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ABSTRACT

Objective: We aimed to identify a radiomic signature to be used as a noninvasive biomarker of prognosis in
patients with lower-grade gliomas (LGGs) and to reveal underlying biological processes through comprehensive
radiogenomic investigation. Methods: We extracted 55 radiomic features from T2-weighted images of 233
patients with LGGs (training cohort: n = 85; validation cohort: n = 148). Univariate Cox regression and linear risk
score formula were applied to generate a radiomic-based signature. Gene ontology analysis of highly expressed
genes in the high-risk score group was conducted to establish a radiogenomic map. A nomogram was
constructed for individualized survival prediction.

Results: The six-feature radiomic signature stratified patients in the training cohort into low- or high-risk groups
for overall survival (P = 0.0018). This result was successfully verified in the validation cohort (P = 0.0396).
Radiogenomic analysis revealed that the prognostic radiomic signature was associated with hypoxia,
angiogenesis, apoptosis, and cell proliferation. The nomogram resulted in high prognostic accuracy (C-index:
0.92, C-index: 0.70) and favorable calibration for individualized survival prediction in the training and validation
cohorts.

Conclusions: Our results suggest a great potential for the use of radiomic signature as a biological surrogate in
providing prognostic information for patients with LGGs.

INTRODUCTION maximal safe resection combined with adjuvant
radiotherapy and chemotherapy shows prognostic
Diffuse lower-grade gliomas (LGGs) are a class of benefits [3], the overall survival of patients with LGGs
terminal central nervous system tumors, comprising remains low, ranging from a few months to more than
WHO grades II and III astrocytomas, oligodendro- 10 years [4, 5]. This demonstrates the need for in depth
gliomas, and mixed oligoastrocytomas [1, 2]. Although investigations of prognosis of patients with LGGs.
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Developments in genomic and bioinformatic techniques
allow the creation of molecular classifications and
signatures based on expression profiles, and provide
promising approaches to identify prognostic or
therapeutic biomarkers for patient-tailored management
[2, 6, 7]. In a recent study, utilization of IDH mutation
and 1p/19q codeletion, LGGs could be classified into 3
distinct subgroups (IDH wild-type, IDH mutation and
1p/19q codeletion, and IDH mutation and 1p/19q non-
codeletion) that capture the biologic characteristics with
greater fidelity than does histological class [2].
Although such genetic characteristics can be infor-
mative and are relatively homogeneous within each
tumor, there remains an unmet clinical need for less
costly and less time consuming noninvasive surrogates
able to determine clinical prognostic and guide
individual treatment.

MRI can provide a comprehensive view of the entire
tumor, and is routinely used as a noninvasive tool to
support clinical decision-making, histological grading,
and therapeutic monitoring [8, 9]. Radiomics, an
emerging field that extracts a large number of
quantitative descriptors reflecting textural and morpho-
logical variations, has been introduced to ensure more
objective and precise study of oncologic tissue beyond
established MRI metrics [10-12]. Consequently,
clinicians increasingly rely on radiomics to assist in
personalizing treatment in clinical practice, particularly
in relation to tumor detection, subtype classification,
and prognostic estimation [13-15]. Furthermore, linking
radiomics with genomic characteristics, i.e., radio-

genomics, has become an increasingly popular approach
in various tumors and has expanded to create non-
invasive imaging biomarkers for genomic aberrations
[16-19]. As for LGGs, Mazurowski et al. [20] have
done a preliminary radiogenomics study focusing on the
relationship between tumor shape and molecular
subtype in a single cohort. However, this study was
limited by small number of available radiomic features
and the lack of an external validation cohort.

In the present study, we used T2-weighted MR images
from The Cancer Imaging Atlas (TCIA) to identify a
radiomic-based prognostic signature, which we in-
dependently validated in the Chinese Glioma Genome
Atlas (CGGA) imaging dataset. A radiogenomic map,
which integrates radiomic features and genomic data,
was further established to identify biological processes
underlying this radiomic signature. Our results suggest
that radiomics can aid in predicting survival of patients
with LGGs, and reveal the prognostic role of radiomic
phenotypes using comprehensive  radiogenomic
methods.

