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ABSTRACT

Aging is characterized by the accumulation of damage and other deleterious changes, leading to the loss of
functionality and fitness. Age-related changes occur at most levels of organization of a living organism
(molecular, organellar, cellular, tissue and organ). However, protein synthesis is a major biological process, and
thus understanding how it changes with age is of paramount importance. Here, we discuss the relationships
between lifespan, aging, protein synthesis and translational control, and expand this analysis to the various
aspects of proteome behavior in organisms with age. Characterizing the consequences of changes in protein
synthesis and translation fidelity, and determining whether altered translation is pathological or adaptive is
necessary for understanding the aging process, as well as for developing approaches to target dysfunction in
translation as a strategy for extending lifespan.

ciples of cell and organismal organization make damage
accumulation inevitable for most multicellular orga-
nisms.

Importance of protein synthesis and proteome
function in aging

Aging is characterized by the accumulation of various
forms of damage as well as by other age-related
deleterious changes [1-3]. These changes generally
have negative, deleterious consequences for organisms

In this review, we discuss age-related changes in one of
the most important and abundant components of any
cell, and therefore of the whole organism — the

as they age. Different living systems differ in their
metabolic strategies, resulting in different types and
levels of damage production, and therefore have
evolved both unique and common mechanisms to
counteract deleterious changes. These mechanisms also
limit the transfer of damage to progeny. The damage-
producing and protective mechanisms are mostly
genetically controlled and are important in defining the
lifespan of organisms. Nevertheless, the general prin-

proteome. Functionality of the whole system of proteins
in any organism requires maintenance of a precise
balance of synthesis, degradation and function of each
and every protein, while aging often shifts this balance,
resulting in pathology [4]. Being the end-point of the
implementation of genetic information, the proteome
accumulates damage generated during this process. The
effectiveness of proteostasis control systems, which
maintain and recycle the proteome, is diminished with
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age, leading to the accumulation of damaged proteins
and molecules, which in turn inhibit cell functionality
and thus cause age-related dysfunction [5]. Every step
in protein lifecycle, most notably protein synthesis and
degradation, is relevant to the aging process and,
indeed, has been shown to change with age and likely
define lifespan (Figure 1). While changes in protein
degradation systems during aging are relatively well
studied, alterations in protein synthesis still remain to be
elucidated. Does the overall level of protein synthesis
change with age? Which components of the translation
apparatus are affected by aging? Do errors in protein
synthesis increase in older organisms? Is there age-
dependent regulation of protein synthesis at the level of
translation? Answering these questions is necessary for
understanding the mechanisms of aging and lifespan
control. We will focus on them in this review.

Age-related changes in protein folding and
degradation

The life of any protein in the cell begins with synthesis,
which is accompanied or followed by co- or post-trans-

lational folding and modification, localization to its
appropriate compartment, functioning, and, finally,
degradation (Figure 1). The apparatus involved in these
steps is known as the proteostasis machinery. During or
after synthesis, proteins adopt their intended secondary
and higher-level structures in a process called folding.
In most cases, folding is facilitated by the activity of
chaperones and partner proteins. Decreased chaperone
capacity with age was shown in numerous studies, and
it is clear that it may be affected at multiple levels,
including the induction of the chaperone response and
chaperone activity (reviewed in [6]). The decision
whether to degrade a protein is, among other things,
influenced by the availability of ATP in the cell.
Deterioration of cellular energetics with age and
disruption of fatty acid and glucose metabolism reduce
the amount of available ATP, changing chaperone
activity and thus leading to the accumulation of damag-
ed proteins [7].

Another facet of proteostasis is the control of protein
aggregation, which is also facilitated by chaperones.
Increased proteome stability in the form of resistance to
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Figure 1. Age-related changes in protein synthesis and proteostasis. The main phases in the life of proteins are shown,

with a focus on processes that change with age.
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aggregation was observed in long-lived compared to
closely related shorter-lived groups of bivalve mollusks
[8]. Comprehensive proteome profiling revealed
imbalance of proteostasis components with age and an
overload of chaperone machinery due to increased
protein aggregation [9]. Accordingly, upregulation of
proteostasis maintaining machinery usually has a
positive effect on lifespan. Constitutive activation of the
unfolded protein response (UPR) pathway through
deletion of some UPR target genes increased yeast
replicative lifespan via improved protein homeostasis
and induction of various cytoprotective mechanisms
[10]. In addition, slow-aging mouse models as well as
mice treated with diets and drugs that extend lifespan,
were found to have higher levels of ATF4 protein, a
major component of the UPR pathway [11,12]. These
findings suggest a positive link between moderately
elevated stress response and extended lifespan, a
paradox consistent with hormesis [13].

