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ABSTRACT

Human DNA-methylation data have been used to develop highly accurate biomarkers of aging ("epigenetic
clocks"). Recent studies demonstrate that similar epigenetic clocks for mice (Mus Musculus) can be slowed by
gold standard anti-aging interventions such as calorie restriction and growth hormone receptor knock-outs.
Using DNA methylation data from previous publications with data collected in house for a total 1189 samples
spanning 193,651 CpG sites, we developed 4 novel epigenetic clocks by choosing different regression models
(elastic net- versus ridge regression) and by considering different sets of CpGs (all CpGs vs highly conserved
CpGs). We demonstrate that accurate age estimators can be built on the basis of highly conserved CpGs.
However, the most accurate clock results from applying elastic net regression to all CpGs. While the anti-aging
effect of calorie restriction could be detected with all types of epigenetic clocks, only ridge regression based
clocks replicated the finding of slow epigenetic aging effects in dwarf mice. Overall, this study demonstrates
that there are trade-offs when it comes to epigenetic clocks in mice. Highly accurate clocks might not be
optimal for detecting the beneficial effects of anti-aging interventions.

INTRODUCTION [15]. Age-based methylation changes accompany the
functional decline of adult stem cells [16-18], and even

Our understanding of age-related epigenetic changes in small changes can lead to loss of regulatory control of

DNA-methylation in humans has progressed rapidly
with the technical advancement of genomic platforms
[1-14]. For mammalian genomes, DNA methylation is a
modification that regulates gene expression via its
presence or absence at gene promoters and enhancers.
During development, germline DNA methylation is
erased, but re-established in tissue-specific patterns as
tissue development programs unfold after implantation

gene transcription, either directly or via additive effects
[19].

The correlation between chronological age and DNA
methylation over the course of an entire lifespan is
strong [20-23]. Recent studies have taken advantage of
this relationship to accurately estimate chronological
age based on the methylation levels of multiple CpG
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dinucleotides [10, 13, 24]. For example, the human
multi-tissue epigenetic age estimation method combines
the weighted average of DNA methylation levels of 353
CpGs into an age estimate that is referred to as DNAm
age or epigenetic age [13]. Most importantly, we and
others have shown that human epigenetic age relates to
biological age, not just chronological age. This is
demonstrated by the finding that the discrepancy
between DNAm age and chronological age (what we
term “epigenetic age acceleration”) is predictive of all-
cause mortality even after adjusting for a variety of
known risk factors [25-29]. Epigenetic age acceleration
is associated with lung cancer risk [30], cognitive and
physical functioning [31], Alzheimer's disease [32],
centenarian status [29, 33], Down syndrome [34],
Werner Syndrome [35], HIV infection [36],
Huntington's disease [37], obesity [38], menopause
[39], osteoarthritis [40], and Parkinson's disease [41].
Moreover, we have demonstrated that the human
epigenetic clock applies without change to chimpanzees
[13] but it loses utility for other animals as a results of
evolutionary genome sequence divergence. Moving
beyond primates into the broader mammalian arena, we
recently constructed an epigenetic clock for canids
using DNA-methylation data from Canis familiaris
(domesticated dog) and Canis lupus (wolf) [42].

Recently, other groups constructed epigenetic clocks for
mice and used these to evaluate gold standard longevity
interventions [43]. Petkovich, et al., derived a clock
from blood samples of approximately 250 mice in order
to examine changes induced by diet treatments and
changes associated with genetic backgrounds that
produce dwarfism (and long-lived) phenotypes [44].
Similarly, Cole, et al. examined the effects of genetic
background (dwarf genotypes) and diet interventions on
longevity, and their data was utilized by Wang, et al. to
construct a DNA-methylation clock [45, 46]. Stubbs, et
al, developed a clock for multiple tissue types.
Application of their clock to samples from experimental
interventions yielded biologically meaningful dif-
ferences in epigenetic age [47]. Overall, these
independent publications led to the important insight
that epigenetic clocks for mice detect anti-epigenetic
aging effects of gold standard interventions such as
calorie restriction and growth hormone receptor
knockouts.

Our current study addressed the following aims. First, to
develop a multi-tissue DNA-methylation based
estimator of chronological age across the entire lifespan
based on new and existing reduced representation
bisulfite sequencing (RRBS) data. Second, to evaluate
the robustness of reported findings surrounding gold
standard anti-aging interventions using the novel
epigenetic clocks. Third, to assess whether one can

develop an epigenetic clock based on roughly 1k CpGs
in evolutionarily conserved genomic regions.

To address these aims, we combined hundreds of new
DNA-methylation samples collected from several
mouse tissues with publicly available data from
previous studies of mouse DNA-methylation. These
data include samples obtained with RRBS and whole-
genome bisulfite sequencing (WGBS). We compared
clocks built with different regression methods using
hundreds of thousands of CpGs as input as well as a
clock constructed from a limited set of mammalian-
conserved CpGs. We evaluated the performance of
these clocks across samples and tissues. We applied the
most accurate clock to samples from previous longevity
studies of mice to measure the effects of these
interventions on epigenetic aging. And, finally, we
performed a GWAS analysis using epigenetic age as a
trait in a subset of age-matched mouse samples covering
88 strains.