RESULTS
Prognostic value of the radiomic risk score

We found that radiomic features (Autocorrelation, High
Gray Level Run Emphasis (HGLRE), Short Run High
Gray Level Emphasis (SRHGLE), SumAverage, Sum-
Variance, and Variance) were significantly associated
with overall survival (Supplementary Table 1).

Table 1. Variables associated with overall survival in the Cox regression analysis for lower-grade glioma

patients from the TCGA dataset.

Multivariate Cox Regression

HR 95% CI P value
Age
>45 vs. <45 5.788 1.024-32.709 0.047
Sex
Male vs. Female 0.500 0.148-1.691 0.265
WHO Grade
Il vs. 11 22.499 1.913-264.626 0.013
Seizure
Yes vs. No 0.304 0.089-1.036 0.057
IDH status
WT vs. MUT 27.578 2.816-270.110 0.004
ATRX status
WT vs. MUT 0.221 0.042-1.164 0.075
1p/19q status
Non-codel vs. codel 2.117 0.156-28.724 0.573
Radiomic Risk score
High vs. Low 4.347 1.055-17.922 0.042

MUT = mutant. WT, wild type; Non-codel = non-codeletion; Codel = codeletion; HR = hazard ratio; 95% CI = 95%

confidence interval.
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Figure 1. Kaplan—Meier plot for overall survival of patients stratified by the value of each radiomic feature (A, B, C, D, E, F) and radiomic
risk score (G) in the training dataset. The radiomic risk score retained prognostic significance for patients in the validation set (H).

Moreover, we observed that each of the selected radio-
mic features could be used to stratify patients into high-
risk and low-risk groups (Autocorrelation, P = 0.0451;
HGLRE, P = 0.0272; SRHGLE, P = 0.0068;
SumAverage, P = 0.0354; SumVariance, P = 0.0272;
and Variance, P = 0.0281; Fig. 1A-F).

Subsequently, a radiomic risk score were calculated:
risk score = Autocorrelation x (-0.007) + HGLRE X (-
0.003) + SRHGLE x (-0.005) + SumAverage % (-0.115)
+ SumVariance x (-0.002) + Variance x (-0.007). The
radiomic risk score was associated with overall survival
in the training dataset (P = 0.00018; HR = 0.269, 95%
confidence interval [CI]: 0.087-0.833; Fig. 1G).

Consistently, we confirmed the prognostic value of
selected radiomic features in the validation dataset
(Autocorrelation, P = 0.0081; HGLRE, P = 0.0120;
SRHGLE, P = 0.0085; SumAverage, P = 0.0168;
SumVariance, P=0.0058; and Variance, P =0.0063;

Supplementary Fig. 1), as well as confirming the
prognostic value of the radiomic risk score (P = 0.0396;
HR = 0.505; 95%CI: 0.264-0.965; Fig. 1H).

We next conducted multivariate Cox regression
analyses in TCGA database, which indicated that the
radiomic risk score was an independent prognostic
factor (P = 0.042). Other independent prognostic factors
were age, WHO grade, and IDH status. The prognostic
value of all clinical characteristics in the multivariate
Cox regression analyses are shown in Table 1.

Functional annotation of different prognoses

To explore the genetic background of prognostic
differences, relevant transcriptomic profiles were
analyzed. The radiogenomic analysis of high-risk
positively associated genes (n = 239, Fig. 2) further
revealed that biological processes associated with
prognosis included hypoxia, angiogenesis, and stem cell
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proliferation-related oncogenic functions (Fig. 3). Further investigation revealed that SPREDI and

Specifically, genes in the “multicellular organism SPRED2 were the most correlated genes involved in
development” group are the ones that are most “multicellular organism development” (Supplementary
significantly associated to the radiomic risks score. Table 2).
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Figure 2. A heat map of the top 200 genes that were positively associated with the radiomic risk score (upper half part) and the top 200 genes
that were negatively associated with the radiomic risk score (lower half part) from 85 LGGs samples in the training dataset. “RNA sequence”
refers to the overall expression levels of the genes. Associations of clinicopathological characteristics with radiomic features are illustrated.
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Figure 3. Functional annotation of radiomic risk score groups. Gene ontology analysis revealed a significant association among genes

with increased expression in the high-risk radiomic risk score group and twenty main pathways. Column size: gene counts; point color:

enrichment P value.
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Similar findings were obtained during the assessment of
genetic alterations underlying the six texture features
(Supplementary Fig. 2). As shown in Supplementary
Fig. 3, the radiomics-based evaluation may stand for
patients with different expression profiles and biological
functions among the three molecular classification,
therefore serving as a supplementary approach for
tailored medicine of LGGs.

