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ABSTRACT

Although there are numerous hypotheses explaining the nature of aging and associated processes, two
concepts are dominant: (i) aging is a result of cell-autonomous processes, such as the accumulation of DNA
mutations, aberrant methylations, protein defects, and shortening of telomeres, leading to either inhibition of
cellular proliferation and death of non-dividing terminally differentiated cells or tumor development; (ii) aging
is a result of a central program that is switched on at a specific stage of organismic development. The
microRNA-based endocrine regulation hypothesis combines the two above concepts by proposing central
regulation of cell death occurrences via hypothalamus-pituitary gland (PG)-secreted miRNA hormones, the
expression and/or secretion of which are regulated by sex hormones. This hypothesis explains such well-known
phenomena as inverse comorbidity of either cancer or Alzheimer’s (AD) and other neurodegenerative diseases;
higher AD morbidity and lower frequency of many common types of cancer in women vs. men; higher risk of
early AD and lower risk of cancer in subjects with Down syndrome; longer life expectancy in women vs. men
and much lower sex-dependent differences, if any, in other mammals; increased lifespans due to
hypophysectomy or PG hypofunction; and parabiotic effects of blood or plasma transfusions between young
and old animals.

INTRODUCTION

After considerable success in fighting infections and the
significant increase in life expectancy, diseases
associated with aging have become the main causes of
premature death in developed countries. Cancer,
diabetes, cardiovascular diseases (CVD), Alzheimer’s,
Parkinson’s, and other neurodegenerative diseases (AD,
PD and ND, respectively) are the most common
pathologies, which, in best case scenarios, complicate
life and very often lead to patient death [1]. In addition,
these diseases have highly negative economic con-
sequences for patients, their families and society as a
whole. Although both terms, namely, age-associated
and aging-associated diseases, are used to define these
and some less common pathologies, the latter is more

accurate because it is currently clear that the clinical
manifestations of these diseases are preceded by long
(10-20 years) asymptomatic periods of disease
development [2-5]. Substantial efforts to develop
methods for the early detection and treatment of aging-
associated diseases have led to some promising results,
but the overall progress has not been very impressive.
There are two major reasons for this relative failure.
First, in spite of significant progress in understanding
the underlying processes in the development of these
diseases, the initiating mechanisms are mostly unclear.
In addition, successful treatment of one disease does not
lead to significant gains in life span [6-8] because
patients die from other pathologies. As a result, the idea
that the development of drugs that delay aging will
bring more dividends than treatment of particular
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diseases is becoming increasingly more popular [9-11].
Since all of these diseases are somehow associated with
aging, a better understanding of the aging process could
clarify the nature of the mechanisms involved in disease
initiation and the early stages of development. Recently,
the term “Geroscience” was proposed to define the
whole realm of aging and aging-related diseases [10].

It is important for a productive hypothesis to include the
following: (i) an explanation of the many observations
made in a respective area that currently look unrelated
to each other; and (ii) a proposal of clear experiments
capable of proving or rejecting the hypothesis. In
addition, for a hypothesis explaining aging mechanisms,
it would be useful to connect the mechanisms of aging
with the initiation and development of aging-associated
diseases.

There are many hypotheses explaining the nature of
aging [12-17], but no uniform theory exists. This paper
is not a review, and not all of these hypotheses will be
discussed; however, two major concepts explaining
aging-associated processes should be mentioned:

1. Aging is a result of cell-autonomous processes, such
as accumulation of DNA mutations and aberrant

methylations, protein defects, and shortening of
telomeres, that can lead to inhibition of cellular
proliferation and death of non-dividing terminally
differentiated cells (e.g., neurons and cardiomyocytes)
or uncontrolled cellular proliferation and tumor

development.

Numerous data support this concept, such as those
regarding age-related accumulation of various
mutations, including oncogenic-inducing changes,
aging-associated changes in DNA methylation, short-
ening of telomeres, and accumulation of defected
proteins. These events can lead to cell death, carcino-
genic transformation, cellular senescence [13, 18],
aging of mitochondria and the mitochondrial genome
[17, 19] and, in turn, manifest in aging of organs and
tissues associated with various pathologies. One
phenomenon, namely, cell death, clearly plays an
important role in aging and aging- associated diseases.
The idea of the existence of a genetic cell death
program in multicellular eukaryotes, its evolutionary
origin and its roles in morphogenesis and regular
changes in the cellular populations in both embryo-
genesis and adult individuals was proposed more than
35 years ago [20]. Very soon after, this hypothesis was
confirmed by the discovery of genes whose products
were involved in the cell death program [21-24]. In
addition, the roles of this program in carcinogenesis and
aging were postulated. It was hypothesized that “one of
the functions of the cell death program is to eliminate

