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ABSTRACT

Aging is a major risk factor for many common and life-threatening pathologies. The development of reliable
biomarkers of aging should lead to a better understanding of aging-associated processes and facilitate the
development of therapeutic regimens that delay aging. Levels of 38 brain-enriched microRNAs (miRNA)
circulating in plasma were measured by quantitative RT-PCR in two age groups: 26-35 and 56-65 years old. An
miRNA-pair approach was used for data normalization and determination of effective miRNA biomarker ratios.
Nineteen miRNAs, comprising miRNA pairs and pair combinations (classifiers) that effectively differentiated the
age and sex (individual pairs: 74-95% and 68-95%, respectively; classifiers: up to 100% accuracy) groups, were
selected for further analysis of plasma samples from 5 donor age groups: 26-35, 36-45, 46-55, 56-65 and 66-75
years old. Dynamic changes in the plasma concentrations of certain miRNAs occurred at different ages in
females and males, with peaks in the 46-55-year-old and 56-65-year-old groups, respectively. This finding
suggests that the changes in miRNA levels can reflect centrally regulated processes, including changes in
hormone levels during menopause. Certain miRNAs and miRNA pairs correlated with age in the sex-stratified
groups at different ages and should be investigated further as potentially promising biomarkers of brain aging.

INTRODUCTION

Aging-related diseases have surpassed infectious
diseases as the main cause of premature death in
developed countries. Cancer, diabetes, cardiovascular
diseases (CVD), Alzheimer’s (AD), Parkinson’s (PD)
and other neurodegenerative diseases (NDs) are the
most common aging-related pathologies. The incidence
of these diseases increases rapidly with age, leading to
morbidity and very often death [1]. These diseases have
a highly negative economic impact on patients, their
families, and society. Numerous data have demonstrated
that the clinical manifestation of aging-associated
diseases is preceded by prolonged (10-20 years)
asymptomatic periods of pathological development [2-

5]. Thus, a better understanding of the underlying
processes of aging could clarify the nature of triggers
involved in the initiation of these processes and the
early stages of development. Despite the significant
efforts made in recent years that focused on elucidating
the mechanisms of aging-related disease progression,
much more work is needed to develop effective assays
for early detection and treatment of these diseases.
Furthermore, successful treatment of one disease does
not necessarily lead to significant gains in life span [6-
8] because patients can die from other pathologies. As a
result, a popular emerging concept is that focusing on
the development of drugs targeting aging early and at its
core may be more beneficial than treatment of particular
diseases [9-10].
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Aging has been described as “the time-dependent
decline of functional capacity and stress resistance,
associated with increased risk of morbidity and
mortality” [11]. The data regarding the increase in
longevity of various species via low-calorie diets and
modulation of the IGF, sirtuin, mTOR and other
pathways, as well as recent results from studies of
parabiosis, indicate that a significant delay in aging is
possible in principle [12, 13]. Critical for developing
and testing approaches to sustaining healthy living and
delaying aging is the development and validation of
minimally invasive, cost-effective biomarkers of aging.
In addition, a quantitative definition of biomarker
ranges that are characteristic of normal aging is also
important for early detection of aging-related diseases.
For example, synapse dysfunction and loss, ultimately
followed by neuronal death, accompany normal aging
[14-16]. However, rapid progression of these processes
in a particular brain region could be an early indication
of a neurodegenerative disease affecting this region.
The same is true for other organs and tissues.

The American Federation for Aging Research [17] and
the European MARK-AGE Consortium [11] have
proposed several criteria for a successful biomarker of
aging: (1) it must predict the rate of aging and assess
where a person is in his/her lifespan better than the
person’s chronological age; (2) an assay for measuring
such a biomarker should be minimally invasive; and (3)
the biomarker should be useful in animal models, as
well as in humans, since preliminary testing of
essentially all drug candidates and many therapeutic
regimens is performed in non-human subjects.
Traditional biomarkers of aging are based on evalua-
tions of an individual’s general physical status, function
and health of various organ systems (cardiovascular,
pulmonary), cognitive function, etc. The potentially
promising biomarkers of aging, which are currently
being investigated, can be divided into several general
groups [11-13]: (1) genetic biomarkers, including the
length of telomeres in lymphocytes and other cells, age-
related epigenetic changes mainly in DNA methylation,
and changes in mitochondrial DNA; (2) protein-based
biomarkers, including markers based on protein
glycation and levels of metal-binding proteins; (3)
metabolic parameters, such as hormones, lipids, and
creatinine; (4) immunological and inflammatory mar-
kers, including concentrations of immunoglobulins,
cytokines, and C-reactive protein in the bloodstream;
(5) markers of oxidative stress; and (6) imaging bio-
markers capable of registering aging-associated brain
changes. To date, there is no biomarker that satisfies the
three criteria listed above; some biomarker candidates
are not optimal for broad clinical use because they are
highly variable, invasive, laborious and/or expensive or
they cannot be used in animal models.