A

Construction of individualized prediction models

The independent prognostic parameters for overall
survival in the training cohort, including WHO grade,
age at diagnosis, IDH, seizure, ATRX, and radiomic
risk score, were integrated into the nomogram (Sup-
plementary Fig. 4). The C-index of the nomograms for
overall survival was 0.934. Meanwhile, the calibration
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Figure 4. A nomogram for predicting overall survival of patients with LGGs (A), along with the assessment of model calibration in
the training cohort (B) and validation cohort (C). After final model selection, radiomic signature, WHO grade, age, IDH status, and
seizure were included in the nomogram. The line determines the number of points received for the value of each variable. The
sum of these numbers is presented on the total axis, while the line drawn down to the survival axis determines the likelihood of a
1-, 2-, 3-, or 5-year survival rate. The calibration curve of the nomogram is also shown. Three colored lines (blue, red, and black)
represent the performance of the nomogram, with a closer fit to the diagonal line representing a better estimation.
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plot for the probability of survival showed optimal
agreement. Since the ATRX status for patients with
LGG was not available in the validation cohort, a
prognostic nomogram that integrated all factors except
for ATRX was constructed in the training cohort and
independently validated in the validation cohort. The C-
indices were 0.92 and 0.70 in the training cohort and
validation cohort, respectively, indicating satisfactory
concordance. Moreover, the calibration plots of the
probability of actual survival were concordant with
survival outcomes predicted by the nomograms at 1, 2,
and 5 years for overall survival (Fig. 4).

DISCUSSION

In the present study, we revealed a radiomic-based
signature that noninvasively predicted survival in both
the training (TCIA) and validation (CGGA) cohorts.
Integrative analysis of radiomic and transcriptomic
profiles suggested that a high-risk phenotype indicated
by the radiomic analysis could be attributed to several
malignant biological processes. Moreover, the com-
bination of radiomic, clinical, and molecular risk factors
into a nomogram provided an effective approach for
individual survival estimation.

Radiomics is a promising paradigm for extending
clinical imaging into comprehensive and quantitative
features, and has attracted much interest in personalized
medicine [21, 22]. Few studies have identified
radiomics could be reliable prognostic biomarkers for
stratification of patients across many fields of oncology,
however, the currently available studies are typically
characterized by smaller sample sizes or lack of using
independent public database as validation cohort [12,
23, 24]. Our analyses expand on the work of several
recent studies that have uncovered novel associations
among radiomic features and several clinical endpoints.
The identified radiomic signature in our study consisted
of the following features: Autocorrelation, HGLRE,
SRHGLE, SumAverage, SumVariance, and Variance,
which were derived from the group (iii) parameters
(gray level co-occurrence and gray level run-length
texture matrices-based parameters). We believe that
these features describe textural differences based on
gray-tone spatial dependencies, as opposed to
relationships or patterns between pixels derived from
first-order statistics. Such features provide further
insight into tissue microstructure and the local
environment of the tumor. Being consistent with our
findings, a previous study reported that the most
dominant prognostic features are derived from group
(ii1) [25].

Although each of the identified radiomic features in our
study is capable of risk stratification, an integrated

