac1, Yes1 and Cdc42 mRNA levels in an established aging mouse model. Moreover, analysis of the 
GSE48350 dataset confirmed similar changes in HDAC1, CDC42 and YES1 expression in Alzheimer's disease, 
thereby providing a molecular connection between aging and Alzheimer's disease (AD). This framework of 
network-based analysis could provide novel strategies for detecting and monitoring aging in the brain. 
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likely due to variation in the techniques used, limited 
study size, low signal-to-noise ratios, and differences in 
the subpopulations typically observed when analyzing 
the aging transcriptome. Consequently, an integrated 
analysis of the aging transcriptome is a promising 
alternative to classical individual gene analyses. Such 
integrative methods for analysis of big data have been 
successfully applied to disease subtyping, biomarker 
discovery, and drug repurposing [8-10]. Effective and 
objective tools for combining big data are the key to 
future success in health informatics. 
 
To comprehensively evaluate the relevant public data 
concerning age-associated gene expression in the 
human brain, an effective method for integrating 
information mined from multiple datasets is needed. 
Recently, a network approach constructed using 
protein-protein interaction (PPI) data has been 
developed to interpret the interactive patterns within 
large datasets. This PPI network analysis was 
successfully applied for detection of new and hub 
changes in the human transcriptome [11, 12]. This 
approach shows great promise as a robust method for 
integrating gene expression data and providing insight 
into complex human diseases. Applied to integrating 
age-associated data, this method exhibits high 
reproducibility across multiple expression datasets [13]. 
The results obtained so far provide a molecular basis for 
future research into the mechanisms underlying human 
aging, which could potentially guide individual anti-

aging treatment decisions [13]. Importantly, however, 
although screening big data can yield a list of candidate 
biomarkers, determining the functional role of each 
gene will require further validation in animal models 
and clinical samples.   
 
To characterize the aging-associated changes in the 
frontal cortex, we first built a compendium of genes 
related to chronological age using gene expression 
profiles from five microarray studies [14-18]. We then 
used PPI network-based meta-analysis to detect the core 
genes and functional modules. All the candidate genes 
were further confirmed using an established mouse 
model of aging and qPCR methods, which showed 
similar changes in the frontal cortex of this mouse 
model. Cognitive function and spatial learning were 
verified using the Morris water maze test (MWM). 
Finally, we confirmed these results by screening the 
GenAge database and analyzing changes in the 
expression of these genes in AD samples.   
 
RESULTS 
 
Overlap of differentially expressed genes among 
studies within the compendium 
 
To identify a common transcriptional signature 
reflecting age within the frontal cortex, we built a gene 
expression compendium using five independent studies 
(Table 1). Data were extracted and annotated, yielding a 

Table 1. Characteristics of studies composing the prefrontal cortex gene expression compendium. 

Study(Citation) Dataset Platform Region Types of 
sample 

Sample 
(young20-

40) 

Sample 
(old60-

90) 
Lu T, 2004 GSE1572 Affymetrix 

Human Genome 
U95 Version 2 

Array 

Boston, MA 
USA 

human frontal 
cortex tissue 

9 12 

Berchtold NC, 2008 GSE11882 Affymetrix 
Human Genome 
U133 Plus 2.0 

Array 

Irvine, CA 
USA 

Human 
superior 

frontal gyrus 
brain tissue 

13 18 

Colantuoni C, 2011 GSE30272 Illumina Human 
49K Oligo array 
(HEEBO-7 set) 

Baltimore, 
MD USA 

human 
prefrontal 

cortex tissue 

52 22 

Lu T, 2014 GSE53890 Affymetrix 
Human Genome 
U133 Plus 2.0 

Array 

Boston, MA 
USA 

human frontal 
cortex tissue 

13 13 

Chen CY, 2016 GSE71620 Affymetrix 
Human Gene 1.1 

ST Array 
[transcript (gene) 

version] 

Pittsburgh, 
PA USA 

human 
prefrontal 

cortex tissue 

74 90 

 



www.aging-us.com 2818 AGING 

compilation of 7274 unique genes from 316 individuals, 
including 161 younger and 155 older individuals. An 
integrative analysis across datasets was then performed 
by computing the differentially expressed genes per 
dataset and assessing the overlap of the significant 
results. Eight genes (HTR7P1, MMD, OLFM1, 
ATP2B2, ANXA4, LPL, VCAN, and RHOBTB3) were 
significantly associated with age among the five 
datasets (Figure 1 and Table S1). Among them, LPL 
(lipoprotein lipase) is mainly expressed in adipose 
tissue and regulates the availability of polyunsaturated 
fatty acid within the central nervous system. HTR7P1, 
OLFM1 and ATP2B2 are highly expressed specifically 
in brain.  
 
