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ABSTRACT

p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation
of the function of the retinoblastoma protein and by direct activation of p21""*" and p57*%2, promoting cell
cycle exit. In previous studies, we have demonstrated that the TAp63y isoform is the only member of the p53
family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube
fusion. To better dissect the role of TAp63y in myoblast physiology, we have generated both sh-p63 and Tet-On
inducible TAp63y clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes
involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a
higher proliferation rate and that, conversely, TAp63y ectopic expression decreases myoblasts proliferation,
indicating that TAp63y specifically contributes to myoblasts proliferation, independently of p53 and p73. In
addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory
capacity and a decrease in complex |, IV protein levels. These results demonstrated that, beside contributing to

cell cycle exit, TAp63y participates to myoblasts metabolism control.

INTRODUCTION

Myogenesis is an ordered process driven by myogenic
regulatory factors, coordinated with permanent cell
cycle withdrawal and culminating in myoblasts fusion
in myotubes. Myogenic differentiation process requires
bHLH transcription factor family of myogenic regula-
tory factors (MRFs), including MyoD, Myogenin and
Mrf4 which lead to expression of muscle-specific
proteins, such as myosin heavy chain (MHC) and
creatine kinase (CK) and to multinucleated myotube
formation [1]. Cell cycle arrest occurs early during the
differentiation program playing a key role in myoblast
differentiation into mature myotubes [2—8]. In addition
to autophagy [9,10], the retinoblastoma protein (RD) is
a key factor, indeed myoblasts lacking Rb fails to exit
the cell cycle [11-13]. In vitro and in vivo experiments

demonstrated that also the cyclin-dependent-kinase
inhibitors p21“"™*" (p21) and p57°P* (p57) are
important during myogenesis, acting redundantly to
inhibits cell cycle arrest during myoblast differentiation
[10,14-16]. Upregulation of p21 and the dephospho-
rylation of retinoblastoma protein (pRb) appear to be
critical regulatory events for the establishment of both
the postmitotic and apoptosis-resistant states, the latter
is relevant for controlling muscle mass and thereby the
size of individual motor units [17].

Several studies indicated that p53 and its family
members, p63 and p73, are also involved in myoblast
differentiation [13,18-24], regulating cell cycle exit and
the early stage of myogenesis. TP53 is primarily related
to its tumour suppression function [25-27] despite solid
evidence of a differentiation function [28-31]. TP63
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and TP73 genes are transcribed by two different
promoters, giving rise to multiple isoforms with own
properties, the (TA) isoforms with an N-terminal
transactivation domain and the N-terminal truncated
(AN) isoforms. Moreover alternative splicing at mRNA
3’-end generates isoforms with different C-temini
length and sequence (a, B, v, 0 and €) and also different
properties [32-36]. All p53 family members are
involved in myoblast differentiation and rhabdomyo-
sarcoma development [13,16]. TP63 is essential for skin
development [13,37,38], but plays also a crucial role in
cancer biology [39,40] as well as in skeletal muscle
homeostasis [41]. Indeed, TAp63y isoform is the only
member of the p53 family that accumulates during in
vitro myoblasts differentiation and its silencing leads to
a delay in terminal differentiation and a reduction of the
fusion index [16]. To date the specific role of TAp63y
has not been investigated. Here, using as experimental
system the well established in vitro model involving the
immortalized murine myoblast C2C12 and C2C7 cell
lines [42], we asked the question whether TAp63y has a
specific role in myoblasts, independent from the other
family member p53 and p73. We generated sh-p63 and
Tet-ON doxycycline-inducible TAp63y clones to study
the effects of TAp63y depletion and/or ectopic expression
in proliferating myoblasts. By whole transcriptome
mRNA profiling, we found that p63-depletion affects the
expression of genes involved in proliferation and
metabolism. Indeed, sh-p63 knock-down cells present an
increased cell proliferation rate, while TAp63y over-
expression decreases proliferation. Interestingly, p63
depletion affects also mitochondria functions as
indicated by the reduction of the spare respiratory
capacity, the decrease in complex I and IV protein
levels and ATP reduction. Furthermore, mitochondria
reactive oxygen species increase and the NADP/NADPH
ratio decrease. Overall, these results indicate that TAp63y
participate to myoblasts pro-liferation controlling both
cell cycle exit and mitochondrial metabolism.