Systems maintaining proteostasis are required to repair
proteins damaged in the course of their lives [4,5,14].
As an example, methionine oxidation was found to
increase with age [15,16], whereas methionine sulfoxide
reductases, enzymes responsible for the repair of
oxidized methionines in proteins, are depleted during
senescence of human fibroblasts, and aging of mice and
rats [15,17-20]. Intriguingly, proteins of the naked mole
rat, Heterocephalus glaber, an organism with the
lifespan 10-fold higher than of other rodents of similar
body weight, are less susceptible to oxidative damage
accumulation [21], despite increased levels of ROS-
mediated damage at earlier stages of life of these
animals. However, the levels of repair proteins, methio-
nine sulfoxide reductase A and glutaredoxin, are similar
between the mouse and the naked mole rat, and the
mechanisms that support the increased resistance of the
naked mole rat proteome to oxidation remain unknown.

Normal proteins that have reached the end of their
lifetime, as well as damaged proteins are degraded by
the autophagic and proteasome systems. Autophagy and
proteasome-mediated  proteolytic ~ activity  also
deteriorate with age [5,14,22-25]. Their insufficient
activity manifests at different levels: the proteasome
assembly from its components is imbalanced and
accompanied by the alterations in the ubiquitin ligation
machinery and an overall reduced level of ubi-
quitination. In turn, autophagy is impaired both at the
stage of induction and fusion of autophagosomes with
lysosomes [5,22,26]. Under normal circumstances,
these two systems are interconnected and can com-
pensate for the defects in each other’s function.
However, aging seems to disrupt the balanced cross-talk
between proteostasis modules, so the organism becomes
more sensitive to stress [27,28]. Interestingly, age-

related impairment of the proteasome systems is less
pronounced in long-lived species [21].

Synthesis and degradation of proteins are plastic and
mostly tuned to achieve the appropriate protein levels and
support necessary changes in response to various stimuli.
Proteins are characterized by specific lifetimes, which
depend on protein function, location, occurrence in
complexes, metabolic status of the cell and other factors.
Disruption of a normal life cycle of a protein may affect
the lifespan of an organism, as well as the emergence of
pathologies. Changes in the turnover rates may also lead
to the accumulation and aggregation of proteins,
abnormal post-translational modifications and changes of
relative concentrations of various proteins, affecting
stoichiometry of protein complexes [22]. Indeed, a
number of studies have demonstrated the decreased
turnover rate and increased lifetime of proteins during
aging in various organisms (summarized in [29]).
Particular long-lived proteins were shown to be retained
in mother cells during yeast replicative aging and
accumulated damaging modifications, possibly contri-
buting to the aging process [30]. On the other hand, Yang
and co-authors [31] found that proteins with normal life-
times that were retained in mother cells during asymmet-
ric division reduced the lifespan of the mother cell. It is
important to note that yeast replicative lifespan is limited
to several days, whereas many human cells persist for
tens of years. Thus, spontaneous amino acid modifica-
tions and other forms of protein damage may play a
much more important role in the context of human aging.

A recent study of protein turnover in the worm
Caenorhabditis elegans confirmed the reduced turnover
rates for 40% of studied proteins with age. Interestingly,
the most prominent decrease was found for ribosomal
proteins and proteins participating in translation
regulation [32]. On the contrary, studies in mammals
did not detect any global changes of protein turnover
dynamics during aging or even identified a slight
reduction in protein half-lives with age [22,33,34].
Nevertheless, in neurons altered stoichiometry of
multiprotein complexes components, such as the
nuclear pores, was found to be due to the decreased
amounts of long-lived proteins [35]. Changes of turn-
over rates for certain groups of proteins, such as
mitochondrial proteins, were also observed in the
muscle [34]. Another well-established example of
proteins that experience age-related changes are
crystallins, whose damage is associated with cataract, a
common age-related pathology [36].

Despite the fact that age-related changes in the turnover
rate were not detected in mammals, protein degradation
and turnover, apparently, contribute to lifespan control
across species. A recent study by the Ghaemmaghami
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group has shown a negative correlation between the
turnover rates and lifespan for eight rodent species [37].
In agreement with previous findings, it supports the
beneficial role of decreasing the protein turnover rates
in lifespan extension, probably, due to reduced energy
consumption. Moreover, the observed impact of turn-
over on species lifespan seemed to be dependent on
differences in protein sequence, but not on the function
of protein degradation machinery, therefore making
protein sequence another contributor to proteome
stability regulation in lifespan control.

Studies of protein metabolism in the context of aging
remain rather laborious and have limitations, especially
in the case of complex organisms. For instance, these
studies often do not account for differences in protein
turnover across cellular compartments and tissues. Also,
the duration of pulse labeling of a probe may not be
sufficient to analyze long-lived proteins, whereas the
time between labeling and fixation of tissue may be too
long to determine the turnover rate of short-lived
proteins [22]. Nevertheless, studies that succeed in
identifying alterations in protein turnover with age are
consistent in claiming its slow-down. Moreover, in the
case of accelerated aging, an increase in turnover rates
and protein synthesis was described [38].