constantly appearing cells with oncogenic features.
Hence, for the cell to become malignant two events are
necessary, viz. oncogenic mutation and change of the
cell death program” [20]. The first proof of this concept
was obtained by M. Oren [25, 26], who demonstrated
for the first time that initiation of the cell death program
is an important function of p53 as a tumor suppressor,
and p53 mutations are extremely common in different
tumor types. Currently, suppression of the cell death
program is considered an important step in carcino-
genesis. The described hypothesis also considered aging
“a pleiotropic effect of cell death program resulting in
gradual reduction of the amount of non-dividing cells
(most importantly of neurons) damaged or abnormally
functioning due to action of various internal and
external factors”. At least one study, which demons-
trated degenerative processes and early symptoms of
aging in mice with hyperactive p53 alleles, supported
this idea [27].

Thus, this hypothesis adequately explained many
processes in individual cells of multicellular organisms.
However, now more than 35 years later with new data
obtained, it has become obvious that new ideas are
needed to explain various aspects of aging and aging-
associated diseases.

2. Aging is a result of a central program that switches
on at a specific stage of organismic development [28].

Parabiotic effects of blood or plasma transfusion from
young to old animals [28-30], and vice versa [31-32],
support this idea.

The following data, which indicate the role of central
factors in aging, must be discussed, and the analysis of
these data aids in the understanding of the initiating
mechanisms of aging and aging-associated diseases.

1. Inverse comorbidity of cancer and Alzheimer’s and
other neurodegenerative diseases [33-40].

2. Longer life expectancy for women vs. men and much
lower sex-dependent differences, if any, in other
mammals [41-46].

3. Higher AD morbidity and lower frequency of many
common types of cancer in women vs. men [1, 47-49].
4. Higher risk of AD and lower risk of cancer in
subjects with Down syndrome [50-54].

5. Increased life span after hypophysectomy [55, 56].

6. Rejuvenating effect of blood or plasma transfusion
from young donors to elderly recipients in animal
models [28-30].

Although various explanations of each of the individual
phenomenon listed above have been proposed, the
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existence of a central regulatory system, as proposed
below, will unify and greatly aid in understanding these
and other observations.

HYPOTHESIS

I hypothesize the following: the pituitary, hypothalamus
and, perhaps, other endocrine glands, in addition to
producing known hormones, also secrete miRNAs,
which perform fine tuning of numerous processes,
including apoptosis, cellular senescence, mitochondrial
changes, autophagy, and insulin, mTOR, Wnt and other
signaling pathways. Since the hypothalamus-pituitary
gland (PG) axis is regulated by sex hormones, meno-
pause in women and more stepwise changes in
circulating sex hormones in men cause sex-dependent
changes in miRNA secretion by the PG. These aging-
related changes in the spectrum of secreted miRNAs,
e.g. increases in pro-apoptotic and decreases in anti-
apoptotic miRNAs, although mild and slow, lead to
progressive switching from stimulation of develop-
mental processes (proliferation, vascularization, etc.) to
their inhibition, thus providing tumor-suppressive
effects, and to activation of apoptosis and other
degenerative processes [57]. Altogether, when com-
bined with age-related accumulation of various defects
in terminally differentiated non-dividing cells, changes
in the spectrum of secreted miRNAs result in the mani-

festation of general aging symptoms, as well as creation
of a basis for the initiation and development of various
aging-associated diseases.

Thus, this hypothesis combines two major concepts of
aging: accumulation of molecular damages and central
regulation.

WHY miRNA?

Since the hypothesis described above proposes miRNA
as a major player in the new regulatory system, it is
necessary to provide a brief introduction to related
aspects of miRNA biology.

miRNAs are small molecules (~22 nt) that play an
important role in the regulation of target genes by
binding to complementary regions of messenger
transcripts to repress their translation or to regulate
degradation [58,59]. Importantly, more than 2000
miRNAs have been discovered in human cells to date,
and many of these miRNAs are enriched in particular
organ systems, organs, tissues and cell types [60-63].
Many miRNAs enriched in the brain are differentially
expressed in various brain regions, such as the
hippocampus, midbrain, frontal cortex, PG, hypo-
thalamus (Table 1), and different cell types, such as
neurons and glial cells [64-68].