RESULTS
TAp63 modulates gene expression in myoblasts

To investigate the impact of p63 depletion in myoblasts,
we performed a whole transcriptome mRNA expression
profiling in C2C7 cells. To this aim, we generated
stable scramble (Scr) and sh-p63 C2C7 clones (sh1- and
sh2-p63) (Fig. 1A). The used sh sequences are designed
to knock down all p63 isoforms. As control, we showed
that sh1- and sh2-p63 clones showed a reduction of the
bona fide TAp63 direct target, Cdknla (p21) (Fig. 1B).
Furthermore, the reduction of TAp63 expression in
these clones was maintained also during differentiation
as indicated by TAp63 RT-qPCR (Fig. S1A-B). shl-

and sh2-p63 cells also presented a delay in
differentiation as evaluated by phase contrast micro-
scopy, immunofluorescence for MyHC and by western
blots against MyHC and MyoG proteins (Fig. S1B-D),
confirming previous obtained results [16]. By whole
transcriptome mRNA profiling, we compared scramble
versus shl-p63 transcripts. In this conditions, we have
identified 2123 up-regulated and 1989 down-regulated
genes (cut-off log(FC)< -0,5 and log(FC)>0,5, p-
value<0,05; Fig. SIC, Table SI1). Gene Ontology
analysis of significantly modulated genes were
classified in different groups linked to “muscle structure
development”, “regulation of cell prolifera-tion”,
“regulation of cell metabolic process” (Fig. 1D). Genes
included in the “regulation of cell proliferation” and
“regulation of cell metabolic process” categories are
indicated in Fig. 1E. Selected genes related to
proliferation (Pold4, Gas6, Rgcc, Igf2) and metabolism
(Als2, HK1, Pdk4) were validated by independent RT-
gqPCRs (Fig. 1F, 0.001<p<0.05). These results demons-
trated that beside regulating genes involved in
proliferation, TAp63y modulates also the expression of
genes involved in metabolism.

TAp63 knock-down affects myoblast proliferation

To better characterize the role of p63 depletion in
myoblasts, we evaluated cell proliferation in shl- and
sh2-p63 C2C7 clones. Growth curves showed a
significant increase of cell number at 72 hours (Fig. 2A,
p<0,01). This was confirmed evaluating cells in S-phase
by EdU-incorporation assay (Fig. 2B, p<0.01) and by
clonogenic assay, in which the clone numbers increased
1.5 and 2.2 fold over scramble cells for shl- and sh2-
p63 clones, respectively (Fig. 2C, p<0.05). Time
courses evaluating p57 and p21 expression by western
blots (Fig. 2D), are in line with enhanced proliferation
capacity of the shl- and sh2-p63 myoblasts, in which
p21 and p57 expression decreased. We generated an
additional cellular model to further confirm these
findings using the Tet-ON system. C2C12 myoblasts
expressing TAp63y under the control of doxycycline
(Dox) were used to demonstrate the opposite; indeed
doxycycline addition resulted in a decrease of cells
number, that is evident already after 24 hours after
induction (Fig. 2E-F, p<0.05) and confirmed in shorted
time-points (8, 16 and 24 hours of induction) by cell
cycle analysis (Fig. S1A-B). As control, we confirmed
that induction of TAp63y does not induce cell death in
these cells, evaluated as hypo-diploid events (Sub-G1
events, Fig. S1C). Clonogenic assays also confirmed the
strong TAp63y anti-proliferative effect, resulting in
reduction of about 50% of the clone (Fig. 2G,
p<0.05). Altogether these data indicated that, in vitro,
TAp63y is involved in controlling myoblast proliferation.
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Figure 1. TAp63 knock-down affects the expression of genes involved in proliferation and
metabolism. (A) RT-gPCR of p63 mRNA (Trp63) and (B) p21 (Cdknla) performed in proliferating Scr, sh1-p63 and
sh2-p63 clones. Results are shown as average of three experiments + s.d. *p<0.05. (C) Volcano plot showing -
log1o(FDR) in function of the log,(FC) for coding genes in Scr and sh1-p63. Green points indicate significantly
expressed genes (D) GO terms of microarray performed on significantly modulated genes in C2C7 myoblasts (C).
Panther was used for biological process (http://pantherdb.org/). (E) Heatmap expression level of genes from
“positive regulation of cell proliferation” and “regulation of cellular metabolism” categories. (F) RT-qPCR analysis
of mMRNA level of modulated genes. Results are shown as average of three experiments + s.d. ¥*p<0.05, **p<0.01.