Meta-analysis of the frontal cortex throughout the 
normal aging  
 
Five microarrays were analyzed using Integrative Meta-
Analysis of Expression Data (INMEX), a web interface 
for integrative meta-analysis. The overall meta-analysis 
workflow in this study is shown in Figure 2A. By 
employing three meta-analysis methods, Fisher's 
method, Fixed effect model and Voting count, we 
identified 2367, 1856 and 1416 differentially expressed 
genes, respectively (Combined p < 0.001 or vote counts 
≥ 2 were considered to be significant). Among those, 
1260 genes were identified by all three methods (Figure 
2B). A Venn diagram of these data was shown in Figure 

2B. Among this group, 635 (50.4%) genes were 
downregulated and 625 (49.6%) were upregulated in 
older group as compared to the younger group. A heat 
map visualization of the top 20 genes across the 
different studies is displayed in Figure 2C. Among 
them, ANXA4 (annexin A4) was the top upregulated 
gene, and CALB1 (calbindin1) was the most 
significantly downregulated gene across the five 
microarray datasets. A complete list of the differentially 
expressed genes is provided in Table S2. The merged 
data of this meta-analysis is listed in Data S1. 
 
Functional enrichment of differentially expressed 
genes analysis  
 
We next identified the enriched functional groupings 
that were significantly associated with age in the human 
frontal cortex. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis was performed 
using the set of up- and downregulated genes (False 
Discovery Rate (FDR) < 0.05) (Figure 3, Table S3). 
Among the enriched pathways were a number involving 
protein kinase signaling, including “PI3K-Akt signaling 
pathway” and “MAPK signaling pathway”. Enriched 
pathways were also related to chemical synapses 
(“Retrograde endocannabinoid signaling,” 
“Glutamatergic synapse” and “Dopaminergic synapse”) 
and electrical synapses (“Gap junction”). More 
specifically, MAPK and calcium signaling were shown 
to be involved in human longevity in an independent 
genome-wide association study (GWAS) of Han 
Chinese [19]. On the other hand, signal transduction 
systems that mediate “Long-term potentiation (LTP),” 
“Long-term depression (LTD)” and “Calcium signaling 
pathways” showed age-related downregulation. Using 
BiNGO in Cytoscape, we were able to obtain a global 
perspective of the changes in gene expression patterns 
(Figure 4). The gene sets showing upregulated 
expression were enriched for biological processes and 
molecular functions associated with “response to 
stimulus,” “cell migration,” “programmed cell death” 
and “apoptosis.” By contrast, the gene sets showing 
downregulated expression were enriched for biological 
processes and molecular functions associated with 
“synaptic transmission,” “phosphate metabolic process” 
and “learning and memory.” Given the functional 
enrichment of these differentially expressed genes, we 
delved further into the results in an integrative meta-
analysis.  
 
Analysis of PPI networks of selected genes 
 
A novel integrative PPI network-based approach was 
applied to explore all the corresponding genes found in 
our meta-analysis search. This method has been 
validated  as  a  way  of  identifying  age-associated bio-  

 
 

Figure 1. Significant age-associated genes in studies of 
the frontal cortex compendium. Shown is a Venn analysis 
performed to determine the overlap of significantly age-
associated genes identified in five independent studies.  
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Figure 2. Meta-analysis of the frontal cortex throughout normal aging. (A) Flowchart of the meta-analysis. (B) Venn diagram 
of differentially expressed genes identified from the meta-analysis using Fisher’s method, the vote counting method and a fixed 
effect model. (C) Heat map representation of the top 20 differentially expressed genes across different microarrays identified from 
the meta-analysis (row-wise comparison).  
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data [13]. Considering the betweenness (BC) and degree 
of centrality (DC), we ranked the 1260 genes that 
showed significant differences between young and old 
in our integrative meta-analysis. We screened 33 hub 
genes that had at least 10 node degrees and ranked the 
top 10 percent of the total genes. Among them, 14 genes 
were upregulated and 19 genes were downregulated in 
the older group as compared to the younger group 
(Figure 5, Table S4). CDC42 was the most significantly 
downregulated hub gene (BC = 12193; DC = 30), 
followed by MAPK1 (BC = 9241.11; DC = 29) and 
HRAS (BC =7136.24; DC = 27). HDAC1 was the 
centermost upregulated gene (BC = 6305.53; DC = 25) 
followed by YES1 (BC = 6574.41; DC = 22).  
 