In the current study, we assessed whether aging-
associated processes in various brain regions can be
detected in vitro via quantitative analysis of circulating
brain-enriched miRNAs detectable in the bloodstream.
miRNAs play important roles in the regulation of target
genes by binding to complementary regions of
messenger transcripts and repressing their translation or
by regulating degradation [18,19]. Over 2000 miRNAs
have been discovered in human cells to date, and many
of these miRNAs are specific to or are overexpressed in
certain organs/tissues/cells [20-23]. Some miRNAs,
including those that are cell-specific, are enriched in
certain cellular compartments, for example, in neurites
and synapses [21-28]. Intracellular concentrations and
rates of secretion of miRNAs can be dramatically
affected by physiological and pathological cellular
processes [29-31]. The presence of miRNAs from
various organs and cell types in the blood is well
documented [32-35]. Because these cell-free, circulating
miRNAs can be organ-specific and are relatively stable
in the blood, they are attractive biomarker candidates
for various physiological and pathological processes.
miRNAs appear in extracellular space and in bodily
fluids due to a variety of mechanisms that remain not
fully understood; these mechanisms include secretion,
excretion, and blebbing [36-38]. Our studies that have
been performed to date suggested that various
processes, such as cell dysfunction and neurite/synapse
loss, can lead to changes in miRNA concentrations in
plasma, representing a rich source of potential bio-
markers that detect pathology in the corresponding
organ [39-44]. In addition, many publications have
demonstrated that miRNA secretion, circulation in
bodily fluids, and uptake by other cells are relatively
common mechanisms of cell-to-cell communication,
particularly in carcinogenesis, metastasis formation and
other processes [45-49]. Recently, it was also
demonstrated that stem cells of the hypothalamus
secrete miRNAs that are transported to the CSF and
potentially reach the bloodstream [50]. These miRNAs
play an important role in aging-related processes. In this
study, we pursue a targeted approach based on quan-
titative RT-PCR (qRT-PCR) analysis of a relatively
small number of pre-selected miRNAs that are (1)
enriched in different brain regions and (2) are present at
detectable levels in plasma [21,22,51-57]. In addition,
we used a miRNA-pair approach [39-44,58-61]. The
concentration ratios of all miRNA pairs from the same
sample were calculated, and the most promising pairs
for effective differentiation of two populations or
correlation with the parameter of interest, e.g. age, were
selected for further testing and validation. This
approach has proven to be particularly effective in the
analysis of plasma concentrations of brain-enriched
miRNAs to compensate not only for technical
variability but also for physiological variability, e.g.
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changes in blood supply or blood-brain barrier
permeability. Subject-to-subject variability is further
decreased if a miRNA biomarker pair is comprised of
two miRNAs, the plasma concentrations of which are
highly correlated [39].

In this study, we evaluated the age- and sex-dependence

of plasma concentrations of miRNAs enriched in
different brain regions.
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RESULTS

The study was conducted in two stages. In the first set of
experiments, the concentrations of 38 miRNAs (see
Table 1) were measured by qRT-PCR in plasma samples
from two groups of subjects: 26-35-year-olds (“young”)
and 56-65-year-olds (“old”). The pre-selected set of
miRNAs included brain-enriched miRNAs identified in
our previous studies as potential biomarkers of neuro-
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Figure 1. Separation of the analyzed groups in Study 1. (A, B, C) Old males vs. young males, old females vs. young
females, and all old subjects vs. all young subjects, respectively. (D, E, F) Young females vs. young males, old females vs.

old males, and all females vs. all males, respectively.
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degenerative diseases

[39, 40, 42] and additional
miRNAs that are (i) enriched in different brain regions,
neurons and glial cells, and (ii) reported in the literature
and/or determined in our previous studies to be detectable

Table 1. miRNAs tested in the first study.

in plasma. In this experiment we found miR-149, miR-
154, miR-184, miR-369-3p, and miR-129-3p to be barely
detectable and, hence, excluded these miRNAs from the
analysis. The Cts for miR-204, miR-212, and miR-96 in

miRNA [Brain enrichment [21,22,51-57] [Present in synapses Family
1 Let-7e Cer, MB, PG + miR-132
2 miR-7 PG, FC, Hip +
3 miR-9 FC, MB, Hip, Cer miR-132
4 miR-16 Ubiquitous, PG
5 miR-96 PG
6 miR-99a PG, MB, FC
7 miR-107 FC, PG, Hip, MB miR-132
8 miR-127-3p  |PG, MB, FC + miR-134
9 miR-128a FC, Hip, Cer + miR-132
10 miR-129-3p [FC, MB
11 miR-132 PG, Hip, FC, MB + miR-132
12 miR-134 IMB, Hip, PG + miR-134
13 miR-135a PG, Hip + miR-132
14 miR-149 FC, MB
15 miR-153 Hip, FC
16 miR-154 PG, FC, MB
17 miR-181a MB, FC miR-132
18 miR-182 PG
19 miR-184 Hip, PG
20 miR-195 PG, MB
21 miR-200a PG
22 miR-204 Cer, MB, PG
23 miR-323-3p  [FC, Hip, MB + miR-134
24 miR-335-5p  [PG, Hip miR-132
25 miR-338 FC, Hip, MB, Cer
26 miR-370 FC, PG + miR-134
27 miR-369 PG
28 miR-375 PG
29 miR-382 Hip, FC + miR-134
30 miR-410 PG, MB miR-134
31 miR-411 PG, Hip, FC miR-134
32 miR-433 PG, MB + miR-134
33 miR-451 Ubiquitous / PG, MB, FC
34 miR-485-5p  Hip + miR-134
35 miR-487b PG, FC, MB miR-134
36 miR-488 Hip, Cer
37 miR-491-5p [MB, FC + miR-132
38 miR-874 Cer, Hip + miR-132

Cer: cerebellum; FC: frontal cortex; Hip: hippocampus; MB: midbrain; PG: pituitary gland.
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many samples were higher than 36; although these data
were included in the initial analysis, these miRNAs were
not selected for the second set of experiments.

Age-related changes and sex-dependent differences in
the concentrations of circulating brain-enriched
miRNAs in plasma were compared as follows: (1)
“young” vs. “old” males; (2) “young” vs. “old” females;
(3) “young” males vs. “young” females; and (4) “old”
males vs. “old” females. Although the number of
samples in each group was relatively small, Figure 1,

Table 2 and Table S1 demonstrate that the groups were
effectively distinguished from each other by the miRNA
pairs and their combinations (classifiers). These data
indicated that the plasma concentrations of certain
brain-enriched miRNAs are sex- and age-dependent.
miRNAs comprising the most effective pairs were
chosen for more detailed analyses in the larger second
stage of the study. Our previous data were also
considered. In particular, in Sheinerman et al. [39], the
miR-134 family most effectively differentiated “young”
(21-50 y.0.) and “old” (71-85 y.o.) control groups.