TAp63 knock-down induces mitochondrial-derived

oxidative stress

Since p63 depletion has been associated in different cell
types to oxidative stress [43—45] in standard culturing

conditions, we investigated mitochondrial functions,
since they play an important role in oxidative
metabolism and represent the cellular source of reactive
oxygen species (ROS), as well as in several other
essential physiological functions [46—53]. We measured
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Figure 2. TAp63 knock-down increases myoblast proliferation. (A) Growth curve of C2C7 Scr, sh1- and sh2-p63 clones.
One representative experiment of three is shown. (B) EdU-incorporation assay in proliferating C2C7 scramble Scr, sh1- and sh2-
p63 clones. Data are shown as meant S.D. **p<0,01 by T-student test. (C) Clonogenicity assay of C2C7 Scr, sh1- and sh2-p63
clones. Images of one experiment of three are shown. Colony number count/dish is reported in the histogram (right). *p< 0,05
by T-student test. Data are shown as mean + S.D. of three independent experiments. (D) Western blot confirming reduced
expression of p21 and p57 in shl- and sh2-p63. One representative experiment of three is shown. (E) Western blot analysis of
C2C12 upon doxycyclin treatments (Tet-ON, Dox). Tubulin is shown as loading control. One representative experiment of three
is shown. (F) Growth curve of Tet-ON TAp63y C2C12 cells after 24, 48, 72 and 96h of Dox (2ug/ml) induction. (G) Clonogenicity
assay of Tet-ON TAp63y C2C12 cells after 6 days doxycycline (2pg/ml) induction. Colony number count/dish is reported in the
histogram (right). Data are shown as mean + S.D. of three independent experiments. *p< 0,05; **p< 0,01.

WWwWw.aging-us.com 3561 AGING



fically O, from 1 to 1.5 fold over control for both sh1-
and sh2-p63 cells, respectively (Fig. 3A, p<0.01 and
p<0.05), indicating that electrons can escape between
complexes and become trapped in oxygen. Though,
Mitotracker Red staining, to detect mito-chondrial
content and shape, did not show differences among Scr
and both shl- and sh2-p63 cells, respectively (Fig. 3B).
Furthermore, mitochondrial DNA copy numbers did not
change, as evaluated by measuring by RT-qPCR the
expression of the mitochondrial genes Nd5 and 125
related to the expression of the single copy nuclear gene
Sdha (Fig. 3C). In an attempt to understand the reason
for the O, increases upon p63 depletion, we evaluated
by western blot the relative levels of mitochondrial
OXPHOS (complexes I-V, Fig. 3D). Results indicate

down-regulation of complex IV (MTCO1) and complex
I (NDUFBS) proteins upon p63 depletion. These results
suggest a link of TAp63 in controlling mitochondrial
function in C2C7 myoblasts.

affects mitochondrial

TAp63 knock-down

respiration

Keeping in mind that p53 is known to regulate oxygen
consumption with different pathways, as well as its
family members TAp73 and ANp63 [44,45,54,55], we
decided to evaluate aerobic respiration in scramble and
p63-depleted cells. We found that p63 depleted cells
(shl-and sh2-p63 clones) had an attenuated mito-
chondrial respiration with a significantly reduced oxy-
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Figure 3. TAp63 knock-down affect mitochondrial functions. (A) Mitosox Red analysis by flow cytometry in
C2C7 Scr, Sh1l and Sh2 clones to assay mitochondrial superoxide anion levels. One of three independent
experiments is shown (left). Quantification of fluorescence intensity is shown in the histogram (right). Data are
shown as mean + S.D. from three independent experiments. *p< 0,05 and **p< 0,01 by T-student test. (B)
Mitotracker Red staining to detect mitochondrial content and shape. One representative experiment is shown.
Magnification bar: 10um. (C) qPCR relative to mitochondrial DNA copy number quantificated by the expression
level of mitochondrial gene Nd5 and 12S related to expression of single copy gene Sdha. One from three indepen-

dent experiments is shown.