Neural aging is regulated through extensive interaction 
among genetic networks, signaling pathways and 
cellular metabolic responses, not through any single 
gene. However age-related genes are not spread 
throughout the interactome; instead, they cluster into 
tightly connected modules [20]. The joint expression of 
modules plays critical roles in human aging. After 
mapping the 1260 significant genes onto the PPI 
network, the zero-order network contained five 
subnetworks, including one big subnetwork 
(“continent”) (nodes 373, edges 743) and four smaller 

ones (“islands”) (p < 0.05, gene numbers ≥ 5). The big 
subnetwork was divided into 18 significant modules (p 
< 0.05, gene numbers ≥ 5) (Figure S1). In the following 
steps, we applied Gene Ontology (GO) analysis to these 
subnetworks and modules. The enriched terms 
characterizing the four satisfactory PPI islands and 
eighteen significant modules are shown in Table S5. 
The genes in module 1 were enriched for “apoptotic 
process.” Those in modules 2 and 3 were enriched for 
“regulation of transcription from RNA polymerase II 
promoter” and “regulation of small GTPase mediated 
signal transduction,” respectively. These enriched terms 
also included “semaphorin-plexin signaling pathway,” 
which is brain-specific expression and controls 
presynaptic neurotransmitter release and homeostatic 
plasticity [21]. In addition, three subnetworks were 
related to the mitochondria. Mitochondrial dysfunction 
is a critical characteristic of the aged brain and 
neurodegenerative diseases. This includes reduced 
respiration, dynamic structural modifications, loss of 
membrane potential and the changes of proteomic 
profile [22]. Structurally or functionally damaged 
mitochondria are more proficient at producing reactive 
oxygen species (ROS) but less efficient at ATP 
production, which accelerates pathological processes 
such   as   AD   [23].   The   remaining  subnetwork  was  

 
 

Figure 3. KEGG pathway analysis. KEGG pathway analysis was performed using the set of genes showing upregulated (red) or 
downregulated (green) expression (FDR< 0.05). The x-axis represents the fold enrichment (indicating the magnitude of enrichment in 
our dataset against the population background based on analysis using DAVID bioinformatics tools). The y-axis shows the pathway 
categories.  
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Figure 4. Gene Ontology analysis of significantly age-associated genes in the frontal cortex. Shown is a BiNGO (the 
Biological Network Gene Ontology tool) analysis depicting upregulated (A) and downregulated (B) genes in over-represented categories 
in the ontology of biological processes. The size of the nodes is proportional to the number of genes in the test set that are annotated 
to that node. Colored nodes are significantly over-represented along a color scale ranging from yellow (p = 0.05) to dark orange (p = 
5.00E-7).  
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enriched for “mRNA splicing via spliceosome.” Of all 
the human organs, the brain has the largest amount of 
alternative splicing [24], and the genes that are 
alternatively spliced have been associated with 
neurodegenerative disorders such as AD [25].  
 
Co-expressed PPI modules are enriched in GenAge 
human aging genes 
 
To validate the candidate modules and nodes, we 
determined whether GenAge, a database providing a 
comprehensive overview of aging-related genes in 
humans and model systems, contained these aging-
related genes. Human aging genes were enriched within 
module 1 (Odds ratio (OR) = 11.3, 95% Confidence 
Interval (CI): 4.73-27.16, p < 0.001) and module 16 
(OR = 13.1, 95% CI: 2.35-73.53, p = 0.019) (Table S6). 
We also found that human aging genes are enriched 
within the big subnetwork (OR = 4.57, 95% CI 2.38-
8.76, p < 0.001) (Table S5). Notably, the genes 
contained in GenAge had higher centralities among all 
1260 genes, and almost half had at least 10 degrees of 
centrality. The higher centralities indicate that the 
function of these genes may be more variable and 
essential in aging. 
 