Protein synthesis in aging and lifespan control

Changes in protein synthesis rate and translation
machinery with age

Unlike changes in protein folding, maintenance and
degradation, age-related alterations of protein synthesis
have not yet been studied in great detail; however, some
initial important observations have been made (Figure
2). During the second part of the 20" century, multiple
studies demonstrated that the overall level of protein
synthesis is reduced with age in various invertebrates,
mice, rats and humans, both in different tissues and in
vitro. These studies observed reduced ribosome
abundance, attenuated activity and levels of major
initiation and elongation factors (reviewed in
[29,39,40]), and also a reduction in the rate of mito-
chondrial protein synthesis [41] as a function of age.
The reduction in protein synthesis is probably a
common feature for all living creatures; it has been
observed in replicatively aged yeast [42], and, more
recently, in vivo in sheep using the incorporation of a
radioactive amino acid [43].

Several studies also assayed the age-related changes in
the expression of genes encoding the components of the
translation machinery. Reduction in the level of mRNAs
encoding four large ribosome subunit proteins was
observed using an RT-qPCR assay of cataract-affected

lenses obtained from patients of various ages, but no
difference in the mRNA levels of translation factors was
found [44]. Nevertheless, at the protein level, reduction
of translation elongation factor eEF1A abundance and
activity was shown in aging adult Drosophila
melanogaster, and this decline was suggested to be the
main cause of the decreased synthesis of total protein in
this case [45], although this conclusion was challenged
by the later data [46]. In another study, a two-fold
decrease in eEF2 protein abundance was detected in the
pineal gland of old rats [47]. Translation elongation
factors from young and old rats were also assayed in a
cell-free mammalian system and found to be more active
in the case of the young eEF1A, but similar for eEF2
preparations [47].

Aging can affect not only the abundance of translation
machinery components, but also their ability to control
the intracellular distribution of newly synthesized
proteins. For example, a decrease in the availability of
the nascent polypeptide-associated complex (NAC) due
to its partial aggregation during aging may result in
mistargeting of co-translationally imported mitochon-
drial proteins to the endoplasmic reticulum [48,49].

As the rate and type of damage accumulation with age
seems to differ for various organs and tissues [34,50—
57], changes in protein synthesis are also likely to vary.
For example, one study observed an age-related
reduction in total mRNA, as well as in the levels of
initiation and elongation factors and RNA polymerase [
protein in rat fast plantaris muscle, but not the slow
soleus muscle [58]. It was also reported that the brain
shows altered translation efficiencies for 15% of
analyzed transcripts, compared to 2% in the liver [59].

Interestingly, the data on changes in expression of genes
encoding ribosomal proteins in replicatively aged yeast
are somewhat contradictory. On the one hand, increased
amounts of ribosomal proteins were observed using
mass-spectrometry-based proteomics [60], but on the
other, the output of ribosomal protein mRNA translation
as well as the overall translation efficiency identified
with ribosome profiling were shown to decline with age
[61]. This may indicate some defects in the degradation
of ribosomes. The alterations of translation with the
increasing replicative age of yeast were also confirmed
by the observed gradual uncoupling of protein levels
from the levels of their transcripts [60]. Additionally,
several studies reported the disruption of the stoichio-
metry of translation machinery components with age
[9,32,60]. Notably, the translational output, measured
by ribosome profiling in the brains of young and old
rats, was increased for ribosomal proteins, but decreased
for translation factors, providing another example of
translation machinery deregulation with age [59].
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Figure 2. Age-related changes and lifespan modulating aspects of protein synthesis. The eukaryotic mRNA translation
cycle is shown. During translation initiation, the 43S complex is formed (top). It harbors the initiator Met-tRNAi delivered by elF2,
which is inactivated upon amino acid starvation, UPR or other stress conditions. The 43S complex is loaded onto the capped mRNA
5 end with the help of elF4F, composed of the cap-binding protein elF4E, a scaffold protein elF4G, and a helicase elF4A (not
shown). The elF4E-elF4G interaction is inhibited by 4E-BP repressor proteins, which are activated during amino acid starvation
when mTOR kinase is inactive. During elongation (right), cognate (or sometimes near-cognate) aminoacyl-tRNAs are delivered to
the translating ribosome by eEF1A, followed by the peptidyl transferase reaction and eEF2-assisted translocation step (not shown).
When the ribosome encounters a stop codon, translation termination occurs (bottom). At this step, the synthesized polypeptide is
released by termination factor eRF1, delivered by eRF3 (not shown) and assisted by ABCE1. In some cases, however, the stop codon
can be recognized by a non-cognate tRNA, leading to a readthrough event. At the final step (left), ribosome and deacylated tRNA
should be removed from the mRNA (recycled) with the help of ABCE1, elF2D and/or MCT-1/DENR proteins. Most of these events
are affected by aging (light-green boxes) or linked to lifespan control (yellow boxes). Known positive and negative effects are shown
by up and down arrows, respectively, while controversial or potential regulation is indicated by a question mark.

The abundance of ribosomes may even affect lifespan
within species. The distribution of ribosomal RNA gene
copy number was shown to be narrowed in the genomes
of elderly humans, indicating that there may be an
optimal level of ribosomal RNA required. It was hypo-
thesized that a low copy number is not sufficient for
maintaining the function of an aging organism, whereas
a high copy number may also represent a disadvantage
during aging, or, alternatively, the number of gene copy
just decreases with age [62]. Somewhat similar results
were obtained for Saccharomyces cerevisiae, where

older cells with the reduced amount of ribosomal
proteins exhibited a longer replicative lifespan, while in
younger cells, the ribosomal protein abundance
correlated positively with lifespan [63].