RESULTS
Data set

Based on calculations and criteria described in the
Methods section, we constructed a matrix of high
confidence methylation levels for 1189 mouse samples
at 193,651 CpG sites. Of these 1189 mice, 893 were
used as the training set for regression models described
below. This was the largest matrix we could construct
while minimizing missing values to 2% of total. The
remaining 296 samples were held out entirely from the
training so they could be used to investigate the effects
of the experimental treatments (e.g. calorie restriction)
and growth hormone receptor knockouts.

Four different epigenetic clocks

We considered 4 types of epigenetic clocks. The first
two clocks are constructed on the basis of all 193,651
CpG sites (covariates). In particular, the "elastic net
clock" used an elastic net model to regress chrono-
logical age (dependent variable) on all methylation
levels. The second clock ("ridge regression clock") used
a ridge regression model instead of an elastic net
regression model. The two "conserved" clocks were
constructed using elastic net regression and ridge
regression, respectively, using 952 highly conserved
CpGs, i.e. located in highly conserved stretches of DNA
(Methods).

Accuracy with respect to chronological age

We compared the four different epigenetic clocks with
respect to estimating chronological age at the time of
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DNA sample collection (Table 1). The training set
estimates of accuracy are overly optimistic and should
be ignored. To arrive at unbiased estimates of the age
correlation R (defined as Pearson correlation between
DNAm age and chronological age) and the median
absolute error (mae), the table reports three types of
cross-validation estimates: 1) leave-one-batch-out
estimate (row "batch" in Table 1), ii) leave-one-sample-
out estimate (row "sample" in Table 1), and iii) a 10
fold cross validation estimate. The three different cross
validation estimates lead to the same conclusion: elastic
net regression outperforms the other clocks when it
comes to CV estimates of age correlations and median
error. For example, the elastic net clock leads to a (leave-
one-batch-out) age correlation of R=0.82 and a median
error of 2.5 months. Although the conserved clocks are
clearly inferior to those based on all CpGs, their
accuracy remains impressive. For example, the elastic
net conserved clock leads to a (leave-one-batch-out) age
correlation of R=0.68 and a median error of 3.8 months.

We find that these epigenetic clocks are multi-tissue
clocks, i.e. they lead to accurate age estimates in all
considered tissues: results for the ridge regression clock
based on all CpGs can be found Fig. 1. Analogous
results for elastic net clocks based on all CpGs or based
on only conserved CpG clock can be found in Suppl.
Fig. 1 and Suppl. Fig. 2, respectively. We also find that
accurate age estimates are made for samples taken from
time points from post-natal mice to mice of advanced
age, as can be seen in these figures.

Statistically speaking, the construction of epigenetic
clocks is highly degenerate. That is, there are many
clocks that select different sites, use slightly different
weights, and achieve similar performance. For this
reason, we have not emphasized the specific sites used
in our clocks, as we do not believe that they are unique,
but rather one set among many that could be used to
construct clocks. However, we have included two
Supplementary Tables of information for two of the

Table 1. Summary performance statistics of epigenetic aging models (“clocks”).

CpGs | Estimate Regression Age cor. | mae mean model size model size std dev

Training set Ridge 1.00 0.1 193651 0

Elastic net 0.99 0.7 582 0

= LO-Batch-Out Ridge 0.79 3.1 193641 0

5: Elastic 0.82 2.5 529 81

% LO-Sample-Out Ridge 0.85 2.1 193651 0

<=: Elastic 0.89 1.8 444 81

10-fold CV Ridge 0.88 0.3 193641 0

Elastic 0.89 1.2 463 134

Training Ridge 0.85 2.7 952 0

Elastic 0.91 1.9 274 0

E.’ LO-Batch-Out Ridge 0.64 4.0 952 0

g Elastic 0.68 3.8 214 39
9
=

: LO-Sample-Out Ridge 0.75 3.3 952 0

% Elastic 0.78 24 236 6

“  [T0-foldCV Ridge 0.77 35 952 0

Elastic 0.80 2.5 247 23

Accuracy of estimating chronological age for 4 different epigenetic clocks. The 4 clocks differ in terms of the CpGs that
were used in their construction (first column) and in terms of the underlying regression model (third column). The
second column describes the method for estimating the predictive accuracy. The training set estimates are overly
optimistic and should be ignored. Leave-one-batch out estimates and leave-one-sample-out estimates provide
accuracy estimates that are far less biased than those obtained in the training set. The mean model size refers to the
number of CpGs selected by the penalized regression model. Since the ridge regression is based on all CpGs, the