Table 1. miRNAs enriched in hypothalamus, pituitary gland and brain.

miRNA Hypothalamus

Pituitary gland

Brain enrichment

Let-7a +

- +

Let-7b +

Let-7¢ +

miR-7 -

miR-9 -

miR-16 -

miR-22 -

miR-23b -

miR-24 -

miR-26a,b -

miR-27b -

miR-29a-c -

miR-30b,d -

miR-92a,b -

miR-96 -

miR-99a,b

4+ [

miR-103

miR-107

=+ [

miR-125a,b

miR-126 -

miR-127

+

miR-128a +

A e R R S e e S R S S R s
1
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miR-132

miR-134

miR-135a

++]+

miR-136

|+ ]+

miR-138

miR-141

miR-148a

miR-154

miR-181a-c

miR-182

miR-184

miR-195

miR-197

[+ ]+

miR-199b

miR-200a-c

miR-204

miR-212

miR-213

miR-218

miR-323

miR-324

miR-328

miR-329

miR-335

R R e e e e R s R e R S E

miR-338

R ES A S E S F

miR-339

miR-361

miR-369

miR-370

miR-375

miR-377

miR-379

miR-381

miR-410

miR-411

S A N N N E A Ea

miR-424

miR-429

miR-432

miR-433

miR-451

miR-487b

miR-491-5p

miR-494

[+

miR-508

miR-514

miR-539

—+ |

miR-542

miR-628

miR-652

miR-885

S R R R R R e R e e R T R S A S E s E
+ [+

++]+]

miRNAs appear in extracellular space and in bodily
fluids (e.g. plasma, serum, urine, saliva, and milk) via

mechanisms that are not fully understood. The proposed

mechanisms include active secretion in the form of
exosomes and miRNA complexes with proteins, bleb-
bing of apoptotic bodies, budding and shedding of
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microvesicles, etc. [69-73]. Due to their small size,
secondary structure and location in macromolecular
complexes, miRNAs are fairly resistant to RNase
activity, and these forms of cell-free miRNA are,
therefore, relatively stable in the bloodstream and other
bodily fluids. Intracellular concentrations and rates of
miRNA secretion can be dramatically affected by
physiological and pathological cellular processes [74-
76]. It has also been demonstrated in numerous systems
that cell-free miRNAs originating from one cell type
can be acquired by another cell type (by other cells),
resulting in altered expression of proteins due to
specific inhibition of messenger RNA (mRNA) targets
[77-81]. Thus, the term “miRNA hormones” was
proposed [77, 79].

Each miRNA can target multiple mRNAs, and one
mRNA can be regulated by multiple miRNAs targeting
different regions of the 3' untranslated region (UTR).
There are several programs that can be used for in silico
analysis of the complementarity between miRNA and
mRNA; the list of possible targets for some miRNAs
frequently includes hundreds of genes
[http://mirtarbase.mbc.nctu.edu.tw/php/search.php].

Hence, based on sequence analysis alone, a given
miRNA can potentially be involved in numerous
pathologies. The same miRNA can function as a tumor
suppressor in one cell type and as an oncogene in other
cells depending on the spectrum of mRNA targets. In
addition, one mRNA can be regulated by numerous
miRNAs. Detailed analysis of the available data
indicates that significant inhibition of individual
miRNA functioning most likely should be caused by
several miRNAs [68].

Thus, in spite of all the uncertainties in this field, it is
obvious that circulating miRNAs may be good
candidates for regulating metabolic processes in distant
cells in a hormone-like fashion, and in fact, the
regulatory potential of circulating miRNAs has been
experimentally demonstrated [77-81].

WHY the pituitary gland?

The starting point for this hypothesis was the discovery
of miRNA biomarkers capable of predicting progression
from mild cognitive impairment (MCI) to AD dementia.
We investigated the potential use of cell-free miRNAs
circulating in the bloodstream for the early detection of
AD. Since the early stages of AD are characterized by
dysfunction and destruction of synapses that lead to
neuronal death in the hippocampus, we hypothesized
that these processes should cause additional release of
miRNAs enriched in the neurites and synapses of the
affected brain area. To compensate for disease-unrelated