Changes of translation fidelity with age

Another important aspect of protein synthesis, which
attracts the attention of researchers in the aging field, is
the occurrence of translational errors, namely decoding
errors and stop codon readthrough events. Attempts to
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assay age-related changes in translational fidelity have
been made since the 1970s. The initial reports on this
line of enquiry were rather controversial, unlike the data
on protein synthesis and degradation. Many of them
used cell-free translation systems or ribosomes isolated
from organs of animals of different ages [64—66]. The
authors of these reports were unable to detect age-
related changes in translation fidelity.

Translational fidelity was also studied in extracts
obtained from aging cultures of primary fibroblasts. The
results of these studies were also controversial. For
instance, one study noted that the number of trans-
lational errors in an extract obtained from fibro-blasts
that had completed around 55 doublings was 7-fold
higher than that of cells which had doubled 28 times
[67]. On the other hand, no change in translational
fidelity was found in a study which investigated human
skin fibroblasts obtained from healthy subjects and
progeria patients and compared the fidelity of
translation in cells from early and late passages [68].
Another study identified differences between ribosomes
isolated from young and old animals. The authors used
paromomycin, an aminoglycoside antibiotic, which
decreases translational accuracy. Ribosomes isolated
from the livers of old rats exhibited increased sensitivity
to this antibiotic, i.e. after treatment with paromomycin
they made 9% more errors than the ribosomes obtained
from young rats [66].

The contradictory results of these studies may be due to
the use of cell-free translation systems to assess
translational fidelity [69]. For instance, the frequency of
translation errors (misincorporation of amino acids) in
yeast was estimated to be 107 [70]. However, estimates
of fidelity from one of the most widely used systems for
in vitro translation, rabbit reticulocyte lysate, are highly
variable - from 10™ [71] to 10 [72]. Such a discrepancy
precludes reliable estimation of changes in translational
fidelity with age. Another drawback of these early
studies was the use of very specific systems to assess
accuracy of amino acid incorporation, which were
chosen due to the absence of more appropriate methods
at the time. For instance, Luce and Bunn [67] used a
purified mRNA encoding the coat protein of the cowpea
variant of tobacco mosaic virus. This protein lacks any
cysteine residues, and errors were detected using an
aberrant incorporation of the labeled cysteine, while
another study [65] assayed incorporation of leucine
during the translation of a synthetic poly(U), which
normally encodes poly-phenylalanine. Such systems do
not recapitulate the translation of real cellular mRNAs,
and the obtained estimates do not include errors in
tRNA aminoacylation. Moreover, the protocol for
preparing the cell-free in vitro translation system may
introduce major changes in the parameters of protein

synthesis. Thus, we should bear in mind that the
shortcomings of cell-free in vitro systems may mask
differences between studied samples. For these
reasons, more recent studies aiming to assay the
relation between translational fidelity and aging were
performed in living cells. One study addressed changes
in translation fidelity of replicatively aged yeast upon
transformation of live cells with luciferase reporters
[73]. This approach did not detect changes in transla-
tion fidelity.

The impairment of ribosome recycling was recently
described in the aging mouse brains [74]. It was shown
that the brain regions that are particularly sensitive to
oxidative stress are enriched in short RNAs representing
isolated 3’ untranslated regions (UTR) of the regular
mRNAs. These fragments are, apparently, the mRNA
decay intermediates accumulated due to stalling of
unrecycled ribosomes at the 3° UTRs under conditions
when the ribosome recycling factor ABCE1 is damaged
by oxidative stress. Translation of these RNAs results in
the production of short peptides. Although the
accumulation of mRNA fragments and peptides in the
aging cell has not yet been shown to be a damaging
factor, it likely reflects impairment of protein synthesis
fidelity and could serve as a biomarker of aging.

The number of translation errors is correlated with
lifespan

Despite contradictory results on translational fidelity in
aging organisms, nature has left some important clues
with regard to relevance of translation fidelity to
organismal aging, which was revealed by several
studies that analyzed this process in various animal
species [75,76]. The naked mole rat, a rodent with an
exceptionally long lifespan for its body mass, is thought
to have translation fidelity nearly 10-fold higher than
that of the mouse [75]. This study used fibroblasts
isolated from the skin of mice and naked mole rats and
transfected with various luciferase-based reporter
constructs. They encoded firefly luciferase, but had
either point mutations in the sequence, thus changing
key amino acid residues, frameshifts, or premature stop-
codons. Luminescence of luciferase in the cells trans-
fected with these constructs could thus only be detected
due to translation errors. The study used six constructs
for assaying the following errors: three constructs for
each codon position, one for readthrough and two for +1
and -1 nucleotide frameshifts. Notably, the authors used
DNA-based constructs for transfection, thus the signal
should be sensitive to both translation and transcription
errors; however, the latter seemed to be negligible, as a
clear dependence of the error rate on nucleotide position
within the codon was observed. In addition to trans-
lation accuracy, the overall protein synthesis of the
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mouse and naked mole rat was also measured, but no
difference was observed [75].