standard deviation is zero.
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clocks. Supp. Table 1 provides the CpGs used in the
elastic net model derived from all available methylation
data, along with the regression model coefficients, and
the distance of each CpG to the transcription start site of
the nearest gene(s). Supp. Table 2 provides the same
information but for the elastic net model derived from
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mation is provided as a text file on the Gene Expression
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Figure 1. Accuracy of ridge regression epigenetic age predictions. DNA methylation age (y-axis) versus chronological age (x-axis)
for all mouse samples. (a) Performance of ridge regression clock based on all 192K CpGs in all training samples. The training set estimates
of the accuracy are overly optimistic and should be ignored. (b) Results by tissue type of cross-validated predictions obtained by
iteratively withholding one “batch” (tissue x publication). For the batch cross-validation of this clock, the global Pearson correlation
between predicted and chronological age was 0.79 (p < 2E-195) with a mae of 3.1 months. All models in these iterative cross-validations
had the same size of 193,651 CpGs. (c) Scatter plots by tissue type based on DNAm age estimates made with an iterative leave-one-
sample-out cross-validation. The correlation between predicted and chronologic age was 0.85 (p < 6E-258) with a mae of 2.1 months.
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Table 2. Datasets.

Reference Tissue Strain Age Dist.
Novel. Current study Adipose (56) | C57BL/6J (200) N=364
Blood (72) BALB/cByJ (164) mean = 10.9
Kidney (56) median = 10
Liver (60) std dev=7.4
Lung (60) min = 1.7
Muscle (60) max=21.3
Stubbs (2017) Cortex (16) C57BL/6 N=61
Heart (15) mean = 5.1
Liver (15) median = 6.21
Lung (15) std dev=3.4
min = 0.2
max = 9.4
Cole (2017) [45] Liver (32) Ames Propl Dwarf (16) N=32
UM-HET3 (16) mean = 13.5
median = 22
std dev=9.8
min =2
max = 22
Petkovich (2017) [44] | Blood (231) | C57BL/6 (161) N =231
B6D2F1 (22) mean = 14.7
GHRKO (26) median =9.5
Snell ([DW/J x C3H/HEJ]/F2) | min=0.6
(22) max = 32.2
Novel. Current study. | Kidney (190) | Diversity Outbred (190) N=190
JAX lab mean = 12.1
median = 12
std dev =4.9
min =6
max = 18
Reizel (2015) [76] Cerebellum C57BL/6 N=92
®) mean = 2.8
Liver (49) median = 4.6
Muscle (25) std dev=1.9
Spleen (10) min = 0.23
max = 4.6
Cannon (2016) [67] Heart (5) C57BL/6 N=32
Liver (22) mean = 0.8
Muscle (5) median = 0.6
std dev=0.9
min =-0.6
max =2.1
Cannon (2014) [52] Liver (40) C57BL/6 N=40
mean = 2.07
std dev=0
min = 2.07
max = 2.07
Orozco (2014) [66] Liver (105) 91 different strains N =105
mean =4
median = 4
stddev=0
min =4
max =4
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Figure 2. Age acceleration due to diet treatments. Results obtained from ridge regression clock. A meta-
analysis p-value for the 3 calorie-restriction (CR) experiments is included. (a) Calorie restriction versus standard diet
in the C57BL/J strain. (b) Calorie restriction versus standard chow diet in the B6D2F1 strain. (c) Calorie restriction
versus standard diet for the HET3 strain. d) Rapamycin enriched diet versus standard diet for the HET3 strain.

Diet effects on epigenetic aging

We analyzed data from 3 calorie restriction experiments
and 1 rapamycin diet treatment experiment. These "test
data" had been left out of the training set used in the
construction of our epigenetic clocks. The most
significant results could be observed for the ridge
regression clock based on all CpGs (Fig. 2): significant-
ly delayed epigenetic aging effects can be observed in
calorie restricted C57BL/6 mice (p=4.2E-6, Fig. 2a) and
in B6D2F1 mice (p=0.041, Fig. 2b). A similar pattern
could be observed for calorie restricted HET3 mice
(Fig. 2c) but the results did not quite reach statistical
significance (p=0.083), which might reflect the low
sample size (4 CR vs 4 chow fed HET3 mice) or the
fact that the latter data had been generated using a dif-

ferent platform (WGBS). However, the age estimates of
the WGBS samples (HET3 strain) were consistent with
those obtained for RRBS samples despite the absence of
WGBS samples from the training set.

CR induced anti-epigenetic aging effects could also be
observed with the 2 elastic net clocks (based on all
CpGs and on highly conserved CpGs, respectively) but
the results were less significant than the above mention-
ed effects observed for the ridge regression clock

(Suppl. Fig. 3).
No significant effect for rapamycin

The single comparison of mice fed with a rapamycin-
enriched diet to those fed a standard diet did not yield a
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significant difference in age acceleration irrespective of
the underlying clock (e.g. p=0.15, Fig. 2d) which might
reflect the low sample size (4 Chow vs 4 Rapamycin fed
mice) or the fact that the latter data had been generated
using a different platform (WGBS).

Delayed epigenetic aging in dwarf mice

A few transgenic strains of mice have maximum life
spans substantially greater than that of most other
strains. In particular, the Ames and Snell mice, which
have mutations in pituitary transcription factors (and
hence are deficient in growth hormones, luteinizing
hormone, thyroid-stimulating hormone, and IGF1) have
extensions in maximal lifespan of up to 65% [48-50].