Table 2. Separation of the analyzed groups in Study 1.

Old males vs. young males
Pairs Sens Spec Accur AUC P-Value

miR-135a / miR-128a 0.90 0.90 0.90 0.99 1.20E-04
miR-382 / miR-127 1.00 0.70 0.85 0.99 1.20E-04
miR-212 / miR-9* 0.90 1.00 0.95 0.98 2.90E-04
miR-181a / miR-9* 1.00 0.90 0.95 0.98 2.20E-04
miR-132 / miR-9* 0.90 0.90 0.90 0.98 2.20E-04
miR-135a / miR-129-3p 0.84 0.84 0.84 0.97 3.80E-04
miR-135a / miR-107 0.86 0.86 0.86 0.97 3.80E-04
miR-99a / miR-9* 0.94 0.73 0.83 0.97 3.80E-04
miR-212 / miR-129-3p 0.77 0.87 0.82 0.96 3.80E-04
miR-181a / miR-107 0.78 0.78 0.78 0.96 8.50E-04
miR-411 / miR-127 0.88 0.69 0.79 0.96 6.60E-04
miR-212 / miR-128a 0.86 0.77 0.81 0.95 6.60E-04
miR-382 / miR-134 0.82 0.72 0.77 0.94 1.10E-03
miR-135a / miR-107 +

miR-382 / miR-134 + 1.00 1.00 1.00 1.00 6.70E-05
miR-212 / miR-128a

Old females vs. young females
Pairs Sens Spec Accur AUC P-Value
miR-382 / miR-323-3p 0.60 1.00 0.80 0.99 1.20E-04
miR-99a / miR-370 0.70 1.00 0.83 0.98 4.20E-04
miR-195 / miR-16 0.90 0.90 0.90 0.98 2.90E-04
miR-135a / miR-370 0.70 1.00 0.83 0.98 4.20E-04
miR-382 / miR-127 0.90 0.90 0.90 0.98 2.20E-04
miR-382 / miR-433 0.90 0.80 0.85 0.98 2.20E-04
miR-99a / miR-433 0.80 0.90 0.85 0.96 8.50E-04
miR-99a / miR-154 0.62 0.90 0.74 0.96 1.10E-03
miR-181a / miR-370 1.00 0.75 0.89 0.96 7.80E-04
miR-181a / miR-9* 0.86 0.86 0.86 0.96 5.00E-04
miR-181a / miR-491 0.80 0.90 0.85 0.96 6.60E-04
miR-382 / miR-370 0.88 0.73 0.81 0.96 1.10E-03
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miR-375 / miR-433 0.80 0.80 0.80 0.94 1.10E-03

miR-375 / miR-433 +
miR-135a / miR-370 + 1.00 1.00 1.00 1.00 6.70E-05
miR-382 / miR-323-3p

All old subjects vs. all young subjects

Pairs Sens Spec Accur AUC P-Value
miR-181a / miR-9* 1.00 0.85 0.93 0.96 6.00E-07
miR-135a / miR-9* 0.85 1.00 0.93 0.95 2.30E-06
miR-382 / miR-127 0.88 0.83 0.86 0.95 1.30E-06
miR-382 / miR-134 0.86 0.81 0.84 0.95 1.70E-06
miR-382 / miR-323-3p 0.82 0.82 0.82 0.94 2.90E-06
miR-99a / miR-9* 0.80 0.80 0.80 0.92 7.00E-06
miR-204 / miR-9* 0.84 0.84 0.84 0.92 9.00E-06
miR-181a / miR-107 0.75 0.80 0.78 0.91 1.60E-05
miR-382 / miR-433 0.84 0.69 0.76 0.91 7.00E-06
miR-135a / miR-128a 0.80 0.70 0.75 0.89 5.80E-05
miR-487b / miR-127 0.75 0.75 0.75 0.88 4.60E-05
miR-135a / miR-338-3p 0.79 0.74 0.77 0.87 1.50E-04
miR-99a / miR-338-3p 0.80 0.65 0.73 0.87 1.40E-04
miR-204 / miR-9* +
miR-382 / miR-127 + 1.00 1.00 1.00 1.00 2.90E-08

miR-382 / miR-323-3p

Young females vs. young males

Pairs / Combos Sens Spec Accur AUC P-Value

miR-212 / miR-874 0.86 0.86 0.86 0.97 2.90E-04
miR-212 / miR-7 0.82 0.93 0.88 0.95 8.50E-04
miR-212 / miR-195 0.83 0.73 0.78 0.94 1.40E-03
miR-212 / miR-128a 0.79 0.69 0.74 0.93 2.30E-03
miR-212 / miR-375 0.80 0.70 0.75 0.92 1.80E-03
miR-212 / miR-16 0.77 0.68 0.73 0.90 2.90E-03
miR-204 / miR-128a 0.78 0.78 0.78 0.90 2.90E-03
miR-135a / miR-128a 0.74 0.74 0.74 0.89 5.70E-03
miR-212 / miR-184 0.67 0.74 0.70 0.89 1.70E-02
miR-411 / miR-323-3p 0.76 0.76 0.76 0.89 7.00E-03
miR-181a / miR-107 0.62 0.73 0.68 0.88 7.00E-03
miR-212 / miR-182 0.80 0.70 0.75 0.88 5.70E-03
miR-212 / miR-491 0.80 0.60 0.70 0.88 4.60E-03
miR-181a / miR-16 +