Using the same panel of constructs, translation fidelity
was assayed in cultured primary fibroblasts of 17
rodents with different lifespan (4 to 32 years) and body
weight [76]. The results showed that the level of error
in the first and second, but not the third codon position
is negatively correlated with the maximal lifespan, but
not with the body weight of 16 out of the 17 species. It
is possible that errors in the third (wobble) codon
position are less critical, more loosely controlled and
do not affect the evolution of lifespan, or that the
errors are mainly due to the aminoacyl-tRNA-syn-
thases, and not due to decoding errors by the ribosome.
The rate of stop codon readthrough did not correlate
with the lifespan too, suggesting a higher selective
pressure for translation termination fidelity due to the
high energetic cost of failing to recognize a stop codon
[76].

In yeast, translational errors caused by antibiotics were
shown to impair the folding of proteins and activate
the same chaperone groups, which are activated during
aging, such as Hsp104 and Hsp26 [73], and translation
accuracy impairment induced by several methods
decreased the chronological lifespan. The authors
hypothesized that the increase in translational errors
coupled with the increase in misfolded protein levels
can overload the chaperone system, thus explaining the
effect of translation errors on lifespan [73]. Notably,
mistranslation due to the defective aminoacyl-tRNA
has also been reported to be mutagenic, thus aggra-
vating its impact in the deleteriome [77]. In the
filamentous fungus Podospora anserina, strains bearing
high fidelity mutations in the eEF1A gene were shown
to have drastically increased longevity [78].

To sum up, as of now, it seems that aging is not
accompanied by dramatic decreases in translational
fidelity. But the large body of data that demonstrates no
significant change with age is counterbalanced by
indirect indications of the possible relationship, such as
the sensitivity of ribosomes isolated from old animals to
antibiotics, or the positive correlation between trans-
lation fidelity and maximal lifespan. As proposed by
von der Haar and colleagues [73], it is possible that
modification of translation fidelity is a factor that
controls lifespan between different groups of organisms,
but it seems not to play a role in lifespan plasticity of
single organisms. The situation resembles that of
protein turnover rate contribution to aging in mammals
(see above), which is not shown to be directly altered
during aging, but is negatively correlated with lifespan
of rodent species [37].

Extending lifespan through manipulation of
protein  synthesis and translation-related
signaling

Manipulation of translational machinery can
modulate lifespan

An aging organism experiences an overall reduction of
protein synthesis rates (see above). However, there is
another line of evidence that highlights the importance
of translation changes in aging and their effects on
health. Namely, there are numerous examples of
interventions  affecting protein synthesis, which
modulate lifespan. Sometimes, such modifications are
very peculiar, as in the case of ribosomal RNA methy-
lation at a single residue that was shown to be
implicated in the control of lifespan in flies, worms and
yeast [79]. But a notable and well established pheno-
menon, connecting translation with aging is that
decreasing overall translation by various means can
increase lifespan (reviewed in [39,49,80,81]). For
example, this can be done by affecting translation
initiation. Deletion or downregulation of the IFE-2
somatic isoform of the initiation factor eIF4E of the
worm C. elegans enhances the effects of pro-longevity
mutations age, daf, clk and eat [82]. Downregulation of
another initiation factor, eIF4G (IFG-1) increases the
average lifespan of nematodes by more than 30%
[83,84], while deletion of two subunits of elF3 results in
a 40% extension [85]. The nematode lifespan is also
improved by downregulation of one of the subunits of
the elF2B initiation factor [86]. A search for pro-
longevity genes using RNA-interference in C. elegans
identified ribosomal proteins and numerous components
of the ribosome biosynthesis apparatus, as well as
initiation factors elF1, eIF4E, elF4G, elF4A, eIF2B,
elFSA and subunits of factors eIlF2 u eIF3 [87-91].
Decreased translation level in flies achieved by acute
overexpression of the regulatory factor 4E-BP lowered
protein aggregation in the muscle and extended lifespan
[92,93]. Similar observations were also made in the
budding yeast and filamentous fungi: a reduction in the
levels of several ribosomal proteins [94] or factors
involved in the biogenesis of the 60S ribosomal subunit
[95] as well as mutations in translation factors [96]
resulted in increased replicative lifespan of
asymmetrically dividing S. cerevisiae, while mutations
in some ribosomal proteins also extended lifespan in
Podospora anserina [97]. Somewhat controversial
results were obtained for translation elongation factors.
In early studies, fruit flies with elevated expression of
eEF1A were shown to live longer, while later experi-
ments revealed no effects on lifespan (summarized in
[98,99]). For elongation factor eEF2, inhibition by
EFK-1 kinase was shown to be important for the
longevity of C. elegans both during starvation and
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under nutrient-rich conditions [100], confirming an
overall positive effect of a decreased translation rate on
longevity.