Using publicly available data, we aimed to replicate the
findings from previous publications on delayed epi-
genetic aging effects in dwarf mice. Three different
experiments within our composite dataset were design-

ed to examine DNA methylation and dwarfism: i)
growth hormone receptor knock out mice (GHR-KO)
versus wild type mice ([C57BL/6J x BALB/cBylJ]/F2),
ii) Snell dwarf (SD) mice versus wildtype mice WT
(IDW/J x C3H/HEJ]J/F2), and iii) Ames dwarf mice
versus WT where these were generated by mating either
homozygous (df/df) or heterozygous (df/+) dwarf males
with heterozygous females (df/+), respectively. The
Ames dwarf mouse line carries a recessive mutation in
the Propl gene and homozygous animals [Propl(df)/
Prop1(df)] show dwarfness and exhibit extended
lifespan [51]. Heterozygous littermates [Propl+/Propl
(df)] were generated by breeding heterozygous females
with homozygous males are of normal size.

The ridge regression clock based on all CpGs managed
to detect a delayed-epigenetic aging effect in all three
types of dwarf mice (Fig. 3). Despite low sample sizes,
the trend for homozygous dwarf strains to slow the
epigenetic clock is clear and statistically significant
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p = 0.00056
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(Petkovich, 2017)

Dwarf Mice

Figure 3. Age acceleration and Dwarfism in mice. Results obtained from ridge regression clock. A meta-
analysis p-value for the 3 experiments is included. (a) Genetic knockout dwarf mice versus wild type. (b) Snell dwarf
mice versus wild type. ¢) Ames Dwarf mice versus wild type.

WWwWw.aging-us.com 2838

AGING



with a meta-analysis p-value of 8E-7. However, these
results are not statistically robust with respect to
different epigenetic clocks: the association of dwarfism
and slow epigenetic aging could not be detected with
the same significance with the two elastic net regression
clocks (Suppl. Fig. 4).

Maternal diet effects on epigenetic aging

Cannon, et al. investigated the potential influence of
maternal diet on gene expression and DNA methylation
in their offspring [52]. Our ridge regression clock
reveals that the slowest epigenetic aging effects can be
observed in low fat diet-fed offspring of low fat diet-fed
mothers (Fig. 4).

10
[e) o]
E 05 8
5 % —&— 3:()
8 0.0 5
& oL
o -05 ﬁ 4
L
1.0 %
o
HFD LFD

Maternal HFD

Although, this finding is biologically plausible it is not
statistically robust with respect to other epigenetic
clocks. In particular, it cannot be observed for the two
elastic net regression clocks (Suppl. Fig. 5)

GWAS of epigenetic age in mice

We used epigenetic age as trait in our Genome Wide
Association Study (GWAS) in the Hybrid Mouse
Diversity Panel (HMDP). We calculated epigenetic age
via a cross validation approach in order to avoid
overfitting. Specifically, epigenetic age was computed
for 88 strains using the ridge regression based clock and
leaving out from the training set the sample whose age
was estimated. The mean calculated epigenetic age was

b

1.0 °

0.5 %
0.0

HFD LFD

Maternal LFD

Maternal Diet (Cannon, 2014)

Figure 4. Age acceleration and maternal diet. Results obtained from ridge regression clock.
(a) Offspring of mothers fed a high fat diet (HFD) who were fed either a high fat or low fat diet
(LFD). (b) Offspring of mothers fed a low fat diet who were fed either a high fat or low fat diet.

Table 3. Top ten SNPs from GWAS analysis of DNAm age predictions corresponding to peaks
connected to LD blocks in HDMP (~2 Mbp). P-values were computed with a linear mixed-model (LMM).

SNP ID Chr Position pl:\I?:i\l/ll e Nearest gene(s)
JAX00189882 | 6 | 77104479 | 1.08E-04 Ctnna2, Lirtml
JAX00141186 | 6 | 55124351 | 1.59B-04 | Plckha8, hﬁ‘ﬁy iﬁ%ﬁc’éﬁl}ﬁ?ﬁa@ﬁiﬁm’ Tnmt,
JAX00613802 | 6 | 73641278 | 1.67E-04 Dnah6, Suclgl, 4931417E1 1Rik
JAX00651898 | 7 | 115070069 | 3.06E-04 Calca, Calcb, Insc, Sox6
JAX00373522 | 14 | 14657081 | 4.48E-04 O1£r720, OIfr31, 113ra, Sleda7, Nek10
JAX00049927 | 14 | 9498134 | 4.83E-04 Fhit
JAX00140799 49976398 | 5.06E-04 Npy, Mpp6, Gsdme, Osbp13
JAX00189488 95990791 | 5.48E-04 Fagy, Hookl, Cyp2j13, Cyp2j12, Cyp2j11, Cyp2i8
JAX00087970 | 19 | 25717022 | 5.66E-04 Kank1, Dmrtl, Dmrt3, Dmrt2
JAX00374020 | 14 | 17587871 | 7.02E-04 Thrb
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4.18 months (£0.95) in the range of 2.3-7.1 months
with a median of 4.1 months. A set of 196,148 SNPs
(MAF>5%) was used for association studies. We used
linear mixed models to correct for population structure
using the pyLMM software. As our cohort size was
limited, we were not able to identify peaks whose
significance was beyond the Bonferroni threshold in
this analysis (Fig. 5a). Therefore the results presented in
Table 3 with the top 10 SNPS are only suggestive of an
association and will need to be confirmed in the future
with a larger cohort.