signature based on these textures achieved a better
performance. Pioneering studies supported our findings
that a multi-component radiomic signature provides a
more statistically robust approach, and have con-
sistently demonstrated the incremental value of the
radiomic signature for risk stratification of patients with
different cancers [25, 26]. Notably, recent evidence has
supported the hypothesis that radiological manifesta-
tions are tightly connected with genetic alterations of
the tumor [27, 28]. In the present study, the high-risk
phenotype was significantly associated with oncogenic
biological processes, including stem cell proliferation
and angiogenesis, which could partially represent the
malignancy of high-risk LGGs. As a classical hallmark
of tumors, angiogenesis has emerged as a promising
target for individually tailored medicine, although the
therapeutic efficacy of anti-angiogenetic agents in
gliomas has proved unsatisfactory [29]. This failure was
attributed to ambiguities regarding the appropriate
population for such treatment. Our results suggest a
radiological indicator for vigorous angiogenesis in
gliomas, thereby promoting the clinical effectiveness of
anti-angiogenic therapy. Therefore, clinical trials
exploring the relationship between radiological
manifestation and target therapy are urgently needed to
elucidate the possible implications of translating
radiomic signatures into clinical practice. Additionally,
“multicellular organism development” genes were a
group of genes that were found to be highly associated
with the radiomic risk score. SPRED1 and SPRED?2 are
the two most relevant genes and are members of the
SPRED family of proteins that regulate growth factor-
induced activation of the MAP kinase cascade [30]. The
mechanisms of the high association of multicellular
organism development with the radiomic risk score are
still to be investigated.

The objective of precision medicine is to build a model
that offers a more tailored approach for individual
patients considering their individual prognostic factors.
A nomogram is a graphical representation of a statistical
model that allows individualized predictions and
compares favorably to traditional risk grouping systems.
Incorporating the radiomic signature into a nomogram
along with clinicopathologic risk factors to estimate
disease-free survival for early-stage non—small cell lung
cancer has provided better estimation than either the
radiomic signature or clinicopathologic nomogram
alone [31]. The new WHO classification of the central
nervous system has improved the clinical assessment of
LGGs [32]. Indeed, our classifier will be more relevant
if it incorporates those prognostics genomic subtypes.
However, in practice, not all genomic information (e.g.,
1p/19q) is available for all patients; hence, classifier
should also be designed to accommodate sparse data. In
general, we developed a nomogram in the training
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cohort by incorporating WHO grade, age at diagnosis,
IDH, seizure, and radiomic risk score. Those prognostic
factors were independent prognostic factors with using
multivariate Cox regression analysis, suggesting their
complementary value in predicting LGGs prognosis.
The higher degree of predictive precision in our
nomogram could be attributed to the integration of
different dimensions of information (genetics, clinical,
and imaging data), which provides a complementary
perspective about a single tumor. In the validation
cohort, age and seizure lost their prognostic power in a
multivariate model, which may explain for the
decreased performance of the prognostic model. Despite
this, our prognostic model still displayed good accuracy
(CI=0.7) in the external validation cohort, which has
strengthened the reliability of the results. Our findings
are consistent with the perspective that future research
will be most productive if we concentrate on populating
a three-domain Venn diagram intersection consisting of
imaging, genetics, and clinical data [33].

There are several limitations that should be considered
when interpreting the results of this study. First, as a
multi-center study, the imaging data used were acquired
from multiple MRI systems with varying protocols.
Better image quality and consistent protocols will
further improve the power of radiomics. Second, the
radiomics analysis was performed using T2-weighted
MR images in the current study. Although the FLAIR
sequence is favorable for lesion delineation it was not
used in the radiomics analysis due to limited availability
of FLAIR data in the CGGA image database. Third, a
slight discrepancy in the manual segmentation of
images into the region of interest (ROI) may still exist,
even though the image segmentation was carefully
controlled by 2 radiologists. The predictive value of
radiomic signatures need to be further characterized and
validated in prospective study using multi-modal
imaging approaches.

CONCLUSIONS

In conclusion, this radiogenomic study established a
radiological indicator for prognostic assessment in
patients with LGGs. The biological processes associated
with the radiomic features was further revealed. The
findings of this study may be an important aid to the
decision making in personalized clinical management
for glioma patients.

MATERIALS AND METHODS
Patient selection

There were a total of 233 patients enrolled in this study
(Supplementary Table 3), including 85 from The Cancer

Genome Atlas (TCGA, training cohort) and 148 patients
from CGGA (validation cohort). Selection criteria for
both cohorts included: (a) histopathologically confirmed
grade II or III gliomas, according to WHO classification
[32]; (b) minimum age of 18 years; and (c) available
preoperative T2-weighted MR images. Specifically,
MRI data were available for 199 lower-grade glioma
patients in TCGA database. A set of 103 cases without
high-quality preoperative T2 images and 11 cases
without overall survival data were excluded. Thus, there
were 85 lower-grade glioma cases that were included in
the current study. Baseline epidemiologic and clinical
characteristics of all patients, including age, sex,
seizure, WHO grade, and molecular status, are shown in
Table 2. This retrospective study protocol was approved
by the ethics committee of Beijing Tiantan Hospital. All
clinical data and biological information were collected
based on published databases.