One of the ways in which reduced protein synthesis is
thought to prolong life is the reduction of the load borne
by the chaperone machinery [101]. Translation attenua-
tion by the antibiotic minocycline enhances longevity
and proteostasis in C. elegans by lowering the concen-
tration of newly synthesized aggregation-prone proteins
[102]. Since protein synthesis is the most energy-
consuming process in the cell [103], its reduction could
also lead to reallocation of energy to processes that
repair and compensate various types of damage in the
cell, as well as those that reduce damage generated in
this process. Additionally, the slow-down of growth
rates and consequently of the rates of protein synthesis
increases the accuracy of translation, and therefore the
proteome quality and stability [73].

Strikingly, together with the decrease in actively
translating ribosomes, dietary restriction in mice decrea-
sed ribosome lifetime by almost 15% and increased
rRNA and ribosomal protein turnover rates [104]. It
appears that renewal of the intracellular ribosome pool
leads to a lower level of translational errors thus impro-
ving proteostasis. In agreement with the effects of
dietary restriction, rapamycin-induced inhibition of
mTOR, one of the major hubs of nutrient signaling (see
below), also increased ribosome turnover rates [105].

Growth factors

N

Mitochondrial translation contributes to longevity and
lifespan control as well. In replicatively aging yeast,
non-specific inhibition of mitochondrial translation
[106], as well as deletion of mitoribosomal protein Afol
[107] and the Afg3 protease involved in mitoribosome
maturation [108] can increase replicative lifespan. It is
likely that these interventions act through their effects
on cytoplasmic translation and the integrated stress
response pathway [109].

Signaling pathways controlling via
modulation of protein synthesis

longevity

Most of the established methods for increasing lifespan
are based on slowing down the metabolism using
dietary interventions or by affecting the molecular
cascades controlling metabolism [80,110]. These cas-
cades stimulate overall protein synthesis, are in tight
coordination with each other, and also dampen protein
degradation [111]. Figure 3 depicts the molecular path-
ways that link the various strategies of lifespan exten-
sion with the components of the translation machinery.

Compounds that robustly expand the lifespan of many
model organisms, rapamycin and its analogs
(“rapalogs”) [112-115], affect translation via the
mTORCI signaling pathway [116,117]. mTORCI1 and
mTORC2 are multiprotein kinase complexes with a
shared catalytic subunit, mTOR [118]. The precise
mechanism by which mTORCI1 affects the synthesis
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Figure 3. Molecular pathways modulating lifespan via control of the translation machinery. Components of the
Ras/MEK/ERK signaling pathway are shown in yellow, those of the PI3K/Akt/mTOR axis in green, the ISR pathway in yellow,
and the translation machinery components in grey [80,166,175,180].
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of translation machinery components is still unclear
[119,120], although its signaling connections, putting it
in the center of the metabolic control of cell growth,
have been studied extensively [111,121].

The two main mTORCI targets that affect translation
are 4E-BP and ribosomal protein S6 kinase (p70™)
[111,122]. mTOR phosphorylates the cap-dependent
translation regulators of the 4E-BP family, thus in-
activating them. Direct mTOR kinase inhibitors, such as
Torinl or PP242, cause dephosphorylation of 4E-BPs
and decrease translation efficiency, since the hypo-
phosphorylated forms of 4E-BPs bind the cap-binding
protein elF4E, preventing its interaction with its partner
elF4G and other components of the translation appa-
ratus [111,119]. Although rapamycin is also usually
considered as an mTOR inhibitor, it acts allosterically
and binds to the kinase indirectly through immunophilin
FKBP12, exclusively in the context of the mTORCI
complex [111]. Accordingly, it has different effects on
mTOR targets (e.g. 4E-BP1) and overall mRNA
translation than the direct (ATP-competitive) mTOR
inhibitors [123-127] and extends lifespan even in 4E-
BP-null organisms [93].

Another major mTORC1 target is S6 kinase which,
among others, phosphorylates the S6 protein of the 40S
ribosomal subunit and the elF4B initiation factor
(cofactor of the elF4A helicase) [123,124,128,129].
Relative impact of S6K and mTOR kinases on
translation activation and their cross-talk in the response
to extracellular stimuli are still a matter of debate (see
[111,127,130] and references therein). However, it is
generally accepted that signaling via mTORC1 and S6
kinase axes upregulates translation, while both
rapamycin and direct mTOR inhibitors act in the
opposite direction [131].

Changes in the mTOR pathway activity during aging is
currently an ongoing research direction [132]. Deletion
of the TOR1 gene increases replicative lifespan in yeast
[94,96]. mTOR downregulation also extends lifespan in
worms [133] and flies [134]. Finally, female knockout
mice heterozygous for both mTOR and another
mTORC1 component, mLSTS, also live longer [135].
However, no common trend in mTOR pathway activity
changes with age could be detected in mice, as it is
easily influenced by numerous environmental and
intrinsic conditions (e.g. sex, tissue, feeding status)
[136]. Nevertheless, translation downregulation caused
by artificially elevated activity of 4E-BP improves
proteostasis and extends lifespan in flies similarly to
mTORC] inhibition [92,93,137]. The p70™* signaling,
which is connected to mTORCI1, was shown to be
elevated in old mice [33], and the animals lacking S6K1

or overexpressing dominant-negative forms of mTOR
or S6K exhibited extended lifespan [134,138].