We analysed the genes that were found proximal (500
kbp up- and downstream) to the identified peak SNP
site. This list contains several genes that have pre-
viously been implicated in aging: Agpl (Aquaporin 1)
[53], Npy (Neuropeptide Y)[54], Adcyaplrl (Adenylate
cyclase-activating polypeptide type [ receptor 1) as a
receptor for PACAP (Pituitary Adenylate Cyclase-
Activating Peptide) [55, 56]. The most notable is Npy,
which encodes a hormone responsible for appetite
control [57], regulation of fat metabolism [58], and
plays a critical role in caloric restriction (CR) mediat-
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Figure 5. Genome-wide association results for DNAm Age. (a) Manhattan plot presenting genome-wide association results for DNAm
Age. Epigenetic age predictions were calculated using all CpGs clock with ridge regression and leave-one-sample-out estimates. GWAS analysis
was based on linear mixed model and a set of 196,148 SNPs (MAF > 0.05) from HMDP mice strains. (b) This SNP as identified using GWAS analysis
of epigenetic age predictions. It is located in an LD block on chromosome 6 and contains the genes Npy, Mpp6, Gsdme and Osbp13. A one-sided t-
test of DNAm ages between the two allelic groups shown is statistically significant. (c) It is located in an LD block on chromosome 6 and contains
the genes Npy, Mpp6, Gsdme and Osbp13. A one-sided t-test of DNAm ages between the two allelic groups shown is statistically significant.
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ed lifespan extension [59]. As examples, we found
statistically significant differences (p < 0.001) in
average DNAm ages of mice strains having allele C or
T within SNP JAX00140799 (Fig. 5b) and between
mice strains having allele T or C within SNP
JAX00373522 (Fig. 5¢).

DISCUSSION

Based on multiple tissue samples taken from previous
studies and our own in-house collection we compiled a
dataset of 1189 mouse DNA methylation measurements
across hundreds of thousands of CpGs. These samples
represent the most comprehensive dataset thus far of
matched single base resolution methylomes in mice
across multiple tissues and ages.

We demonstrate that these data enable construction of
highly accurate multi-tissue age estimation methods
(epigenetic clocks) for mice that apply to the entire life
course (from birth to old age). We demonstrate that
these clocks perform well on new tissues not included
in the training of the clock by performing tissue
exclusion cross-validation. This gives us confidence
that these clocks will work on new samples from other
tissue types as well. However, we cannot rule out that
these clocks fail in specific cell types. Epigenetic age
estimators that focus on specific tissues or cell types can
have greater accuracy than pan tissue age estimators
[60].

Our study leads to several novel insights. First, our first
prototype of an age estimator based on fewer than 1000
highly conserved CpGs demonstrates that it will be
feasible to build highly accurate DNAm age estimator
on the basis of highly conserved CpGs.

Second, we find that epigenetic clocks that are optimal
for estimating age (namely those based on elastic net
regression) may be inferior to less accurate clocks
(based on ridge regression) when it comes to gold
standard anti-aging interventions. Only our ridge
regression clock manages to corroborate most of the
previously reported findings, e.g. only the ridge clock
showed that dwarf strains show slower epigenetic aging
relative to wild-type strains. The anti-epigenetic aging
effects of calorie restriction are highly robust and could
be observed with all clocks. Moreover, by utilizing
epigenetic ages as phenotypic traits in a GWAS study of
88 strains of mice we found suggestive associations
with several genes, including neuropeptide Y whose
role in appetite control and calorie restriction mediated
lifespan extension is well documented. However, none
of our clocks managed to detect an anti-aging effect of
rapamycin in a small data set which might reflect the
low sample sizes or technical reasons including low

coverage afforded by the measurement platform
(WGBS).

All clocks were able to detect a slowing of the
epigenetic clock in mice fed a calorie restricted diet,
though with differing sensitivity, suggesting that the
effects of calorie restriction are pervasive across the
methylomes. In contrast, the slowing of epigenetic
aging in mice fed a low fat diet for two generations
were not detected by the clocks with fewer CpGs
(elastic net), suggesting these effects are either more
subtle or more localized in the methylome.

These results suggest that the multi-tissue ridge regres-
sion DNA-methylation clock is most useful in assessing
“biological age” for a variety of treatments, experimen-
tal interventions, and genetic backgrounds. However,
the elastic net clocks are better for assessing chrono-
logical age. We evaluated both ridge and lasso
regression in previous studies with human data and
found that lasso outperformed ridge not just in terms of
accuracy but also in terms of interpretability
(unreported findings). Therefore, it is a curious finding
that ridge regression has some merits when it comes to
mice.