Image acquisition and tumor segmentation

MR images in the training cohort were collected from
TCIA dataset (http://www.cancerimagingarchive.net).
MR images in the validation cohort were obtained from
the CGGA imaging database (http://www.cgga.org.cn),
and the image acquisition was performed as described
in our previous publication [34]. Lesions were
delineated on T2-weighted images, as T2-weighted
MRI is a widely applied sequence for lesion charac-
terization of brain diseases, specifically for brain
tumors. In the majority of studies investigating LGGs,
T2 MR imaging was well accepted in the identification
of abnormal signal intensity representing the involved
regions of LGGs.

Images from both cohorts underwent the same
preprocessing  procedures. To achieve reliable
segmentation, manual segmentation was applied in the
radiomic analysis in this study [15, 24, 26, 35]. The ROI
was manually drawn from the T2-weighted images
abnormality on each slice by two experienced
neuroradiologists (J.M. and X.C., both with more than
15 years of experience of diagnosis) by using MRIcro
(http://www.mccauslandcenter.sc.edu/mricro/). In cases
of a discrepancy of more than 5% (Dice index < 95%)
in the tumor border outlines between the neuro-
radiologists, a third senior neuroradiologist (S.L. with
more than 20 years of experience) made the final
decision.

Extraction of radiomic features

In order to avoid of the bias from data heterogeneity,
all MRI data were normalized (Z score transformation
with excluding segmented tumor areas) and re-sampled
to the same resolution before feature extraction with
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using an in-house MATLAB process. Fifty-five
quantitative radiomic features were extracted from the
ROI using an automated method as previously
described [25]. The features can be divided into three
groups: (i) first-order statistics; (i1) shape and size based
features; and (iii) textural features. In group (i), we
estimated 14 texture parameters describing the
distribution of voxel intensities within the ROI. In
group (ii), we estimated eight 3D features describing 3D
size and shape of the tumor region. In group (iii), we
estimated 33 textural features describing patterns or
spatial distribution of voxel intensities, which can
provide information regarding the relative position of
various gray levels over the image with gray level co-
occurrence and gray level run-length texture matrices.
All features were extracted using MATLAB 2014a
(Mathworks, Natick, United States), and are listed in
Supplementary Table 4.

RNA sequencing and biomarker detection

Whole genome RNA sequencing data and relevant
clinical and molecular neuropathological information
were downloaded from the TCGA  database
(http://cancergenome.nih.gov/). The RNA sequencing
data was normalized using the fragments per kilobase
transcriptome per million reads method [36]. Trans-
criptome data were collected to identify potential
biological processes underlying the radiomic signature.
Presence of IDH mutation, 1p/19q codeletion, and
ATRX mutation were also collected. For the validation
cohort, IDH mutations were detected with pyro-
sequencing and Chromosome 1p/19q status were
inferred by a Gaussian window smoothing algorithm
using the expression values of the genes located on Chr-
1p and Chr-19q, which have been described previously
[37, 38].

Construction of the radiomic risk score

To obtain prognostic radiomic features in LGGs, we
applied univariate Cox regression analyses of 55
features in the training dataset. Subsequently, the
selected imaging features (P <0.05) were used to
develop a radiomic signature. To investigate the
effectiveness of the radiomic signature for clinical
outcome prediction, a radiomic risk score was computed
for each patient by linearly combining the selected
features weighted by their corresponding coefficients as
follows:

Risk score = CXPTfeaturel X Bfeaturel + CXPIfeature2 X BfeatureZ +
ot C€XPTIfeature n X Bfeature n-

The same B values were applied to the validation cohort.

Prediction of survival outcome using radiomic risk
scores

Patients with LGG in the training and validation cohorts
were divided into high-risk and low-risk groups
referring to the median value of the radiomic risk score.
The potential association of the radiomic risk score with
overall survival was first assessed in the training dataset
and then validated in the validation dataset with Kaplan-
Meier survival analysis. Similarly, the prognostic value
of each feature in the risk score was also evaluated
based on Kaplan-Meier survival analysis. Patients were
classified into “high” and “low” groups referring to the
median value of each radiomic feature. Multivariate
Cox regression analysis was performed to identify if the
radiomic risk score is an independent prognostic factor.