Most components of the translation apparatus
(ribosomal proteins, elongation factors, some RNA-
binding proteins and translation initiation factors)
contain a 5' terminal oligopyrimidine tract (5' TOP) at
the beginning of their mRNAs [120,139]. This specific
sequence usually starts with a cytosine followed by 4 to
15 pyrimidine bases, and then by a GC-rich region. The
5' TOP motif is highly conserved among mammals and
is also found in the mRNAs of some ribosomal proteins
of fruit flies; however, it has not been found in lower
eukaryotes [120]. It is thought that the 5' TOP sequence
mediates the effect of mTORCI1 on the translation of
mRNAs encoding proteins of the translation apparatus
[120,122]. The current consensus on the mechanism of
action of rapamycin and direct inhibitors of mTOR on
cellular translation is as follows: these compounds
cause a subset of mRNAs (mostly those containing 5'
TOP), which comprise up to 80% of overall translation
in actively proliferating cells, to be selectively liberated
from polysomes [125,140]. One possible explanation of
this phenomenon is based on the different affinity of the
cap-binding protein elF4F to the 5' UTRs of various
mRNA, as well as their competition with other mRNA-
binding proteins, including those with the high affinity
to the 5' TOP motif [141]. TIA-1/TIAR and/or LARP1
may be the proteins that accomplish regulation of these
processes in various physiologic conditions. It has been
shown that TIA-1/TIAR suppress the translation of 5'
TOP mRNAs and promote their localization to stress
granules during amino acid starvation [142].
Nevertheless, they do not mediate repression of 5' TOP
mRNA in conditions of insufficient serum or oxygen
[143]. The data on the other factor, LARPI, are some-
what contradictory. On the one hand, it has been shown
that LARP1 is associated with the mTORCI1 complex
and actively translating mRNAs, while down-regulation
of LARP1 causes selective suppression of 5' TOP
mRNA translation [144]. On the other hand, LARP1
directly binds the mRNA cap, competing with the
assembly of elF4F and translation initiation [145].
Moreover, depletion of LARP1 increases translation of
5' TOP mRNAs and makes them resistant to inhibition
by rapamycin [146,147]. Thus, a two-step model of 5'
TOP mRNA regulation via mTORCI1 is plausible.
Inhibition of mMTORC1 causes suppression of translation
via activation of 4E-BPs and inactivation of S6K;
however, different mRNAs react quite differently to this
inhibition. 5' TOP mRNA are much more sensitive to
suppression, since LARP1 probably overcompetes
elF4F in binding to the 5' TOP mRNA’s termini under
these conditions due to the decreased affinity of these
regions to elF4E and/or elF4G, elF4F components
[141,148,149].
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5" TOP is not the only structural feature dictating the
specific regulation of mRNAs encoding translation
components. Recently, RNA-binding protein HuD was
shown to regulate many mRNAs encoding mTORCI-
responsive ribosomal proteins and translation factors via
regulatory elements in their 3' UTRs [150]. Intriguingly,
mTORCI activation also causes mRNA 3' UTR shorte-
ning in a transcriptome-wide scale, leading to enhanced
polysome recruitment of 3' UTR-shortened transcripts
[151]. Contrary to this, a widespread 3' UTR lengthe-
ning of mRNAs has recently been discovered during
cellular senescence [152]. This implies a cross-talk
between mTOR-dependent regulation at transcriptional
and translational levels under normal, stress and
pathological conditions.

It should be noted that the mTORCI1/elF4F-mediated
translational control is widely known, but it is not the
only pathway regulating cellular mRNA translation.
Although the highly mTOR-dependent mRNAs
constitute a majority of transcripts in polysomes of
actively proliferating cells, they represent just a
minority of mRNA species [125,140]. Many other
mRNA species tolerate 4E-BP1 activation. They are
likely to be less dependent on elF4F and even on the 5°
terminal m’G-cap, although still require a free 5 end to
recruit the ribosome [141]. To explain efficient mRNA
translation under these conditions, a number of alter-
native molecular mechanisms of ribosome recruitment
were recently proposed. These include mbA-dependent
pathways, mediated by elF3, ABCF1 and/or YTHDF1/3
[153—-156]; special sequences within mRNA leaders
[157]; involvement of distinct cap-binding proteins like
elF3d [158], CBC (nuclear cap-binding complex)
[159,160] or unconventionally composed elF4F variants
[161,162]; alternative RNA helicases like DDX3/Ded1p
[160,162,163] or other non-canonical translation initia-
tion mechanisms. However, their importance to aging
and lifespan control are yet to be investigated, although
some indirect evidence points to their putative relevance
[84,164].