We speculate that one reason that ridge regression
works best in our context is that our dataset is more
heterogeneous than those used in previous studies. Our
dataset includes mice of different ages, strains and
diverse tissues, all collected in different labs and
resulting in a whole that is larger than any previous
dataset. Because genetic diversity in mice is high, it is
possible that lasso models that only use a limited
number of sites are more prone to be influenced by
genetic variation (as DNA methylation is often
associated with genetic variation). Thus, on the whole,
it is possible that the ridge approach minimizes these
effects by using all sites, and thus leads to the most
robust overall performance.

The DNAm age estimates from our mouse clocks
exhibit a correlation coefficient with chronological age
that ranges from R=0.79 to 0.89 (Table 1). These
correlations are only slightly weaker than those
observed for human studies (R=0.96 for the pan tissue
estimator from Horvath). We have no doubt that more
accurate mouse clocks can be built by reducing
technical variation and by employing even larger data
sets.

We acknowledge several limitations. Our genetic study
of epigenetic aging rates was under-powered. Large
scale human studies have implicated genome-wide
significant loci including the TERT gene [61-63]. We
did not assess the intra-assay variation of replicate
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samples in the current article but refer the interested
reader to relevant articles [59, 60].

Rigorous quantitative comparisons to previously
published mouse clocks (e.g. comparing age correlation
values) could not be made due to technical differences
in the processing of sequence data, in the estimation and
correction of methylation calls, in the limited tissue
sampling of previous clocks, and, most importantly, in
the simple absence of particular CpGs in the various
datasets and clock models. The subset of CpGs with
high coverage in one RRBS data set tends to exhibit
poor overlap with a subset of CpGs from another RRBS
data set. This poor overlap of CpGs makes it difficult to
validate epigenetic clocks based on RRBS data. We are
currently working on a custom methylation array
platform that avoids these pitfalls.

METHODS
Data sets

We generated reduced representation  bisulfite
sequencing (RRBS) methylation data for mouse
adipose, blood, liver, and kidney, muscle, and lung
tissue samples using the protocol below.

DNA methylation assay

Genomic DNA was isolated by standard phenol-
chloroform extraction method and used as input to
prepare Reduced Representation Bisulfite Sequencing
(RRBS) libraries as described previously [64] with
minor modifications. For each sample 50-100 ng of
purified genomic DNA was digested with 20 U of Mspl
(NEB, cat # R0O106L) at 37°C o/n in the presence of
RNase Cocktail Mix (Ambion, cat # AM2286). End-
repair and dA-tailing was performed by the addition of
Klenow Fragment 3°->5" exo- (NEB, cat # M0212L) in
the presence of dATP, dGTP and d5SmCTP (Fermentas).
Adapter Ligation was performed by the addition of 0.3
pl of Illumina TruSeq methylated Adapters (Illumina,
TruSeq Nano cat# FC-121-4001) and 2 pl of Illumina
Ligation Mix 2 (Illumina, TruSeq Nano cat# FC-121-
4001). Samples were pooled and purified using an equal
volume of SPRI beads (Beckman Coulter, cat #
B23318). Size-selection was performed using SPRI
beads to enrich for fragments from 200 to 300 bp.
Bisulfite treatment was performed using Epitect
Bisulfite kit (QIAGEN, cat # 59104) according to
manufacturer's protocol, except that two consecutive
rounds of conversion are performed, for a total of 10 hr
of incubation. Purified converted DNA was PCR
amplified using MyTaq HS Mix (Bioline, cat# BIO-
25045) and TruSeq PCR Primer Cocktail (Illumina,
TruSeq Nano cat# FC-121-4001) according to the

following protocol: initial denaturation at 98°C for 30s;
12 cycles of 98°C for 15s, 60°C for 30s, 72°C for 30s;
final extension at 72°C for 5 min. Amplified libraries
were purified twice with an equal amount of SPRI
beads to remove primer and adapter dimers. Libraries
were sequenced 100 bp single-end on an Illumina
HiSeq4000. For the kidney data from JAX laboratories,
the sequencing protocol was as follows. RRBS libraries
were prepared using 100 ng DNA, the Ovation RRBS
Methyl-Seq System 1-16 (NuGEN Technologies, San
Carlo, CA) part number 0353, and the EpiTect Fast 96
Bisulfite Conversion kit (Qiagen, Hilden, Germany)
part number 59720. The manufacturer’s protocols were
followed except for the number of PCR cycles in the
library amplification step, which was increased, from 12
to 13. Libraries were quantified using the Library
Quantification Kit (Kapa Biosystems, Wilmington,
MA) part number KK4835, normalized to 10nM, and
pooled in groups of 12. Each pool was sequenced 1 x
100 bp on one lane of the HiSeq2500 (Illumina, San
Diego, CA) at The New York Genome Center (New
York, NY).