(D) OXPHOS antibody mixture was used to detect mitochondrial protein level by

western blot in C2C7 scramble control (Scr), sh1- and sh2-p63 clones. One of three independent experiments is shown.
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gen consumption rate (OCR, Fig. 4A). Basal mito-
chondrial respiration is slightly changed between
scramble control cells and p63-depleted clones as
estimated by measuring OCR (pmol/min). Both the
maximal respiratory capacity (MR) and the spare
respiratory capacity (SRC) are significantly attenuated
in the p63-depleted clones compared to scramble
control cells; supporting the idea that mitochondria
retain sensitivity to environmental stress (Fig. 4B). Yet,
depletion of p63 resulted in the inability of C2C7 to
relay on aerobic respiration. Oligomycin injection
induced aerobic metabolism in scramble control cells,
as underlined by the tendency to increase extracellular
acidification rate (ECAR, Fig. 4C), while p63 depleted
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cells did not responded at all, failing to rescue the cells
that were unable to reply on the glycolytic pathway. As
matter of fact, ATP level strongly decrease in p63
depleted clones (23% and 45% inhibition in shl- and
sh2-p63 cells, respectively; Fig. 4D). Finally, decreases
in NADP+/NADPH ratio in shl- and sh2-p63 cells
(from 33% in scramble cells to 27% and 19% in shl-
and sh2-p63 cells, respectively, p<0.05; Fig. 4E) sug-
gested that the abnormalities in aerobic and anaerobic
respiration direct the metabolism toward other meta-
bolic pathways (ie. pentose phosphate). NADPH
increases confirmed also the need of p63-dep-leted cells
to maintain thigh the level of anti-oxidant defence
molecules.
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Figure 4. TAp63 knock-down affects mitochondrial respiration. (A) OCR performed in 6 well seahorse assay plates
shows the cellular respiration profile in C2C7 Scr, Sh-1 and Sh2-p63 clones after treatment with the drugs oligomycin
(40pg/ul), FCCP (50nM) and rotenone (25nM). One representative of three independent experiments is shown. (B) The
relative quantification of the area below the curves corresponding to stage BR, UR, MR and SRC (basal respiration, uncoupled
respiration, maximal respiration and spare respiratory capacity) is shown in histogram and reported as percentage of Scr.
Data are shown as mean % S.D. of three measures detected after drugs injection and normalized to pug of proteins *p< 0,05
and **p< 0,01. (C) ECAR performed in 6 well seahorse assay plates shows the cellular respiration profile in C2C7 Scr, sh1- and
sh2-p63 clones after treatment with the drugs oligomycin (40ug/ul), FCCP (50nM) and rotenone (25nM). One representative
of three independent experiments is shown. (D) ATP levels in C2C7 Scr, shl- and sh2-p63 clones are normalized to the cell
number and are reported as relative quantification to the Scr. Data are shown as mean + S.D. from three independents
experiments *p< 0,05 by Student T-test. (E) NADP+/NADPH ratio in Scr, sh1- and sh2-p63 C2C7 clones are normalized to the
cell number. Data are shown as mean + S.D. from three independent experiments *p<0,05; **p<0,01.
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DISCUSSION

Aging involves a complex set of genetic [56-58] and
metabolic [59—65] pathways that engage all organs,
including muscles [66,67]. In these pathways a role for
p53 [68-72] and its family members [55,73] is well
established. In particular, p63 is involved in senescence
and aging [74,75]. The p63 gene, the ancestral member
of the p53 family [32,55,76] clearly involved in cancer
[77-80], is crucial for the development as well as for
the adult homeostasis of the epidermis [34,81]. Here,
through its transcriptional activity, it regulates the early
differentiation and formation of the cornified envelope
[82,83] as well as the apoptotic [84], senescence [85,86]
and metabolic [36,44,87] activities of the skin. This
function is directly and indirectly related to the barrier
function of the skin, with its complex pathways [82,88—
90] intended also at the immunological and inflamma-
tory protection of the organism [91-95] and thus
preventing unwanted immunopathologies [96-101].
Nonetheless, recent findings suggest also an additional
role in myogenesis [16,19].