Verification of functional roles using an established 
aged mouse model 
 
To further verify the candidate genes screened with this 
network-based approach, we employed an established 
aged mouse model. Wild-type C57/BL6 mice 
maintained in a specific pathogen free (SPF) 
environment were used. Six-month-old mice comprised 
the young mature group, while 20-month-old mice 

comprised the old group. The Morris water maze was 
employed to evaluate the spatial learning and memory 
of two groups, which were assessed for 5 days. The 
escape latency significantly differed between the young 
and old mice (Day 3, p = 0.0313; Day 4, p = 0.0003; 
Day 5, p = 0.0015; Figure 6A), as did the numbers of 
crossings to the correct platform (Figure 6B) and the 
times in the correct quadrant on the fifth day (Figure 
6C). qPCR performed to examine the mRNA expression 
in this model revealed that levels of Hdac1 and Yes1 
mRNA were increased, while Cdc42 mRNA was 
decreased in the frontal cortex of the old group as 
compared to the young group, which was consistent 
with the results from the network analysis. By screening 
all age information in the GSE71620 dataset, we found 
that HDAC1, CDC42 and YES1 are associated with 
age. Moreover, by analyzing the GSE48350 dataset we 
found that HDAC1 and YES1 mRNAs were 
upregulated and CDC42 mRNA was downregulated in 
the frontal cortex of AD patients as compared to healthy 
subjects (Figure 6D-F). We then tested whether the 
three genes have an intrinsic relationship in aging or 
AD. By analyzing the STRING database, we found that 
there is only one significant connection between YES1 
and CDC42 (Figure 6G). In both neural aging and AD 
(GSE71620 and GSE48350 datasets), CDC42 
negatively correlates with YES1 (Figure 6F). We also 
verified 30 other genes using an established aging 
mouse model, and 18 were consistent with the results 
from the network analysis (Figure S2). 
 
DISCUSSION 
 
Exploration of the age-associated genetic changes that 
occur   in   the   human   frontal   cortex   is   a  powerful  

 
Figure 5. Network analysis of significantly age-associated genes in the frontal cortex. (A) Zero-order interaction network of 
upregulated genes (red). (B) Zero-order interaction network of downregulated genes (green). 
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Figure 6. Changes in CDC42, HDAC1 and YES1 mRNA expression in the frontal cortex of an aging mouse model.  (A) 
Escape latency on each day revealed a significant difference between younger and older mice on day 3 (p = 0.0313), day 4 (p = 
0.0003), and day 5 (p = 0.0015) (n = 6). The average search errors of the younger and older mice did not differ in the first training trial 
(p = 0.3409) (n = 6). (B) (C) The numbers of times mice crossed to the correct platform (p = 0.0027) and the times in the correct 
quadrant (p = 0.0014) differed on the fifth day (n = 6). (D) Expression of CDC42 mRNA was associated with age through screening the 
GSE71620 dataset (ρ = -0.2537; P < 0.0001). Levels of Cdc42 mRNA were lower in older than younger mice (n = 6, p = 0.0255). Analysis 
of the GSE48350 dataset revealed levels of CDC42 mRNA are lower in the frontal cortex of people with AD than healthy subjects (p = 
0.0406). (E) HDAC1 mRNA expression was associated with age through screening the GSE71620 dataset (ρ = 0.2347, p < 0.0001). 
Levels of Hdac1 mRNA were higher in older than younger mice (n=6, p = 0.0034). Analyzing the GSE48350 dataset revealed levels of 
HDAC1 mRNA are higher in the frontal cortices of people with AD than in those of healthy subjects (p = 0.0310). (F) Expression of 
YES1 mRNA was associated with age through screening the GSE71620 dataset (ρ = 0.1183; p = 0.0153). Levels of Yes1 mRNA were 
higher in older than younger mice (n = 6, p = 0.0357). Analyzing the GSE48350 dataset revealed levels of YES1 mRNA were higher in 
the frontal cortices of people with AD than in those of healthy subjects (p = 0.0011). (G) Functional link between YES1 and CDC42 
determined using the STRING database to detect protein interactions. (H) YES1 mRNA levels associate with CDC42 in both neural 
aging and AD, as indicated by screening the GSE71620 (ρ = -0.1293; p = 0.0080) and GSE48350 (ρ = -0.3520; p < 0.0001) datasets.     
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approach for detection of the key mediators of the 
decline in brain function during both aging and 
neurodegenerative disease. In the present study, we 
built a transcriptional compendium of the genes 
involved in human frontal cortical function from five 
microarray studies that covered 161 younger and 155 
older individuals. Ultimately, 1260 differentially 
expressed genes were identified and found to be 
enriched for several known terms of KEGG pathways 
related to age-associated neurological dysfunction. A 
PPI network-based analysis was used to further evaluate 
the relationship between these genes. That analysis 
suggests these genes interrelate with five significant 
subnetworks and 18 modules. We detected 33 hub 
genes that have at least 10 node degrees and occupy the 
top 10 percent of total genes. Among them, HDAC1 
was the centermost upregulated gene, followed by 
YES1. CDC42 was the most significantly 
downregulated gene. We verified age-associated 
changes in these three genes within the frontal cortices 
of younger and older mice. These data demonstrate that 
Hdac1 and Yes1 are significantly increased in an 
established aging model, while Cdc42 is decreased. 
Analysis of GSE71620, which includes all ages showed 
that expression of CDC42, HDAC1 and YES1 mRNAs 
is affected by age. Moreover, analysis of the GSE48350 
dataset showed the changes in the expression of those 
genes in AD are consistent with neural aging. 
 