These datasets were integrated with RRBS data made
available to the public via the GEO repository [65]. We
included datasets from previous RRBS-based
“epigenetic clock” studies [44, 47] along with RRBS
data from an EWAS study of metabolic traits [66], from
a study of maternal diet effects on gene expression and
DNA methylation [52], from a study of post-natal
hepatocyte development [67], from a multi-tissue study
of sex hormone effects on DNA methylation [68].

Kidney data from the Jackson Laboratory

Kidneys were collected from male and female Diversity
Outbred mice at ages 6, 12 and 18 months. Mice were
group housed in SPF condition and fed a standard lab
chow diet (5K0G) with 6% calories from fat. Tissues
were flash frozen in LN2, pulverized and mixed prior to
DNA extraction. RRBS sequencing was carried out at
the New York Genome Center. Although whole-
genome bisulfite-sequencing data (WGBS) has a variety
of characteristic differences from RRBS, we obtained
the set of this data collected previously to examine
longevity interventions in mice and build an epigenetic
clock [45, 46].

Data processing

Where possible, we downloaded the raw sequencing
files from previous studies via (GEO) and performed
alignments and methylation calling identically as for
our in-house data using BS Seeker2 with default
parameters [69]. All mouse methylation data in this
study utilized mouse genome mm10 coordinates. When
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technical replicates were available for a given sample,

they were merged by summing the sequencing counts.

For the kidney data from JAX laboratories, a Bismark-
based pipeline was initially used as follows [70]. All the
samples were subjected to QC using the trim galore
module then trimming of the diversity adapters was
performed by trimRRBSdiversityAdaptCustomers.py
script from NuGen. High quality trimmed reads were
aligned to all eight diversity outbred founder strains
(A/J,  CS7BL/6J, 129S1/SvimJ,  NOD/ShiLtJ,
NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ,) sepa-
rately using Bismark at default parameters. The
alignment to founder genomes except C57BL/6J were
converted to reference genome coordinates (mml0)
using g2gtools v1. Then, we selected the reads which
were mapped to the same locus in multiple founders
strains (assigned to founder strains with minimum edit
distance) or mapped uniquely to one founder strains by
custom in-house script. The bed file of estimated
methylation proportion of each founder (except
C57BL/6J ) was converted to reference genome coordi-
nate by g2gtools vl and, finally, combined to provide
the methylation proportion in each diversity outbred
animals.

For each CpG site in each sample we estimated the
methylation frequency as the number of methylated
mapped read counts over the total mapped read counts.
Where available, the counts for the forward and reverse
Cytosines of the CpG were pooled and treated as a
single measurement. We then computed a 95% con-
fidence interval with a Bayesian approach using a Beta
distribution  (0.5,0.5) (“Jeffrey’s Prior”) for all
methylation values [71,72]. For inclusion in our
analysis, we required that each CpG site had confident
methylation frequencies in at least 95% of samples.
Confidence was defined as having a confidence interval
smaller than 0.50. True missing values or measurements
failing that confidence interval filter were imputed
using k-nearest-neighbor approach with k=5. This select
strategy resulted in CpGs whose mean methylation
levels ranged from zero to 1 (Suppl. Fig. 6).

Sample exclusion

In order to maximize the number of samples and
coverage of the methylomes, it was necessary to
exclude a number of samples both from our new data
and from previously published datasets. First, we
removed samples with fewer than 500,000 measured
CpGs. Next, after an initial matrix was constructed, we
iteratively removed samples with the most missing
values until we arrived at a matrix with ~2% total
missing values.

Penalized regression models

Penalized regression models were created with glmnet
[73]. We investigated models produced by both elastic
net regression (alpha=0.5) and ridge regression
(alpha=0). The optimal penalty parameters in all cases
were determined automatically by using a 10 fold
internal cross-validation (cv.glmnet) on the training set.
By definition, the alpha value for the elastic net
regression was set to 0.5 (midpoint between ridge and
lasso type regression) and was not optimized for model
performance. We omitted the results from lasso
regression models (alpha=1) because the age estimates
tended to be less accurate than those from elastic net
regression.

The covariates in our data (methylation of CpGs) are
known to have a high degree of multicollinearity. While
lasso and elastic net regression allow regression
coefficients to go to zero and thus yield a sort of
“feature  selection” which is  desirable for
interpretability, the correlations among methylation
sites may contain subtle information that might be
useful to retain (which supports the use of ridge
regression).

Cross-validation estimates of accuracy

We performed three types of cross-validation schemes
for arriving at unbiased (or at least less biased)
estimates of the accuracy of the different DNAm based
age estimators. One type consisted of leaving out a
single sample (LOOCV) from the regression, predicting
an age for that sample, and iterating over all samples.
The second type (10-fold) was similar to the first except
that 10% of samples were withheld per iteration. The
third type consisted of iteratively leaving out all
samples of a particular “batch” where batched was
defined as combination of tissue type and publication of
origin. For example, three batches resulted from a single
publication if the underlying RRBS data were obtained
from 3 distinct tissues. Samples from longevity
intervention studies (CR, Rapamycin, dwarf mice)
along with their respective control samples were
excluded from all instances of training-set construction.