miR-135a / miR-128a + 1.00 1.00 1.00 1.00 6.70E-05

miR-212 / miR-375
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Old females vs. old males
Pairs / Combos Sens Spec Accur AUC P-Value
miR-212 / miR-132 0.90 1.00 0.95 0.98 2.20E-04
miR-375 / miR-7 0.90 0.80 0.85 0.97 3.80E-04
miR-200a / miR-7 0.90 0.90 0.90 0.97 5.00E-04
miR-204 / miR-7 0.77 0.86 0.82 0.96 5.00E-04
miR-204 / let-7e 0.84 0.73 0.79 0.95 6.60E-04
miR-195 / miR-7 0.74 0.84 0.79 0.95 8.50E-04
miR-382 / miR-134 0.85 0.75 0.80 0.95 8.50E-04
miR-200a / let-7e 0.71 0.80 0.76 0.94 1.80E-03
miR-9% / miR-7 0.83 0.83 0.83 0.94 8.50E-04
miR-9* / miR-135a 0.80 0.70 0.75 0.94 1.40E-03
miR-212 / miR-7 0.80 0.80 0.80 0.94 8.50E-04
miR-181a / miR-7 0.82 0.72 0.77 0.94 8.50E-04
miR-874 / miR-7 0.90 0.70 0.80 0.94 6.60E-04
ﬁﬁj}é ; ﬂﬁ:gi i 1.00 1.00 1.00 1.00 | 6.70E-05

All females vs. all males
Pairs / Combos SENS SPEC ACCUR AUC P-Value
miR-212 / miR-7 0.84 0.84 0.84 0.93 8.00E-06
miR-212 / miR-132 0.82 0.77 0.79 0.92 1.10E-05
miR-212 / miR-16 0.82 0.77 0.79 0.89 6.40E-05
miR-204 / miR-128a 0.76 0.81 0.78 0.86 2.10E-04
miR-874 / miR-7 0.67 0.77 0.72 0.85 2.830E-04
miR-212 / miR-107 0.73 0.68 0.71 0.84 4.60E-04
miR-212 / miR-128a 0.70 0.70 0.70 0.84 5.10E-04
miR-212 / miR-195 0.64 0.79 0.72 0.84 4.60E-04
miR-204 / miR-7 0.82 0.56 0.69 0.84 2.830E-04
miR-9% / miR-7 0.75 0.75 0.75 0.84 3.80E-04
miR-181a / miR-7 0.62 0.72 0.67 0.84 2.50E-04
miR-212 / miR-874 0.69 0.69 0.69 0.83 7.40E-04
miR-204 / miR-107 0.71 0.76 0.74 0.83 8.10E-04
miR-212 / miR-195 +
miR-204 / miR-128a + 0.85 0.95 0.90 0.97 5.20E-07
miR-9* / miR-7

Nineteen miRNAs (see Table S1) were selected for the
analysis of the plasma samples from 100 subjects: 5
groups, namely, 26-35, 36-45, 46-55, 56-65 and 66-75-
year-olds, with 10 females and 10 males in each group.
Figure 2 presents the age-dependent changes in the
plasma concentrations of individual miRNAs in

females and males (averages for 10 subjects in each
group). Several observations are of interest here: (1)
among the tested miRNAs, the concentration of no
single miRNA correlated with age in all (female and
male) subjects; (2) the age-dependent changes in
miRNA concentrations were different in male and
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female subjects; (3) the age-dependent changes in the
concentrations of some miRNAs, e.g. members of the
miR-134 family, were similar across the sex-stratified
groups; and (4) there were peaks in the plasma con-
centrations of many miRNAs in the 46-55-year-old
females and the 56-65-years-old males.

One key finding of the study was that, among the tested
miRNAs, no single one could be used as an age
biomarker for the entire tested age continuum. More
detailed analyses also revealed that there was no
miRNA pair formed by the tested miRNAs that
correlated with a subject’s age over a prolonged time
period. We further analyzed the correlations of indivi-
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expected, from the dynamics of miRNA plasma
concentrations (Figure 2), the age spans, during which
correlations between the levels of certain individual
miRNAs and subject age are observed, were sig-
nificantly different for female and male subjects.
Further, although the division of age groups was done
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needed to assess the physiological relevance of the
present findings, the age groups were effectively
separated from each other by multiple miRNA pairs and
their combinations (Figure S2, Table 3).
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Figure 2. Age-dependent changes in plasma concentrations of the tested brain-enriched miRNAs. Data are presented
as the average and standard deviation for each age group. X axis: age; Y axis: number of miRNA copies per 1 ul of plasma.
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presented as average and standard deviation for each age cohort. X axis: age; Y axis: correlation of miRNA plasma
concentrations with subject age in the analyzed groups (r).
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Table 3. miRNA pairs and their combinations that differentiated
consecutively aged males from each other.

M_36/M_26 group

Pairs / Combos SENS SPEC ACCUR AUC P-Value
miR-135a / let-7e 0.77 0.86 0.82 0.94 1.40E-03
miR-135a / miR-487b 0.86 0.76 0.81 0.9 4.60E-03
miR-132 / miR-411 0.67 0.9 0.79 0.89 1.00E-02
miR-132 / miR-127 0.76 0.76 0.76 0.83 1.90E-02
miR-382 / miR-487b 0.76 0.76 0.76 0.87 1.60E-02
miR-135a / miR-411 0.78 0.7 0.74 0.87 1.20E-02
miR-135a / miR-127 0.82 0.64 0.73 0.86 8.60E-03
miR-132 / miR-487b 0.77 0.68 0.73 0.82 1.90E-02
miR-134 / miR-127 0.77 0.68 0.73 0.83 2.30E-02
miR-135a / miR-134 0.72 0.72 0.72 0.86 1.60E-02
miR-135a / miR-181a 0.8 0.6 0.7 0.84 1.90E-02
miR-99a / miR-487b 0.58 0.78 0.68 0.81 2.70E-02
miR-99a / miR-127 0.58 0.77 0.68 0.81 2.70E-02
miR-135a / miR-382 0.67 0.67 0.67 0.82 1.90E-02
miR-135a / miR-7 0.77 0.58 0.67 0.83 4.40E-02
miR-134 / miR-487b 0.57 0.76 0.66 0.8 2.70E-02
miR-135a / miR-370 0.88 0.44 0.65 0.81 3.80E-02
miR-491-5p / miR-411 0.74 0.57 0.65 0.8 4.70E-02
miR-874 / miR-487b 0.6 0.7 0.65 0.81 4.40E-02
miR-135a / miR-433 0.67 0.6 0.63 0.8 4.00E-02
e e 090 | 080 | 085 | 095 | 8.50E-04
M_46 / M36