By catalyzing removal of acetyl groups from lysine 
residues in histones, HDACs are key determinants of 
chromatin structure. As mentioned, HDAC1 is the 
centermost upregulated gene in our network analysis. 
Expression of HDAC1 was higher in aged mice than 
their younger counterparts. The enhanced expression of 
HDAC1 in the frontal cortex may be partly responsible 
for the observed age-related decline in neural function. 
In tauopathy and Huntington’s disease, HDAC1 is 
selectively increased in vulnerable brain regions such as 
the cortex and hippocampus, which contributes to the 
neurodegeneration in those ailments [26]. Inhibition of 
HDACs reverses cognitive deficits in AD [27] and aged 
mice [28]. Notably, levels of HDAC1 detected in blood 
paralleled the changes in the prefrontal cortex and 
hippocampus [29]. Assaying blood HDAC1 levels may 
thus be a useful method for screening patients at higher 
risk in cognitive decline. Our finding that HDAC1 is 
tightly linked to frontal cortex aging is consistent with 
an earlier report [26], which suggests our analysis 
method is reliable and practical. 
 
CDC42 was the most prominently downregulated gene 
across the five microarray datasets, and its 
downregulation was further confirmed in the aged 
mouse model. CDC42 is a master regulator of cell 
polarity. Activation of CDC42 correlates with loss of 

polarity, which may explain why CDC42 can accelerate 
the replicative senescence process in yeast cells and 
hematopoietic stem cells [30, 31]. Based on results 
obtained using a transgenic model mouse ectopically 
expressing Cdc42-GTP (Cdc42GAP-/- mice), it has been 
suggested that CDC42 promotes multiple aging-like 
phenotypes and shortens lifespan. MEF (mouse 
embryonic fibroblasts) cells from Cdc42GAP-/- mice 
exhibit lower population doubling potential, impaired 
DNA damage repair activity, accumulation of genomic 
abnormalities, and induction of senescent markers like 
p53, p16, p21, and senescence-associated β-gal (SA-β-
gal) [32]. Whether or not Cdc42GAP-/- mice experience 
neurologic dysfunction remains unknown, however, 
though it is known that CDC42 is crucial for learning 
and memory. Conditional knockout of Cdc42 in the 
postnatal forebrain contributes to a decline of synaptic 
plasticity and remote memory recall [33]. Levels of 
CDC42 expression differ in different brain regions. 
Within the cortex, Cdc42 expression greatly increases 
with aging, whereas it decreases in the hippocampus 
[34]. The function of CDC42 also depends on 
post-translational modifications, such as GTP binding. 
In addition, Cdc42 has two splice variants. The 
canonical prenylated isoform (Cdc42-prenyl) is the 
dominant splice variant and is widely expressed in 
various cell lines and the cerebellum. By comparison, 
the brain-specific isoform (Cdc42-palm) is the splice 
variant in the hippocampus and is mainly involved in 
the formation of dendritic filopodia and spines [35]. 
Considering the importance of the hippocampus and 
prefrontal cortex in memory and emotion, we suggest 
that changes CDC42, especially its brain-specific 
isoform, in the hippocampus and prefrontal cortex may 
be consistent with aging. CDC42 mRNA is 
downregulated in the dorsolateral prefrontal cortex of 
schizophrenia patients. This reduced expression of 
CDC42 may contribute to the decreased density of 
dendritic spines and cognitive dysfunction observed in 
schizophrenia [36-38]. At present, however, there is 
little data on the function of CDC42 in the frontal cortex 
during aging. CDC42 may be the key element in the 
interplay between the hippocampus and prefrontal 
cortex that governs memory and emotion. 
 