Radiogenomic analysis

Genes with significant associations from the radiomic-
based signature or each radiomic feature were selected
with Pearson correlation analysis, conducted with R
programming language (http://cran.r-project.org). The
candidate genes that positively related to radiomic risk
score among the three molecular classification were
selected with Pearson correlation analysis. Those with P
<0.05 and a Pearson correlation coefficient >0.3 were
considered as significant associated candidates.
Positively-associated genes were then subjected to
DAVID (http://david.ncifcrf.gov/) based gene ontology
analysis to identify underlying biological processes.
Biological processes with P <0.05 were depicted using
the ggplot2 package of R.

Individualized prediction model construction

To establish a model that can predict an individual
patient’s overall survival, a nomogram was formulated
based on the results of the multivariate analysis with the
rms package in R [39]. The final model was constructed
with a backward stepdown selection process
conforming to the Akaike information criterion [40].
Concordance index (C-index) and calibration curves
were used to measure the predictive accuracy and
discriminative ability of the nomograms. During the
external validation of the nomogram, the total score
(according to the nomogram) of each patient in the
validation cohort were calculated and used as a factor in
Cox regression analysis, and the C-index and calibration
curve were then obtained [41].
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Supplementary Figure 1. Kaplan—Meier plot for overall survival of patients stratified by low- and high-value of each radiomic
feature in the validation set.
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Supplementary Figure 2. Functional annotation of significant radiomic features. Gene ontology analysis revealed a
significant association among genes with increased expression in each high-risk radiomic feature and twenty main pathways.
Column height: gene counts; point color: enrichment P value.
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Supplementary Figure 3. The risk score positively associated biological processes among the three
molecular classification. IDH mutation and 1p/19q codeletion (A), IDH mutation and 1p/19q non-
codeletion (B), and IDH wild-type (C). Column height: gene counts; point color: enrichment P value.
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Supplementary Figure 4. A nomogram for predicting overall survival of patients with LGGs (A), along with assessment of the model
calibration in the training cohort (B). After final model selection, radiomic signature, WHO grade, age, IDH status, ATRX status, and
seizure were included in the nomogram. The line represents the number of points received for the value of each variable. The sum of
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year survival rate. The calibration curve of the nomogram is also shown. Three colored lines (blue, yellow, and purple) present the

performance of the nomogram, with a closer fit to the diagonal line representing a better estimation.

SUPPLEMENTARY TABLES

Supplementary Table 1. Univariable Cox of radiomic features in TCGA lower grade glioma patients.

95%ClI
Feature name Interpretation B Lowe  Upper HR P
r

Group3_Autoco A texture feature derived from Gray-Level Co-Occurrence Matrix ~ -0.007  0.988 0.999 0.993  0.024
rrelation based features. Autocorrelation evaluates the linear spatial

relationship between texture primitives and measures the

coarseness of an image.
Group3_HighGr One of the texture features derived from Gray-Level Run-Length -0.003  0.996 0.999 0.997 0.008
ayLevelRunEmp matrix based features. High Gray-Level Run Emphasis measures
hasis the distribution of high gray scale values. This feature is high for

the image with high gray scale values.
Group3_ShortR A texture feature derived from Gray-Level Run-Length matrix -0.005  0.992 0.998 0.995  0.002
unHighGrayLev based features. Short Run High Gray Level Emphasis describes
elEmphasis the complementary metric to the previous one for high gray levels.
Group3 SumAv A texture feature derived from Gray-Level Co-Occurrence Matrix ~ -0.115  0.808 0.983 0.891 0.022
erage based features. Sum Average measures overall image brightness.
Group3 SumVa  One of the texture features derived from Gray-Level Co- -0.002  0.996 0.999 0.998  0.024
riance Occurrence Matrix based features. It describes the overall voxel

intensity value variability of the tumor.
Group3 Varian A texture feature derived from Gray-Level Co-Occurrence Matrix ~ -0.007  0.987 0.999 0.993  0.023
ce based features. Variance is a measure of how much the gray levels

differ from the mean.
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Supplementary Table 2. Genes involved in the “multicellular organism development” group.