Pairs / Combos SENS SPEC ACCUR AUC P-Value
miR-370 / miR-134 0.78 0.78 0.78 0.91 6.60E-03
miR-127 / miR-135a 0.77 0.67 0.72 0.83 2.30E-02
miR-127 / miR-134 0.66 0.76 0.71 0.8 2.70E-02
miR-134 / miR-135a 0.62 0.73 0.68 0.83 4.40E-02
miR-323-3p / miR-135a 0.8 0.5 0.65 0.82 3.20E-02
miR-7 / miR-135a 0.63 0.63 63.00 0.78 1.10E-02
miR-487b / miR-134 0.66 0.56 0.61 0.78 8.10E-02
miR-7 / miR-135a +

miR-127 / miR-134 + 0.90 0.80 0.85 0.92 3.60E-03
miR-487b / miR-134

M _56 / M46

Pairs / Combos SENS SPEC ACCUR AUC P-Value
miR-433 / miR-182 0.88 0.7 0.78 0.84 1.80E-02
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miR-433 / miR-411 0.75 0.8 0.78 0.91 4.30E-03

miR-433 / miR-132 0.78 0.73 0.75 0.81 5.00E-02
miR-382 / miR-411 0.72 0.76 0.74 0.86 1.50E-02
miR-433 / miR-195 0.63 0.8 0.72 0.86 3.40E-02
miR-491-5p / miR-181a 0.7 0.7 0.7 0.81 3.20E-02
miR-135a / miR-182 0.59 0.79 0.69 0.84 1.60E-02
miR-491-5p / let-7e 0.74 0.63 0.69 0.81 3.20E-02
miR-433 / miR-181a 0.71 0.66 0.68 0.83 2.80E-02
miR-135a / miR-181a 0.62 0.73 0.68 0.82 2.70E-02
miR-370 / miR-182 0.48 0.83 0.67 0.85 2.80E-02
miR-487b / miR-411 0.59 0.73 0.67 0.89 2.30E-02
miR-135a / miR-7 0.49 0.78 0.64 0.81 2.70E-02
miR-433 / miR-370 0.47 0.68 0.58 0.8 4.60E-02
miR-433 / miR-411 +

miR-433 / miR-370 + 0.88 0.90 0.89 0.96 6.60E-04

miR-370 / miR-182

M_66 / M56
Pairs / Combos SENS | SPEC | ACCUR | AUC | P-Value
miR-182 / miR-370 0.69 0.83 0.76 093 | 7.50E-03
miR-134 / miR-382 0.8 0.67 0.74 084 | 1.50E-02
miR-7 / miR-370 0.71 0.71 0.71 0.87 | 2.00E-02
miR-195 / miR-370 0.78 0.65 0.71 087 | 2.00E-02
miR-411 / miR-382 0.67 0.75 0.71 0.84 | 2.40E-02
miR-182 / miR-433 0.58 0.85 0.7 0.9 7.10E-03
miR-195 / miR-433 0.63 0.79 0.7 0.84 | 3.40E-02
miR-874 / miR-433 0.84 0.53 0.7 0.84 | 2.80E-02
miR-181a / miR-370 0.63 0.76 0.69 0.88 | 2.70E-02
miR-874 / miR-370 0.77 0.62 0.69 082 | 4.80E-02
miR-132 / miR-433 0.56 0.82 0.68 0.86 | 1.50E-02
miR-127 / miR-370 0.6 0.75 0.68 082 | 4.80E-02
miR-181a / miR-433 0.6 0.75 0.67 0.83 | 2.80E-02
miR-7 / miR-433 0.6 0.75 0.67 083 | 2.30E-02
miR-134 / miR-370 0.6 0.74 0.67 085 | 3.70E-02
miR-99a / miR-382 0.66 0.66 0.66 083 | 1.90E-02
miR-181a / miR-874 0.66 0.66 0.66 0.8 3.80E-02
miR-182 / miR-411 0.52 0.82 0.66 086 | 1.90E-02
miR-127 / miR-382 0.51 0.81 0.66 085 | 1.10E-02
miR-181a / let-7e 0.7 0.6 0.65 081 | 3.20E-02
miR-132 / miR-370 0.57 0.71 0.64 087 | 2.70E-02
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miR-182 / miR-433 +
miR-127 / miR-382 + 0.90 1.00 0.95 0.98 2.20E-04
miR-134 / miR-370
SENS: sensitivity; SPEC: specificity; ACCUR: accuracy; AUC: area under the ROC curve;
M: males; F: females. Numbers indicate the youngest age of each respective group
(e.g. F_26is the female 26-35-year-old group).

Table 3. miRNA pairs and their combinations that differentiated
consecutively aged females from each other.