YES1 was the second most prominently upregulated 
gene found in our study. YES1 is one of the Src family 
kinases (SFKs), which have been implicated in the 
regulation of cell proliferation and differentiation during 
the development of the mammalian brain. After cerebral 
maturity, SFKs regulate neuronal plasticity and 
behavior through tyrosine phosphorylation of key 
substrates such as neurotransmitter receptors [39]. Fyn 
and Src, two other SFKs, contribute to the pathogenesis 
of AD by phosphorylating tau [40]. Saracatinib 
(AZD0530), a small-molecule inhibitor with high 
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potency for Src and Fyn, was planned for a phase IIa 
multisite study for AD therapy [41]. By contrast, the 
function of YES1 in brain remains unknown. Current 
reports on YES1 nearly all focus on its role in 
promoting cell proliferation and inhibiting apoptosis in 
cancer. Interestingly, YES1 is essential for tyrosine 
phosphorylation of OCT2, which is distributed in 
cholinergic and monoaminergic terminals in the 
forebrain regions, and inhibition of YES1 diminishes 
OCT2 activity in central nervous system neurons in vivo 
[42, 43]. In our study, YES1 was negatively related to 
CDC42 in both neural aging and AD. This suggests 
YES1 interacts with CDC42, which then function as a 
complex to regulate frontal cortex aging and age-related 
brain diseases. 
 
The volume of available biological data has experienced 
explosive growth with the development of high-
throughput technologies. Consequently, it is now 
important to integrate existing data so as to identify 
potential new information that can not only increase 
sample size but also enable merging of participants 
from different regions. Differential gene expression 
analysis usually focuses on a specific gene, which 
means the connection between genes can be overlooked. 
Because the integrative PPI network-based approach 
entails integration of data, it has several advantages. 
First, it reduces noise and increases power. Multiple PPI 
databases are literature-curated through the use of state-
of-the-art quality control and validation. Second, 
biological processes involved in gene and protein 
expression are not isolated events. Network methods 
relate genes to each other and provide an essential 
organizing framework that places each gene within the 
context of its molecular system. Third, genes 
characterized by higher node degrees and betweenness 
centrality may function as hub genes. They may not 
only have a central role in a particular cellular function, 
they may also connect cellular components and regulate 
multiple tissues and systems [44]. In addition, we used a 
normal aging mouse model to verify the genes detected 
in our network analysis.  
 
Nonetheless, the present study has several limitations 
that need to be addressed. First, our study lacks 
validation with an AD animal model. Second, although 
the selected genes have been evaluated in an established 
aging model, verification using human samples with a 
detailed medical history would enhance the reliability of 
our results. Finally, a specific knock-in/out mouse 
model will provide better understanding for the 
underlying mechanisms involving CDC42, YES1 and 
HDAC1 in the functional decline during aging and AD. 
 
In summary, by applying a network-based approach, we 
identified HDAC1 and CDC42 as key mediators of age-

related changes in neural function, which is in 
accordance with earlier reports. In addition, we 
identified a novel gene, YES1, which is potentially 
critical to frontal cortex aging and is thus a potential 
biomarker and therapeutic target underlying brain 
aging. The expression patterns of CDC42, HDAC1 and 
YES1 during neural aging are consistent with AD, and 
may establish a new molecular connection between 
aging and AD. These findings thus suggest that network 
analysis provides a framework to screen for potential 
biomarkers underlying brain aging, and will serve as a 
novel input to improve our understanding of the aging 
process.  
 