Several studies investigated the role of p53 and its
family members in myoblasts differentiation, showing
that while p53 directly regulated protein level of the
retinoblastoma (RB) protein, p63 and p73 cooperates to
RB activation, via their target gene cyclin kinase
inhibitor p57'%, that maintains RB in an active hypo-
phosphorylated state [13]. Previous studies generated in
our laboratory point out at specific role of TAp63,
specifically the TAp63y isoform, during myoblast
differentiation. Indeed, among the p53 family members
the TAp63y is the only one that accumulates during
differentiation and knock-down of TAp63y strongly
delays and impairs myoblasts differentiation, as
indicated by the reduction of specific markers and of the
mitotic fusion index [16]. Here, we confirmed, using as
model both sh-p63 C2C7 myoblasts and TAp63y Tet-
ON C2C12 myoblasts, the importance of TAp63y in
controlling cell cycle exit and proliferation. As matter
of fact, sh-p63 clones present down-regulation of both
p21 (CDKNI1A) and p57 (CDKNI1C) cyclin-dependent
kinase inhibitors. Intriguingly, we found that genes
usually expressed in proliferating cells (Gas6, Pold4 and
Igf2) were down-regulated in p63-depleted myoblasts,
indicating that additional pathways or compensatory
mechanisms are engaged to limit cell proliferation in
absence of p63. To find additional functions of TAp63y
in myoblasts we performed a gene array, comparing
control C2C7 cells with p63-depleted C2C7 myoblasts.
Our results demonstrated that in myoblasts lacking
TAp63y many genes related to metabolism are modulat-
ed. Furthermore, mitochondria activity appear altered as
indicated by the increase of reactive oxygen species of
mitochondrial origin and by alteration of the mito-

chondria function and respiratory capacities. Mito-
chondria are key organelles to provide, via oxidative
phosphorylation, the energy necessary for cellular
functions [102-107]. Several experimental evidences
indicated that, in different cell types including
myoblasts, mitochondria activity is strongly associated
to cell differentiation [108—112]. Mitochondria function
and activity is finely regulated during differentiation
processes, including myogenesis, that was shown to be
impaired in respiratory-deficient myoblasts [113].
Mitochondria play an important role also during
myoblast proliferation [109,114]. In L6E9 muscle cells,
for instance, the increase of mitochondrial oxidative
metabolism by pyruvate blocks cells proliferation in G1
and S phases [115]. These data suggest that an oxidative
metabolism and mitochondrial biogenesis are often
associated to muscle cell differentiation, instead a
glycolytic metabolism is required for myoblasts
proliferation. Yet, in a different cellular system, it has
been shown that p63, by directly controlling the
expression of the mitochondrial-associated exokinase II
enzyme, favours the coupling between glycolysis and
oxidative metabolism [44], suggesting that also in
myoblasts p63 could affect directly and/or indirectly
both metabolisms. Interestingly, mitochondrial activity
is altered in a rat Rhabdomyosarcoma cell line [116].
Rhabdomyosarcoma is the most common soft tissue
sarcoma in childhood and adolescents; it arises from
skeletal muscle that maintains myoblasts in a prolifera-
tive state [117]. As a matter of a fact, RH1 cell line
shows a decrease in either ATP level, mitochondrial
spare respiratory capacity [116] and a downregulation
in CI [118], similarly to the sh-p63 depleted cells.
Interestingly, deficiencies of the I-IV complexes
expression have been reported in patients affected by
several myopathies and neuromuscular diseases [119—
123]. Furthermore, defects in mitochondrial ATP
synthesis and complex I insufficiency have been also
observed in isolated mitochondria from the diaphragm
and tibialis anterior of 12 week-old dystrophin-deficient
mdx mice [124]. These suggested to us that TAp63
expression and/or activity could be impaired in these
pathologies, in keeping with the metabolic alterations
observed in aging [125-130].

Overall, in line with the metabolic control in aging
[104,131-133], these data indicate that, beside its anti-
proliferative role, TAp63, controlling different sub-sets
of target genes, may act in myoblasts modulating also
mitochondria metabolism to provide the right metabolic
platform necessary to allow myoblasts differentiation.
These data expand the current knowledge about the
involvement of p53 family members in muscle diffe-
rentiation process, demonstrating that the function of
the individual members, such as TAp63, are distinct
from the other members. Further investigations will be
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necessary to address a possible role of TAp63 and its
target genes in human myopathies.