Order GO term Gene Pearson correlation
coefficient*
1 G0:0007275~multicellular organism development SPREDI1 0.514802938
2 GO:0007275~multicellular organism development SPRED2 0.479288376
3 GO0:0007275~multicellular organism development SPRY4 0.468034887
4 G0:0007275~multicellular organism development EDA2R 0.463660169
5 GO:0007275~multicellular organism development HILS1 0.443597755
6 GO0:0007275~multicellular organism development CREB3L1 0.402457048
7 GO0:0007275~multicellular organism development INVS 0.381701917
8 GO:0007275~multicellular organism development GCNT2 0.361145274
9 G0:0007275~multicellular organism development GGN 0.360364448
10 GO0:0007275~multicellular organism development LBH 0.351541368
11 GO:0007275~multicellular organism development SPRY?2 0.349641312
12 GO0:0007275~multicellular organism development EPHA2 0.337424369
13 G0:0007275~multicellular organism development NFE2 0.336535386
14 GO:0007275~multicellular organism development HMGA2 0.33571953
15 G0:0007275~multicellular organism development INSL4 0.333116639
16 GO0:0007275~multicellular organism development OTX1 0.322126755
17 GO:0007275~multicellular organism development CATSPER3 0.315592995
18 G0:0007275~multicellular organism development TXNDC2 0.311809689
19 GO0:0007275~multicellular organism development TP53 0.309901514
20 GO:0007275~multicellular organism development TNFRSF10B 0.309109194
21 G0:0007275~multicellular organism development EYA4 0.306919931
22 GO0:0007275~multicellular organism development SALL4 0.306853623
23 GO:0007275~multicellular organism development LIF 0.301635627

*The Pearson correlation coefficient was calculated using the radiomic risk score and the expression of the genes.

Supplementary Table 3. Clinical characteristics of lower grade gliomas in TCGA and CGGA

datasets.

TCGA cohort (n=85)

CGGA cohort (n=148)

Age (range, median) 20-74(43)
Sex

Female 49

Male 36
WHO Grade

WHO 1I 45

WHO III 40
Seizure

Yes 56

No 29
IDH status

Mutant 65

Wildtype 20
ATRX

Mutant 34

Wildtype 51
1p/19q

Codeletion 21

Non-codeletion 64

NA 0

18-63(38)

54
94

105
43

89
59

109
39

NA
NA

22
47
79

NA = Not Available; TCGA = the Cancer Genome Atlas; CGGA = Chinese Glioma Genome Atlas
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Supplementary Table 4. Radiomics features extracted from T2-weight magnetic resonance

image (n=55).

Groups

L. First order statistics (n=14)
Energy Kurtosis Mean absolute deviation
Entropy Maximum Median

Standard deviation Mean Minimum
Uniformity Root mean square (RMS) Range

Variance Skewness

I1. Shape and size based features (n=8)

Compactness 1 Spherical disproportion Surface area
Compactness 2 Sphericity Surface to volume ratio
Maximum 3D diameter Volume

III. Textural features (n=33)
Gray level co-occurrence matrix (GLCM) (n=22)

Autocorrelation Energy Inverse Difference Moment

Cluster Prominence Entropy (H) Normalized (IDMN)

Cluster Shade Homogeneity 1 Inverse Difference Normalized

Cluster Tendency Homogeneity 2 (IDN)
Contrast Informational measure of Inverse variance
Correlation correlation 1 (IMC1) Maximum Probability

Difference entropy Informational measure of Sum average

Dissimilarity correlation 2 (IMC2) Sum entropy

Sum variance Variance

Gray level run-length matrix (GLRLM) (n=11)

Short Run Emphasis (SRE) Short Run Low Gray Level Emphasis (SRLGLE)

Long Run Emphasis (LRE) Short Run High Gray Level Emphasis (SRHGLE)

Gray Level Non-Uniformity (GLN) Long Run Low Gray Level Emphasis (LRLGLE)

Run Length Non-Uniformity (RLN) Long Run High Gray Level Emphasis (LRHGLE)
Run Percentage (RP) Low Gray Level Run Emphasis (LGLRE)

High Gray Level Run Emphasis (HGLRE)
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