MATERIALS AND METHODS 
 
Building the frontal cortex gene expression 
compendium  
 
Gene expression data from microarray studies were 
downloaded from the Gene Expression Omnibus (GEO) 
using the terms (Frontal Lobes) OR (Frontal Cortex) 
OR (Anterior Central Gyrus) OR (Superior Frontal 
Gyrus) OR (Prefrontal Cortex) AND (aging) AND 
(transcriptional profiling). Microarray studies using 
RNA samples from human frontal cortices were 
included in our study. The basic characteristics used to 
identify the studies included first author, year of 
publication, dataset, platform, region, sample number 
and type. Because it has been shown that the changes in 
gene expression across cortical regions occur mainly 
when people are in their 20’s and 60’s [17, 18], 
statistical group comparisons were made between 
subjects classified as younger (20-40 years) or older 
(60-90 years). Only microarrays that contained three or 
more samples in both the younger and older group were 
included in our study. Using these criteria, five studies 
were ultimately selected, all of which exhibited a 
common transcriptional signature in the prefrontal 
cortex throughout the aging. Postmortem human brain 
materials were obtained from subjects without a 
medical history of neuropathology, drug use, alcohol 
abuse, or psychiatric illness.  
 
Microarray meta-analysis  
 
We conducted a microarray meta-analysis using 
INMEX (a web-based tool for integrative meta-analysis 
of expression data) [45]. INMEX is in accordance with 
the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses guidelines for meta-analysis [46]. 
All gene probes were converted to a common Entrez ID 
using the gene/probe conversion tool in INMEX. After 
changing to Entrez ID, all datasets were preprocessed 
through a log2 transformation and Variance Stabilizing 
Normalization (VSN), followed by quantile 
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normalization. Each individual dataset was visualized in 
box plots to ensure identical distribution among the 
samples. Differential expression analysis was performed 
independently for each dataset using INMEX with an 
FDR of 0.05 and a significance of p < 0.05. The 
moderated t test was based on the Limma algorithm. In 
INMEX, the results from individual microarray datasets 
are only for reference comparison and are not required 
for the subsequent steps of the meta-analysis [45]. For 
the meta-analysis, we used the Fisher’s method, a fixed 
effect model, and Vote counting (a significance level of 
p < 0.001, p < 0.001, votes number < 2). Fisher’s 
method (-2*∑Log (p)) is a statistical approach widely 
used in meta-analysis for combining P values from 
different studies independently of the sample size. This 
method is generally more sensitive than a combined 
analysis (i.e. it detects more DE genes).  Fixed effect 
models combine effect sizes, and the estimated effect 
size in each study is assumed to come from an 
underlying true effect size plus measurement error. A 
fixed effect model can be selected based on statistical 
heterogeneity estimated using Cochran’s Q tests. 
Estimated Q values that approximate a chi-squared 
distribution suggest the fixed effect model assumption 
is appropriate. This method is usually conservative 
(fewer DE genes are detected, but with higher 
confidence). Vote counting is a meta-analysis method in 
which differentially expressed genes are first selected 
based on a threshold (a significance level of p < 0.05) to 
obtain a list of DE genes for each study. The vote for 
each gene can then be calculated as the total number of 
times it occurs in all DE lists. The final DE genes can 
be selected based on a minimal number of votes set by 
the user. 
 
Pathway enrichment analysis 
 
The pathways of the identified proteins were classified 
using the DAVID program (http://david.abcc. 
ncifcrf.gov) for KEGG annotation. To determine GO 
categories, we used Cytoscape - BinGO. A custom 
annotation file was created using the built-in annotation 
file for GO biological processes.  
 
Network-based meta-analysis and extracting co-
expressed PPI modules 
 
A network-based meta-analysis was performed using 
NetworkAnalyst and STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins). Microarray 
datasets were processed as described above. Network 
construction was restricted to contain only the original 
seed proteins. Protein-protein interactions were 
predicted using the STRING database v10.5 
(http://www.string-db.org/). Proteins that linked to each 
other were detected based on experimental 
determination, curated databases, gene neighborhood, 

gene fusions, gene co-occurrence, co-expression, text 
mining and protein homology. An extended network 
was constructed using a minimum required interaction 
score (> 0.9) as the selection parameter, which implies 
that only interactions with a high level of confidence 
were extracted from the database and considered as 
valid links for PPI networks.  
 