F_36/F_26

Pairs / Combos SENS SPEC | ACCUR AUC P-Value
miR-182 / miR-375 0.76 0.76 0.76 0.83 2.30E-02
miR-487b / miR-370 0.8 0.73 0.76 0.87 2.20E-02
miR-134 / miR-370 0.68 0.76 0.73 0.83 2.90E-02
miR-132 / miR-375 0.67 0.77 0.72 0.83 2.30E-02
miR-874 / miR-375 0.72 0.72 0.72 0.85 2.30E-02
miR-99a / miR-375 0.67 0.75 0.71 0.92 4.60E-03
let-7¢ / miR-375 0.71 0.71 0.71 0.85 2.30E-02
miR-134 / miR-127 0.7 0.7 0.7 0.81 2.70E-02
miR-433 / miR-370 0.52 0.8 0.69 0.87 2.00E-02
miR-182 / miR-382 0.54 0.78 0.67 0.82 3.30E-02
miR-874 / miR-7 0.54 0.64 0.59 0.8 2.30E-02
miR-135a / miR-7 0.42 0.74 0.58 0.8 3.80E-02
let-7e / miR-375 +

miR-134 / miR-127 + 0.90 0.80 0.85 0.96 6.60E-04

miR-487b / miR-370

F_46/F_36

Pairs / Combos SENS SPEC | ACCUR AUC P-Value
miR-370 / miR-323-3p 0.68 0.82 0.75 0.87 2.00E-02
miR-491-5p / miR-182 0.73 0.73 0.73 0.86 8.60E-03
miR-375 / miR-99a 0.83 0.62 0.73 0.82 3.20E-02
miR-411 / miR-182 0.8 0.63 0.72 0.86 9.10E-03
miR-370 / miR-382 0.66 0.77 0.71 0.89 1.90E-02
miR-370 / miR-134 0.71 0.71 0.71 0.87 2.00E-02
miR-370 / miR-127 0.71 0.71 0.71 0.92 1.50E-02
miR-135a / miR-182 0.71 0.71 0.71 0.83 2.30E-02
miR-491-5p / miR-874 0.81 0.61 0.71 0.86 1.60E-02
miR-375 / miR-182 0.66 0.76 0.71 0.83 1.60E-02
miR-370 / miR-487b 0.64 0.77 0.7 0.85 3.70E-02
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miR-132 / miR-874 0.54 0.86 0.7 0.87 7.00E-03
miR-370 / miR-182 0.62 0.77 0.69 0.83 3.70E-02
miR-127 / miR-182 0.68 0.68 0.68 0.81 2.30E-02
miR-135a / miR-874 0.53 0.84 0.68 0.85 1.10E-02
miR-195 / miR-182 0.67 0.67 0.67 0.83 1.90E-02
miR-370 / miR-874 0.66 0.66 0.66 0.84 4.80E-02
miR-433 / miR-182 0.57 0.76 0.66 0.82 4.00E-02
miR-411 / miR-134 0.86 0.4 0.65 0.81 3.40E-02
miR-375 / miR-874 0.5 0.8 0.65 0.86 1.30E-02
miR-411 / miR-182 +

miR-135a / miR-874 + 0.9 0.9 0.9 0.99 1.60E-04
miR-375 / miR-99a

F_56/F_46

Pairs / Combos SENS SPEC ACRC v AUC P-Value
miR-491-5p / miR-411 0.73 0.73 0.73 0.82 3.20E-02
miR-195 / miR-135a 0.8 0.6 0.7 0.86 8.60E-03
miR-195 / miR-99a 0.74 0.63 0.69 0.86 8.60E-03
miR-182 / miR-135a 0.63 0.74 0.69 0.83 1.90E-02
miR-323-3p / miR-411 0.74 0.63 0.68 0.82 1.90E-02
miR-382 / miR-411 0.74 0.63 0.68 0.82 2.70E-02
miR-132 / miR-135a 0.67 0.67 0.67 0.87 2.30E-02
miR-132 / let-7e 0.66 0.66 0.66 0.81 4.40E-02
miR-195 / miR-411 0.8 0.5 0.65 0.83 2.30E-02
miR-132 / miR-411 0.79 0.49 0.64 0.84 3.20E-02
miR-323-3p / miR-370 0.57 0.71 0.64 0.83 4.80E-02
miR-195 / miR-135a +

miR-195 / miR-99a + 1.00 0.90 0.95 0.99 1.60E-04
miR-382 / miR-411

F_66/F_56

Pairs / Combos SENS SPEC ACRC v AUC P-Value
miR-135a / miR-195 0.7 0.7 0.7 0.83 1.30E-02
miR-181a / miR-195 0.69 0.69 0.69 0.84 1.90E-02
miR-134 / miR-323-3p 0.69 0.62 0.66 0.8 3.30E-02
miR-874 / miR-195 0.66 0.66 0.66 0.82 3.20E-02
miR-134 / miR-382 0.77 0.54 0.63 0.8 4.40E-02
miR-134 / miR-323-3p

+ miR-135a / miR-195 0.80 0.80 0.80 0.92 1.80E-03

+ miR-874 / miR-195

SENS: sensitivity; SPEC: specificity; ACCUR: accuracy; AUC: area under the ROC curve;
M: males; F: females. Numbers indicate the youngest age of each respective group

(e.g. F_26is the female 26-35-year-old group).
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miRNA pairs whose correlations with age, particularly in
the sex-stratified groups, were found to be statistically
significant are presented in Figure S3 and Table 4.

These data demonstrated that miRNA pairs and clas-

Table 4. Spearman correlations of the miRNA pair combinations with subject ages in each of the 10 groups.

sifiers of brain-enriched miRNAs circulating in plasma
can be potentially used as aging biomarkers during
specific age spans. Larger studies are needed to validate
these findings and to better define the specific age

spans.