processes (technical problems, such as isolation of
plasma miRNAs or presence of PCR inhibitors, and
biological issues, e.g. changes in blood supply and/or
blood-brain barrier (BBB) permeability), we also
included miRNAs enriched in brain regions that are not
affected by AD and several ubiquitous miRNAs to serve
as normalization markers. Two families of miRNAs
capable of detecting MCI with 87%-96% accuracy were
found [82, 83]. Since approximately 50% of MCI
patients progress to AD dementia, we also looked for
biomarkers capable of detecting those patients among
MCI subjects. In the first study, four such miRNAs
were found, namely, miR-7, miR-125b, miR-16 and
miR-451 [84]. Interestingly, the concentrations of these
miRNAs in plasma were highly correlated, despite miR-
7 and miR-125b being brain-enriched and miR-16 and
miR-451 being ubiquitous miRNAs. The only common
property that we initially found for these four miRNAs
was that they are all highly expressed in the PG [62].
This was the first indication that miRNA secreted from
the PG can be associated with AD development.
Analysis of potential targets of these and other PG-
enriched miRNAs supported the possibility of their
involvement in AD development. Bcl-2 and many other
apoptosis-related genes are among the predicted targets,
and subsequently, the involvement of these miRNAs in
the regulation of apoptosis was experimentally proved
[85-91]. In addition, among the potential targets of these
miRNAs are genes involved in various pathways
associated with aging-related diseases, such as insulin,
TOR, Wnt signaling, autophagy and other pathways.
These miRNAs, the abnormally high concentrations of
which in plasma predict MCI progression to AD
dementia, serve as tumor suppressors in various organs.
Another fact implicating the PG as a source of such
regulation is the above-mentioned anti-aging effect and
extension of the lifespan caused by hypophysectomy in
adult animals [55, 56]. In addition, it was previously
demonstrated that dwarf mice have longer lifespans and
that df/df/APP/PS1 hybrid mice, a cross between dwarf
mice and double transgenic mice expressing human
mutant amyloid precursor protein (APP) and presenilin-
1 (PS1), have reduced AP plaque deposition and less A3
1-40 and AP 1-42 concentrations in the brain [92].
Notably, the age effect on plasma concentrations of PG-
enriched miRNAs (e.g., miR-127-5p, miR-154, miR-
369, miR-381, miR-410, and miR-411) is 10-20 times
lower in dwarf mice than in normal controls [93].
Recently, we performed our own study of sex- and
aging-dependent changes in the spectrum of brain-
enriched miRNAs in human plasma and found, among
other observations, sex-dependent changes in the
spectrum of miRNA hormones secreted by the PG
during aging [94]. It should be mentioned that, although
the mechanisms by which miRNAs cross the BBB are
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not well understood, the presence of brain-specific and
brain-enriched miRNAs in human and animal plasma/
serum and other bodily fluids, supported by a growing
body of data [95-99], indicates that these miRNAs are
able to cross the BBB. miRNA-containing exosomes
and other microvesicles, as well as complexes with
proteins and lipoproteins, are being investigated as
potential carriers of miRNAs across the body barriers.
Some data indicate that miRNAs are involved in
regulation of the cerebrovascular network of the brain
and may affect BBB disruption [100-103] leading to
vascular cognitive impairment. Thus, while it is clear
that miRNA hormones secreted by the PG can affect
neurons, glial and vascular cells in the brain, the
mechanisms by which they appear in the bloodstream
still need to be elucidated. Further, the proposed hypo-
thesis does not exclude a role of locally synthesized
miRNAs or of miRNAs expressed in different glands or
in the cells of the immune system. Although in the
present paper the hypothesis is mainly explained on the
basis of central regulation of cell death, miRNA
hormones may be involved in regulation of other aging-
related processes. Cell death was chosen as an example
here because the role of cell death in aging and aging-
associated diseases, as well as the mechanisms of cell
death and involvement of miRNAs in the regulation of
apoptosis, have been investigated to date in greater
detail.

There are other observations supporting the above
hypothesis: (i) androgen-deprivation therapy in the
treatment of prostate cancer is associated with an
increased risk of dementia [104]; (i) women with
surgically premature menopause have an increased risk
of both MCI and AD [105]; (iii) injection of PG extract
in growth hormone treatment led to AP deposition [106,
107]; and (iv) finally, changes in the spectrum of
miRNAs secreted by the hypothalamus and the role of
these miRNAs in aging has recently been demonstrated
[108], results that were in good agreement with the
proposed hypothesis since the role of the hypothalamus
in the regulation of hormone secretion by the PG is a
well-known phenomenon. Most likely, this pheno-
menon is similar to changes in the secretion of other PG
hormones due to the decrease in the concentrations of
sex hormones by the end of the female reproductive
period, which is important for preventing the
accumulation of mutations in germ cells. Importantly,
females in other mammalian species, including non-
human primates, do not possess the menopause charac-
teristic of women in mid-life [109]. In addition, aged
monkeys and apes (as well as dogs) can accumulate
large quantities of AP but remain without a dementia-
like disorder [110].