MATERIALS AND METHODS
Flow cytometer analysis

EdU incorporation during DNA synthesis was evaluated
using the Click-it EQU flow cytometer assay according
to manufacturer protocol. 10000 events were acquired
using BD Accuri C6 Flow Cytometer and cell cycle was
analyzed using BD Accuri C6 Software (BD
Biosciences).

Tet-ON Tap63y myoblasts were grown in presence or
absence of doxycyclin (2pug/ul) for 8, 16 and 24 hours,
fixed 30 minutes at 4C in methanol:aceton (4:1),
incubated 20 minutes at 37C with RNAse A (20pug/ml)
(Sigma, USA) and 20 minutes at room temperature with
PI (50pg/ml) (Sigma, USA). 10000 events were
acquired using BD FacsCalibur, cell cycle phases and
subG1 populations were evaluated by ModFit LT™
software (BD Biosciences).

For the detection of mitochondrial anion superoxide,
Scr, sh1-p63 and sh2-p63 cells were incubated with
MitoSox Red dye (5uM, Invitrogen) for 10 minutes at
37°C and 10000 events were acquired using BD Accuri
C6 Flow Cytometer and analyzed using BD Accuri C6
Software (BD Biosciences).

Cell lines, transfection and lentiviral infection

C2C7 and C2CI12 myoblasts [42] were grown in D-
MEM supplemented with 20% fetal bovine serum
(FBS) or 10% FBS respectively and penicillin-strep-
tomycin (100 U/ml). Myoblast were differentiated
switching them in differentiation medium D-MEM
supplemented with 2% horse serum and penicillin-
streptomycin (100 U/ml).

C2C12 Tet-ON myoblast were transfected with pTRE-
HA-TAp63y construct by Lipofectamine 2000 reagent
(Invitrogen) following manufacturer’s protocol. HA-
TAp63y inducible C2C12 (Tet-ON TAp63y) clones
were selected adding hygromycin (800pg/ml) to culture
medium. TAp63y expression was induced by adding
doxycyclin to culture medium (2pg/pl). Sh sequences
used to generate sh-p63 stable clones were designed to
knock-down all p63 isoforms. Clones were generated as
previously described [16].

Growth curve and clonogenicity assay

Scr, sh1-p63 and sh2-p63 clones growth curves were
obtained by counting cells 24, 32, 48, 60 and 72 hours

after seeding while Tet-ON Tap63y C2C12 cells were
counted 24, 48, 72, and 96 hours after seeding. Cells
were counted by TC20 Automated Cell Counter (BIO-
RAD).

For clonogenicity assay 50, 100 and 200 Scr, sh1-p63
and sh2-p63 cells and 50, 70 and 100 Tet-ON TAp63y
cells were seeded. After 6 days cells were washed in
PBS, fixed in glutaraldehyde (6.0% v/v) and stained by
crystal violet (0.5% w/v). Colonies were counted after
staining.

Western blotting

Myoblasts were lysed in RIPA buffer (SOmM Tris-HCI
pH 7.4, 150 mM NaCl, 1% NP40, 0.25%Na-deoxy-
colate, ImM AEBSF, 1 mM DTT). 15-40 pg of total
protein extracts were analysed by SDS PAGE and
blotted onto Hybond PVDF membrane (GE
Healthcare). Primary antibodies used were: Oxphos
cocktail (MitoScience, 1:250), anti-HA (Biolegend,
1:500), anti-o-tubulin (Sigma, 1:10000). After approp-
riate horseradish peroxidise conjugated secondary
antibodies incubation (Bio-Rad), signal detection was
performed with ECL chemioluminescence kit (Perkin
Elmer).

RNA-extraction, RT-qPCR, and whole
transcriptome mRNA profiling

Total RNA was isolated using RNeasy Mini Kit
(Qiagen) following the manufacturer protocol. 1ug of
total RNA was used for cDNA synthesis by the
GOScript Reverse Transcription System Kit (Promega).
mRNAs relative quantification by Real time RT-qPCR
was performed using GOTaq Real-Time PCR System
(Promega) in Applied Biosystem 7500 Real-Time PCR
System (Applied Biosystem). GAPDH was used as
housekeeping gene for normalization. Primers used are
reported in Table S2. Gene expression was defined from
the threshold cycle (C,), and relative expression levels
were calculated by using the 2”**“" method.