Female Male
_Age Range Pairs / Combos Corr | RSD | P-Val | Pairs / Combos Corr RSD P-Val
miR-135a / miR-323-3p 0.57 0.96 0.04 miR-135a / miR-491-5p 0.77 1.90 <0.01
miR-411 / miR-370 0.65 0.88 0.02 miR-135a / miR-195 0.64 2.27 0.02
RA11 / miR-127 0.58 0.95 0.04 miR-411 / miR-323-3p 0.70 2.10 0.01
miR- miR- . . )
26-35 miR-127 / miR-323-3p 0.71 2.08 0.01
miR-135a / miR-323-3p miR-135a / miR-491-5p +
+ miR-411/miR370+ | 077 | 0.74 | <0.01 | ™iR-135a/miR-195 + 095 | 096 | <001
RAll/ miR.127 miR-411 / miR-323-3p +
miR-127 / miR-323-3p
miR-134 / miR-135a 0.59 2.73 0.04 | miR-127 / miR-134 0.53 1.66 0.06
miR-375 / let-Te 0.61 | 270 | 003 | miR-382/1let-7e 059 | 1.57 0.04
36-45 miR-375 / miR-135a 0.60 2.70 0.03 | miR-132/let-7e 0.53 1.65 0.06
miR-134 / miR-135a + miR-127 / miR-134 +
miR-375 /let-7e + miR- | 091 1.42 <0.01 | miR-382 / let-7e + 0.73 1.34 <0.01
375 / miR-135a miR-132 / let-7e
miR-182 / miR-195 0.58 2.04 0.04 miR-135a / miR-99a 0.73 2.23 0.01
miR-433 / miR-411 0.74 1.68 <0.01 | miR-323-3p / miR-127 0.78 2.05 <0.01
4655 let-7¢ / miR-135a 0.53 2.13 0.06 miR-181a / miR-411 0.73 2.24 <0.01
miR-182 / miR-195 + miR-135a / miR-99a +
miR-433 / miR-411 + 0.85 1.34 <0.01 | miR-323-3p / miR-127 + 0.93 1.24 <0.01
let-7e¢ / miR-135a miR-181a / miR-411
miR-323-3p / miR-433 0.64 1.69 0.02 miR-182 / miR-491-5p 0.70 2.82 0.01
miR-382 / miR-134 0.65 1.68 0.02
R132/ miRo135 0.70 58 001 miR-135a / miR-99a 0.74 2.65 <0.01
56-65 miR- miR-135a . . )
miR-323-3p / miR-433 + . .
miR-382 / miR-134 + 093 | 079 | <001 | MiR-182/miR-491-5p + 0.73 1.95 | <0.01
miR-132 / miR-135a miR-1352 / miR-99a
miR-132 / miR-181a 069 | 216 | 001 |[RS74/miR-491-5p 068 2081 o002
miR-874 / miR-132 0.92 1.57 <0.01
6675 miR-127 / miR-487b 0.70 | 2.14 | 0.01 | miR-127/miR-433 067 | 2.11 0.02
. . miR-874 / miR-132 +
iR e T | 076 | 194 | <001 | miR-874/miR4915p+ | 084 | 153 | <001
miR-127 / miR-433
Corr: correlation; RSD: residual standard deviation; P-Val: P-value.
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DISCUSSION

The data obtained in this feasibility study de-
monstrated the potential use of circulating brain-
enriched miRNAs as biomarkers of brain aging. Al-
though we did not find a brain-enriched miRNA (or a
miRNA pair) whose levels in plasma correlated with
the wide age range of 26-75 years, we established
miRNA pairs that correlated with age in sex-stratified
groups covering 10-year spans. Larger studies are
needed to better define the exact age spans when the
miRNA levels change.

Age-associated changes in plasma concentrations of the
brain-enriched miRNAs tested in this study are likely
reflective of molecular and physiological processes in
the brain, such as the following: (i) miRNA expression;
(i) miRNA secretion/excretion (this possibility is
discussed in the accompanying paper[62]); (iii) rate of
synapse dysfunction and loss, especially in older
subjects; (iv) neuronal death; (v) blood supply; and (vi)
blood-brain barrier permeability. Substantially identical
and overlapping patterns of decreases and increases in
plasma levels of multiple brain-enriched miRNAs
indirectly indicated that these are centrally regulated
phenomena. The different dynamics in the plasma
concentrations of brain-enriched miRNAs in female and
male subjects, which were particularly prominent in the
46-65-year-old group, coincided with the changes in sex
hormone levels. Maximum levels of miR-134 family
members and certain other miRNAs in the plasma of
female subjects were reached in the 46-55-year-old
group. Interestingly, this result corresponds to peri-
menopause and menopause in women, when a sig-
nificant drop in circulating estradiol occurs. In males,
peaks in the miRNA concentrations were reached in the
56-65-year-old group, possibly reflecting slower
changes in testosterone decreases. Thus, one can
hypothesize that sex hormones modulate miRNA
synthesis and/or secretion. This concept is in agreement
with the recently reported inhibition of members of the
miR-134 family (miR-127, miR-134, miR-370, miR-
432) and other miRNAs by estradiol in the neonatal
hypothalamus [63]. The miRNA biomarker candidates
established in this study should be further evaluated
alongside other molecular biomarkers of aging, such as
telomerase length shortening and DNA methylation [11-
13]. Larger studies, including longitudinal ones, will be
necessary for determining the use of miRNA biomarker
classifiers in clinical research. Further, we propose
testing other circulating organ-enriched miRNAs as
biomarkers of aging in respective organs and tissues.
As was recently demonstrated [41-43], significant
changes in the normal values of such biomarkers can
signal more serious pathologic processes than aging
alone.

METHODS
Subjects and plasma collection

All subjects in the study were blood donors at the New
York Blood Center who were without known
neurodegenerative or neurological conditions. Two sets
of blood collection were performed: 1) 40 subjects, 26-
35 years of age (10 “young females” and 10 “young
males”) and 56-65 years of age (10 “old females” and
10 “old males”); and 2) 100 subjects, 26-35, 36-45, 46-
55, 56-65 and 66-75 years of age, with 10 females and
10 males in each age group.

Samples for the study were collected from blood donors
at the New York Blood Center. Blood was collected in
6-ml lavender-top K,EDTA tubes and then centrifuged
at 4°C at 2,000xg. Plasma was aliquoted into RNase-
free, 2 ml round-bottom microcentrifuge tubes (Biotix,
San Diego, CA and frozen at -80°C within 2 hours of
the blood collection. The demographic characteristics of
the study groups are summarized in Table 5.