Morris water maze  
 
Wild-type C57/BL6 mice were purchased from the 
Experimental Animal Center at Tongji Hospital 
(Wuhan, China). All animals were housed at the animal 
care facility at Tongji hospital. These animal studies 
were approved by the Institutional Animal Research 
Committee of Tongji Hospital. The experimental 
protocols were approved by the Institutional Animal 
Care and Use Committee (Approved number: TJ-
A20160503). Six-month-old mice comprised the 
younger group, while 20-month-old mice comprised the 
older group. The maze consisted of a circular tank 
(diameter, 150 cm) filled with water (27 °C) to which 
powdered milk was added. An escape platform 
(diameter, 10 cm) was located 1 cm beneath the water 
surface. Acclimation to the water maze was performed 
on day 0, after which learning trials were conducted on 
days 1-5. The open field test was performed on day 5. 
Mice participated in 3 trials per day for 5 consecutive 
days using a 60-s inter-trial interval.  
 
Quantitative real-time polymerase chain reaction  
 
The frontal cortex was collected from younger and older 
mice. Total RNA was extracted using a HI Pure RNA 
extract kit (Magen, China) and converted to cDNA 
using a ReverTra Ace qPCR RT kit (TOYOBO, Japan). 
Relative mRNA expression was detected using RT-PCR 
performed on an ABI Step One Plus (Applied 
Biosystems, USA) with SYBR green PCR master mix 
(TOYOBO, Japan). The primer sequences are as 
follows: GAPDH — forward, 5′ - AATGGTGAAGG 
TCGGTGT - 3′; reverse, 5′- GTGGAGTCATACTG 
GAACATGTAG - 3′; CDC42 — forward, 5′ - TGCT 
CTGCCCTCACACAGAAAG - 3′; reverse: 5′ - GCGG 
CTCTTCTTCGGTTCTG - 3′; and HDAC1 — forward, 
5′ - CTCACCGAATCCGCATGACT - 3′; reverse, 5′ - 
GGCTTTGTGAGGACGGTAGA - 3′, YES1 — 
forward, 5′ - AATGAGGACCAGA GGGTAGGG - 3′; 
reverse, 5′- CATTATCAAATCCGCTCGCTCC - 3′. 
The sequences of other primers used in this study are 
shown in Table S7. The fold change in relative mRNA 
expression was calculated using the 2-ΔΔCt method. 
 
Statistical analysis  
 
Network-based microarray meta-analysis was 
performed using INMEX and NetworkAnalyst. In the 
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Morris water maze experiment, measures of 
performance during acquisition trials (i.e., escape 
latency) were averaged within each day for each animal. 
Data are reported as the mean ± standard error. To 
evaluate differences among the days, data were 
analyzed using two-way repeated measures ANOVA, 
with day as the within-subjects’ factor and treatment as 
the between-subjects’ factor. Differences between the 
two groups were analyzed using one-way ANOVA, 
after which Fisher’s LSD was used for post hoc 
comparisons. For RT-PCR experiments and the analysis 
of the GSE48350 dataset, statistical significance was 
determined using Student’s t-test (for independent or 
dependent samples, as appropriate). Values of p < 0.05 
(two-tailed) were considered significant. Spearman 
correlation analysis was used to determine statistical 
significance for CDC42, HDAC1 and YES1 adjusting 
for age in the GSE71620 dataset. Other statistical 
analyses were performed using SPSS 19 software 
(SPSS Inc., USA).  
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SUPPLEMENTARY MATERIAL 
 
Please browse the link in Full Text version of this manuscript to see Supplementary Tables and Data S1. 
 
Table S1. Results of 8 age-associated genes in all five datasets. 
 
Table S2. 1260 differentially expressed genes from the meta-analysis. 
 
Table S3. KEGG pathway analysis of the 1260 age-associated genes. 
 
Table S4. The betweenness and degree of centrality of the 1260 differentially expressed genes.   
 
Table S5. Gene enrichment analyses using DAVID of the 5 subnetworks and 18 co-expressed PPI Modules. 
 
Table S6. GenAge enrichment analyses of identified co-expressed PPI modules. 
 
Table S7. Primer sequences used in this study.  
 
Data S1. NetworkAnalyst merged data for the meta-analysis.   
 
  

 
 

Figure S1. Overview of consistently detected coexpressed PPI modules. 
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Figure S2. Eighteen genes consistently detected in the results from the network analysis. 
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