Whole transcriptome mRNA profiling was performed
by Biogazelle (Ghent, Belgium). Briefly 100ng of total
RNA was processed using the Quick Amp labeling kit
(Agilent), producing Cy3-labelled cRNA. cRNA was
hybridized to a SurePrint G3 Mouse GE 8x60K
Microarray (Agilent) and microarrays were analyzed
using an Agilent microarray scanner and Feature
Extraction software. Probe intensities were background
subtracted and normalized using quantile normalization.
Normalized probe intensities are log2-based. Norma-
lized mRNA expression data and probe annotation are
available on request.
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Immunofluorecence and confocal microscopy

Cells were fixed in 4% paraformaldehyde in PBS for 15°
at RT, washed and permeabilized in 0.25% Triton-X-100
in PBS for 5°. Blocking was performed in 5% goat serum
in PBS for 1 hour. Incubation with primary antibodies
was at 4 C for 16h. Primary antibodies used was MHyC
(Sigma, MY32, 1:500) and secondary antibody
AlexaFluor 568 conjugated anti-mouse (Invitrogen,
1:1000). Nuclei were stained by DAPI (Sigma, 1pg/mL).

For the detection of mitochondrial shape Scr, sh1-p63
and sh2-p63 cells were incubated with Mitotracker dye
(50nM, Invitrogen) together with Hoesch 33342 (1uM,
Sigma-Aldrich) for nuclei staining, for 30 minutes at
37C.

Cell images were obtained by confocal laser microscope
NIKON Eclipse Ti using EZ C.1 software (Nikon).

Seahorse flux analysis

Oxidative phosphorylation and glycolysis flux were
analysed by measuring oxygen consumption rate (OCR)
and lattic acid release (ECAR) by XF6 XF analyser
(Seahorse Bioscience). 8x10* Scr, sh1-p63 and sh2-p63
myoblast were seeded in XF 6 well-plate. Cells were
washed with assay medium (DMEM 8.3 g/L, NaCl 30
mM, GlutaMax 2 mM, sodium pyruvate 1 mM, glucose
11.11 mM, phenol red, pH 7.4) and equilibrated at 37C
(in CO, free atmosphere). Injections of oligomycin 40
pg/ml, FCCP 50 nM, and rotenone 25 nM were set to
analyse mitochondria response. Basal Respiration
(BR), Maximal Respiration (MR) and Spare Respiratory
Capacity (SRC) were quantified for three successive
OCR measurement after each drug injection. Data
collected were normalized to pg protein.

mtDNA copy number quantification

Genomic DNA extraction from Scr, shl1-p63 and sh2-
p63 myoblasts was performed using Wizard genomic
DNA purification kit (Promega) following manufac-
turer’s protocol. 10 ng of genomic DNA was used to
perform mtDNA copy number evaluation by quan-
tification of mitochondrial genes Nd5 and 12S by Real
Time qPCR. SDHA nuclear gene was used for mtDNA
copy number normalization. Primers used are reported
in Table S2.

ATP assay and NADP+/NADPH assay

ATP was quantified by ATP Bioluminescent Somatic
Cell Assay Kit (SIGMA) following manufacturer’s
protocol. Light emission was measured using Lumat
LB9507 luminometer (EG&GBerhtod]).

Colorimetric NADP/NADPH Assy Kit (Abcam) was
used to detect NADP/NADPH ratio according to manu-
facturer’s protocol.

Details for all the other methods, including cell cultures,
transfection, lentiviral infection, growth curve, clono-
genicity assay, western blotting, RNA-extraction, RT-
qPCR, whole transcriptome mRNA profiling immuno-
fluorescence and confocal microscopy are described in
Supporting Information.

Bioinformatic analysis

For gene ontology analysis, gene ontology consortium
software available on-line was used
(http://geneontology.org/).

Statistical analysis

Statistical analysis of grouped values was performed by
T Student test. Differences with p<0.05 were considered
significant.
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