Explanation of various aging-associated processes in
the context of the proposed hypothesis

In this chapter, I will briefly summarize how the
proposed hypothesis explains the phenomena outlined
in the Introduction.

1. Inverse comorbidity of cancer and Alzheimer’s and
other neurodegenerative diseases. Prospective and
retrospective studies performed in different countries
have convincingly demonstrated that the chances of
developing cancer are significantly lower than average
for patients with AD and other neurodegenerative
diseases. Similarly, cancer survivors have lower
chances of developing AD [33-40]. There are two
miRNA-associated factors that can explain why subjects
with AD have a lower chance of developing cancer, and
subjects who survive cancer have a lower probability of
developing AD. First, if the PG secretes more pro-
apoptotic miRNAs (e.g. Bel-2-inhibiting miRNAs), this
will decrease the chance of developing cancer but
increase the chances of developing neuro- and other
degenerative diseases, and vice versa; higher levels of
anti-apoptotic miRNAs stimulate cancer development
but decrease the chance of developing AD. Of course,
the same is true for miRNAs that regulate other cancer-
and degeneration-related pathways. Second, it is
interesting that many synapse/dendrite-enriched
miRNAs that are released in the early stages of
neurodegenerative diseases due to neurite dysfunction
and destruction and then circulate in the bloodstream
are pro-apoptotic, which decreases the chance of
developing cancer. On the other hand, tumor cells
secrete anti-apoptotic miRNAs that can inhibit
degenerative processes, though the ability of these
miRNAs to reach the brain is questionable.

2. Higher AD morbidity and lower frequency of many
common types of cancer in women vs. men. Two-thirds
of Americans living with AD dementia are women, and
neither their longer lifespans nor differences in lifestyle
compared to men can explain these numbers. It has been
suggested that the higher frequency of female AD
morbidity is caused by increased chances of AD
initiation earlier in life due to menopause [111, 112],
although the mechanisms underlying this phenomenon
are not clear. The proposed hypothesis explains these
sex differences by changes in the spectrum of secreted
PG miRNA hormones from pro-developmental to anti-
carcinogenic, changes that are associated with decreased
levels of estrogen. This switch decreases the chances of
carcinogenesis and increases the chances of neuro-
degenerative processes. Due to menopause, all of these
processes start in females about 10 years earlier than in
males. The estrogen dependence of many PG-enriched
miRNAs [113], as well as sex-dependent differences in
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their plasma concentrations in the period of 46-65 years
of age [94], has been recently demonstrated.

3. Higher risk of early AD and lower risk of cancer in
subjects with Down syndrome. Since menopause in
females and the decrease in sex hormone production in
male subjects with Down syndrome occur much earlier
than in healthy subjects, the switch in the spectrum of
PG-secreted miRNAs described in the previous
paragraph decreases the chances of carcinogenesis and
increases the chances of neurodegenerative processes.

4. Longer life expectancy in women vs. men and much
lower sex-dependent differences, if any, in other
mammalian species. Again, this phenomenon can be
explained by the earlier switch in the spectrum of PG-
secreted miRNA hormones in women than in men. This
phenomenon results in more effective elimination of
cells with dangerous mutations and other abnormalities
and decreased chances of cancer due to menopause.
Since other mammalian species do not undergo meno-
pause, there are no sex differences throughout the
lifespan.

5. Hypophysectomy increases lifespans. Many labs
using different animals have demonstrated that
hypophysectomies performed after organism
development increase lifespans. Dwarf mice, which
have a hypofunctional PG, have less cancer and longer
lifespans. Victoria et al. [93] demonstrated significantly
different spectrums of miRNAs circulating in the
plasma of normal and Ames dwarf mice. Many of these
miRNAs are enriched in the PG. These data indicated
the roles of the PG and secreted miRNAs in normal
aging and lifespan; however, much more detailed
studies are needed to explain the metabolic changes
involved.

6. Parabiotic rejuvenating effect of blood or plasma
transfusion from young donors to elderly recipients in
animal models. It is quite possible that the effect of
plasma transfusion is at least partially caused by
circulating miRNAs. The inhibitory effect of plasma-
heating denaturation [26], often interpreted as an
indication of the protein nature of active parabiotic
compounds, does not exclude miRNA participation
since after such treatment, the miRNAs are degraded in
the circulation by RNases.