Table 5. Age groups of the normal subjects
analyzed in both studies.

Study
Sex Age (y.0.) Ist nd

26-35 10 10

36-45 - 10

Male 46-55 - 10
56-65 10 10

66-75 - 10

26-35 10 10

36-45 - 10

Female 46-55 - 10
56-65 10 10

66-75 - 10

Plasma RNA purification and qRT-PCR miRNA
analysis

miRNA isolation and ¢RT-PCR analysis were
performed in accordance with the following protocol
(Asuragen, Austin, TX). RNA was extracted from 1 ml
of plasma using a TRIzol treatment and silica (Ambion
Glass Fiber Microcolumn)-binding protocol
(http : //asuragen.com/wp-content/uploads /2016 /05/
biomarkers.pdf). Single-target QqRT-PCR was performed
using the TagMan Reverse Transcription Kit and
miRNA-specific stem-loop primers (Thermo Fisher).
QC of miRNA preps was performed by testing two
ubiquitous miRNAs in each plasma prep; all samples
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with values within two standard deviations of the
average value qualified as acceptable for analysis.
miRNAs with cycle thresholds (Ct)>37 were excluded
from the analysis of each respective sample. The RT
step for generation of cDNA from selected miRNAs
was performed in triplicate using miRNA-specific
primers, and 2-pl plasma equivalents were present in
the final PCR. Calibration curves for each miRNA were
generated to calculate the miRNA concentration in copy
numbers.

Statistical methods

All statistical calculations were performed through the
use of custom software developed at DiamiR [39]. The
application was designed in .NET technology using a
set of .NET statistical packages. Mann-Whitney U-tests
were used to evaluate the significance of the differences
between the two groups of subjects in the various
miRNA pairs. Receiver operating characteristic (ROC)
curves were constructed, and the area under the ROC
curves (AUC), sensitivity, specificity, and accuracy of
the miRNA pairs and their combinations were
calculated. To reduce instrumental errors, calibration
curves for each miRNA were generated using synthetic
miRNAs. Average miRNA concentrations and cor-
relations between individual miRNAs or miRNA pairs
and age were calculated using copy numbers. Effective
pair combinations (miRNA classifiers) were defined
using logistic regression. The residual standard
deviation (RSD) of the linear regression was used to
estimate the age prediction power of the miRNA bio-
marker pairs. Effective pair combinations that correlated
with age were created using pair data averaging.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY FIGURES

Figure S1. Correlation of miR-134 family plasma concentrations with age in the male (A) and female (B) subjects.
X axis: age; Y axis: correlation of miRNA plasma concentrations with subject age in the analyzed groups (r).
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Figure S2. Differentiation of consecutively aged male or female groups from each other by select microRNA
pairs. M: males; F: females. Numbers indicate the youngest age of each respective group (e.g. M_26 is the male 26-35-

year-old group). For the box-and-whisker plots, the ratios were calculated as 2

-ACt

x 100, and the results are presented on a

log10 scale. The upper and lower limits of the boxes and the lines inside the boxes indicate the 75th and 25th percentiles
and the average, respectively. The upper and lower horizontal bars denote the 90th and 10th percentiles, respectively. The
points indicate assay values located outside 80% of the data.
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Figure S3. Spearman correlations of the miRNA pair combinations (from Table 5) with subject
ages in each of the 10 male groups. Correlation coefficients, P-values and residual standard deviation
(RSD) values are indicated in Table 3. X axis: age of subjects; Y axis: the average of the pair ratios in each
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respective combination, calculated as described in the legend for Figure S2.
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Figure S3. (cont). Spearman correlations of the miRNA pair combinations (from Table 5)
with subject ages in each of the 10 female groups. Correlation coefficients, P-values and residual
standard deviation (RSD) values are presented in Table 3. X axis: age of subjects; Y axis: the average of
the pair ratios in each respective combination, calculated as described in the legend for Figure S2.
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SUPPLEMENTARY TABLES

Table S1. Heat map of Ct differences in the miRNAs tested in the first
set of experiments and the list of miRNAs selected for the second set
of experiments.
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miR-7 ! 0.57 0.23 ! miR-7
let-7e 0.25 0.70 0.20 -0.26 | let-7e
miR-107 0.01 0.29 0.15 -0.13
miR-127 0.09 miR-127
miR-128a -0.06 0.19 0.25 0.00
miR-132 0.34 0.74 0.35 -0.05 | miR-132
miR-135a 0.39 0.53 -0.57 | miR-135a
miR-16 -0.11 0.40 0.22 -0.29
miR-181a 0.49 0.97 0.81 0.32 | miR-181a
miR-182 0.72 0.85 -0.01 | miR-182
miR-195 0.00 0.61 0.61 -0.01 | miR-195
miR-200a 0.10 0.48
miR-323-3p 0.13 0.07 -0.67 -0.61 | miR-323-3p
miR-335 0.08 0.17 0.35 0.26
miR-338-3p 0.15 0.24
miR-370 0.61 miR-370
miR-375 miR-375
miR-382 0.33 1.03 0.39 -0.31 | miR-382
miR-410 0.21 0.51 -0.18 -0.48
miR-411 0.71 0.65 -0.36 -0.30 | miR-411
miR-433 0.24 0.05 miR-433
miR-485-5p 0.48 0.33 -0.30 -0.15
miR-487b 0.38 0.60 -0.17 -0.39 | miR-487b
miR-874 0.10 0.44 0.61 0.28 | miR-874
miR-9 0.67 0.64 0.24 0.27
miR-9% 0.32 -0.08 0.55
miR-99a 0.38 0.98 0.82 0.23 | miR-99a
miR-134 0.25 0.49 miR-134
miR-451 0.27 0.23 -0.21
miR-491 -0.03 0.28 0.06 -0.24 | miR-491
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Table S2. Heat map of the correlational data presented in Figure S1.
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