Translation is also regulated through cytokine and
hormone induced signaling. PI3K/AKT and MAPK
pathways are activated in the presence of insulin and
growth factors (Figure 3). They are interconnected with
the mTOR pathway and can also regulate translation in
an age-dependent manner. Knockout of various
components of the PI3K/Akt signaling pathway, like the
insulin receptor (daf) genes, increases lifespan (re-
viewed in [165]). Signals from the insulin and growth
factor receptors converge on a few signaling hubs,
including the Akt kinase, which in turn activate
mTORCI1, while the kinases ERK1 and ERK2 of the
MAPK -pathway activate the S6 kinase (p90™") directly
[111]. ERK1 and ERK2 also activate the Mnk kinase, a

positive regulator of translation initiation via
phosphorylation of eIF4E and stabilization of its
interaction with elF4G and the 5’ cap structure. The
Mnk1 kinase can be also activated by the p38 stress
kinase, which is a component of the MAPK-pathway
[39,166]. Phosphorylation levels of most of the
signaling molecules of this axis (ERK 1/2, p90™* Mnk]1
and p38 MAPK) were shown to be higher in muscles of
older men [167].

Another molecular mechanism, which connects lifespan
control and protein synthesis, is the integrated stress
response (ISR). One of its branches is initiated by
specific translational upregulation of upstream ORF-
containing mRNAs encoding stress transcription factors
(GCN4 in yeast and ATF4 in mammals). Lowered
amino acid levels and appearance of free deacylated
tRNAs in the cytoplasm activate the evolutionary
conserved GCN2 kinase, which inhibits the elF2
initiation factor by phosphorylating its o-subunit.
Intriguingly, limitation for different amino acids
triggers distinct signaling branches and has different
effects on translation [168-170], thus providing a
molecular basis for a variety of dietary restriction
interventions with different potential to extend lifespan.
In mammalian cells, three additional kinases exist that
phosphorylate elF2a. under various conditions,
including PERK, which is activated upon endoplasmic
reticulum stress and triggers the unfolded protein
response (UPR). When active elF2a is lacking,
synthesis of most proteins is suppressed; however, a
peculiar arrangement of uORFs in the 5" UTRs of the
yeast GCN4 and mammalian ATF4 mRNAs, as well as
of some other transcripts, allows their translational
induction under these conditions [171,172]. The
transcription factors induce the expression of genes
necessary for cell survival. During the ISR, mTOR
kinase activity is also repressed, since a cross-talk exists
between the two signaling pathways (see, for example,
[173,174]). Ribosome biogenesis is usually decreases
while autophagy is increased during ISR, assisting
proteostasis maintenance under stress conditions.
Therefore, the ISR improves protein folding and
maintains proteostasis [175], with an emerging role of
mTORCI in this process [176].

The role of ISR in lifespan extension is relatively well
studied in yeast. GCN4 was shown to be at least
partially involved in both replicative and chronological
lifespan extension by various ways including depletion
of nutrients and ribosomal components (reviewed in
[109]). Elevating the ISR level is observed during aging
in different species, likely because of decreased protein
quality with age together with the depletion of energy
resources. In replicatively aged yeast, protein synthesis
was reduced due to activation of stress-induced Gen2
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kinase and by mRNA re-localization to P-bodies
mediated by the Ssdl mRNA binding protein [61],
whereas in aged rats increased expression of ATF4 was
observed in the retina, also possibly indicating induction
of a protective program in response to impaired
proteostasis [177].

Translation elongation rate is also regulated by intra-
and extracellular stimuli and conditions, including
starvation. AMPK, which is activated during energy
depletion, phosphorylates eEF2K, a specific kinase for
translation elongation factor eEF2 (Figure 3). This
phosphorylation leads to a decreased eEF2 translocase
activity and slows down elongating ribosome velocity
[111]. C. elegans deficient in EFK-1, an ortholog of
eEF2K, had a shorter lifespan not only in response to
starvation, but also under nutrient-rich conditions [100],
while the increase in AMPK subunit levels, in turn,
prolonged the worm’s life [178].

CONCLUSIONS

Deregulation of nutrient signaling and accumulation of
damage in the aging proteome lead to decreased protein
synthesis. This decrease seems to serve as an adaptation
of the organism to age-related changes and may be
beneficial in terms of longevity, as downregulation of
protein synthesis and an increase in proteome stability
are associated with increased lifespan. The effects of
aging on the proteome, and more specifically, on the
dynamics of protein synthesis are, as of yet, in-
completely understood, and elucidation of how lifespan
is controlled in various organisms and what factors
shape the aging trajectory of a specific organism or its
different tissues is an important goal for future studies.
Currently, only a few reports have performed omics-
level analyses of protein synthesis in the context of
aging and nearly all of them used only two age groups
(younger and older), whereas many other studies
addressed changes in either highly specialized tissues,
or did not compare tissues with one another. However,
data on the rates of damage accumulation in different
tissues [50-57] as well non-linear changes in trans-
criptomic readouts during aging [179] indicate that
studies with more temporal resolution, i.e. more age
points, involving different tissues are needed to gain a
better and deeper understanding of age-related changes.
In turn, these studies may help identify the important
drivers of deterioration in specific tissues and pave the
way for developing effective longevity interventions.
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