Currently, the proposal and discussion of specific
mechanisms of miRNA hormone actions based on their
potential targets does not make much sense since, as
discussed above, each miRNA can regulate numerous
mRNA targets, and each mRNA can be regulated by
many miRNAs. Thus, the effects of miRNA hormones
and of their spectrum switch due to the decrease in sex

hormone levels can be different in various tissues, being
determined by gene expression profiles. At the same
time, if several miRNA hormones that affect the same
process are changed in one direction (e.g. miR-7, miR-
16, miR-125b and miR-451a, all of which inhibit bcl-2
expression), one can expect a resulting modulation of
apoptosis.

Experimental tests of the hypothesis

Of course, as with any hypothesis, this one, in addition
to explaining numerous observations, needs to be
proven experimentally. The following studies could be
useful to prove or reject the proposed hypothesis:

1. Study of age-dependent changes in circulating
miRNA (e.g., pro- and anti-apoptotic) concentrations.

2. Detailed analysis of age- and sex-dependent miRNA
expression in human and animal PGs and the correlation
of this expression with sex hormone levels.

3. miRNA secreted in vitro by the PGs of humans and
animals of different ages.

4. Analysis of the forms (exosomes and other vesicles,
complexes with proteins and lipids) of PG-secreted
miRNAs, their correlations with the frequency of aging-
associated diseases and the effects on apoptosis in
different cell types.

5. Retrospective studies of circulating PG-enriched
miRNAs in pre-AD and pre-cancer subjects.

6. Parabiotic effects of different fractions of circulating
miRNAs.

7. Cancer frequency and miRNA levels in plasma after
hypophysectomy, low-calorie diets, etc.

8. Testing the effects of castration or sex hormone
inhibition in animal AD models.

Many more experiments can be proposed, including
modeling with sex hormone injections and analysis of in
vivo changes in miRNA expression in the PG or in
circulation.

BRIEF SUMMARY

The objective of this paper is to stimulate the exchange
of ideas and research in the area of aging regulation by
miRNA hormones secreted by the hypothalamus-PG
axis. The proposed concept combines local and central
mechanisms of aging and its associated processes and is
consistent with many observations that are currently
difficult to explain. Apoptosis was selected as an
example since it is one of the most investigated
phenomena in this area, and miRNAs involved in the
regulation of apoptosis have been investigated relatively
well. Clearly, this concept can be applied to other
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processes in the initiation and realization of aging, such
as cellular senescence [13, 18], aging of the mito-
chondrial genome and of mitochondria in general [17,
19], DNA methylation [114], and other processes.
Similarly, neurodegenerative diseases and carcino-
genesis are discussed as two examples of aging-
associated pathologies because, on the one hand, there
are numerous observations both tying these factors to
aging and, on the other hand, contraposing them to each
other. In addition, apoptosis is involved in the
regulation of both pathologies, thereby simplifying the
presentation of the hypothesis. Other pathological
processes associated with aging may be regulated by
miRNA hormones and hopefully will be investigated
and discussed in the future. Some of these processes,
such as cerebrovascular injuries leading to BBB
dysfunction and changes in blood supply, are directly
involved in the processes underlying neurodegeneration
[100-103]. In addition, the proposed hypothesis does
not exclude alternative mechanisms contributing to
aging, such as telomere shortening, DNA methylation,
mitochondrial damages, effects of other hormones, etc.

The proposed hypothesis introduces the idea that sex
hormone-dependent changes in the spectrum of
PG/hypothalamus-secreted miRNA hormones increase
the chances of apoptosis caused by the accumulation of
age-related molecular defects, and thus, this hypothesis
combines two major concepts of aging: the accu-
mulation of molecular damages and central regulation.
If this hypothesis is proven by experimental testing, it
will have numerous practical applications, such as the
following: (i) aging modification via application of sex
hormones under the control of circulating miRNA
hormones; (ii) aging modification via separate delivery
of respective miRNA hormones into the brain and body
blood circulation, which can be even more effective
after preliminary DNA sequencing to evaluate a
subject’s predisposition to various pathologies; (iii)
treatment of AD with delivery of anti-apoptotic miRNA
hormones to the brain with no cancer activation; and
(iv) creation of better animal AD and other aging-
associated disease models by introducing artificial
menopause.
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