Conserved-CpG clock

Our team is currently developing a mammalian DNA-
methylation array for measuring methylation levels in
mammals. The primary selection criteria for CpGs for
the probe-design of this bead-chip array was
conservation of the local sequence context of the CpG
across 60 sequenced mammalian genomes. We obtained
the list of candidate CpGs in this effort and intersected
it with CpGs in our high-quality RRBS data.
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Epigenetic age acceleration

To investigate effects of biological interventions and
genetic background on epigenetic aging, we employ a
quantity termed ‘“age acceleration”. In the simplest
form, it is just the difference between the epigenetic age
estimated by the clock and the chronological age.
However, this measure can be age-dependent itself,
causing difficulty in interpretation. Instead, age
acceleration is computed as the residual, per sample,
after fitting predicted ages to chronological ages. This
fitting is done on a per-batch basis. P-values for age
acceleration comparisons found in Figs 2, 3, 4, and
Suppl. Figs 3, 4 and 5 were obtained using the non-
parametric Kruskal-Wallis test.

Genome-wide association study

GWAS was performed using 88 strains from the Hybrid
Mouse Diversity Panel (HMDP, listed in Suppl. Table
1), that have been extensively used as a resource for
systems genetics analyses [66, 74, 75]. Of the total of
459 895 SNPs, we selected a set of 196 148 SNPs that
exhibited minor allele frequency greater than 5%.
DNAm ages, computed using all CpGs clock with ridge
regression and leave-one-sample-out estimates, were
treated as phenotypes in the association studies. All of
the mice were at chronological age of 4 months. GWAS
was conducted using the linear mixed model python
package pyLMM to account for population structure
and relatedness among the mouse strains. We selected
the top SNPs in each of the peaks from the pyLMM
analysis that were located a minimum of 2 Mbp apart,
which is the average of LD block size for SNPs in the
HMDP.

Data availability

Raw sequencing data and processed data for samples
collected at UCLA and JAX, as well as re-processed
data from previous studies have been made available at
the Gene Expression Omnibus (https://www.ncbi.nlm.
nih.gov/geo/) under super-series accession number:
GSE120137
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SUPPLEMENTARY MATERIAL

This information is provided as supporting information
and results to the main ones presented in the

manuscript.
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Supplementary Figure 1. Accuracy of the elastic net clock based on all CpGs. DNA methylation age (y-axis)
versus chronological age (x-axis) for all mouse samples. (a) Performance of elastic regression clock on all training
samples. (b) Results by tissue type of cross-validated predictions obtained by iteratively withholding one “batch”
(tissue x publication). (c) Results by tissue type of predictions from leave-one-out-cross-validation.
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Supplementary Figure 2. Accuracy of the conserved clock based on elastic net regression. DNA methylation
age (y-axis) versus chronological age (x-axis) for all mouse samples. (a) Performance of elastic net regression clock on all
training samples. (b) Results by tissue type of cross-validated predictions obtained by iteratively withholding one
“batch” (tissue x publication). (c) Results by tissue type of predictions from leave-one-out-cross-validation.
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Supplementary Figure 3. This figure corresponds to Fig. 2 in the main text for diet treatments
and longevity. The upper panel shows the same results for an elastic net clock using all CpGs as input.
The lower panel shows the same results for an elastic net clock using only conserved CpGs as input.
Overall, the results for these two clocks are less significant than those observed for the ridge regression
clock. But both of these clocks detect anti-epigenetic aging effects CR in the C57BL/6 strain (panel a).
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Supplementary Figure 4. This figure corresponds to Fig. 3 in the main text for dwarfism and
longevity. The upper panel shows the same results for an elastic net clock using all CpGs as input. The
lower panel shows the same results for an elastic net clock using only conserved CpGs as input.
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Supplementary Figure 5. This figure corresponds to Fig. 4 in the main text for
the effects of maternal diet on DNA methylation in offspring. The upper panel
shows the same results for an elastic net clock using all CpGs as input. The lower panel
shows the same results for an elastic net clock using only conserved CpGs as input.
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Supplementary Figure 6. Histogram of methylation levels of all CpGs in the training set of samples.

SUPPLEMENTARY TABLES

Please browse Full Text version to see the data of
Supplementary Tables:

Supplementary Table 1. CpGs utilized in the elastic
net age clock derived from all CpGs measured. Listed
are the genomic coordinates, the linear coefficients of
the model, and the distances to the transcription site
(TSS) of the nearest genes.

Supplementary Table 2. CpGs utilized in the elastic
net age clock derived from evolutionarily conserved
CpGs for which methylation data was available. Listed
are the genomic coordinates, the linear coefficients of
the model, and the distances to the transcription site
(TSS) of the nearest genes.

Supplementary Table 3. List of strains from the
Hybrid Mouse Diversity Panel (HMDP) used in the
Genome-Wide Association Study.

WWwWw.aging-us.com 2854 AGING



