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ABSTRACT

Aging is associated with impaired angiogenesis and lung alveolar regeneration, which contributes to the
increased susceptibility to chronic lung diseases (CLD). We have reported that the Wnt ligand co-receptor, low-
density lipoprotein receptor-related protein 5 (LRP5), stimulates angiogenesis and lung alveolar regeneration.
However, the role of LRP5 in age-related decline in vascular and alveolar morphogenesis remains unclear. In
this report, we have demonstrated that vascular and alveolar structures are disrupted in the 24-month (24M)
old mouse lungs. The expression of LRP5 and the major angiogenic factors, VEGFR2 and Tie2, is lower in
endothelial cells (ECs) isolated from 24M old mouse lungs compared to those from 2M old mouse lungs.
Vascular and alveolar formation is attenuated in the hydrogel implanted on the 24M old mouse lungs, while
overexpression of LRP5, which restores angiogenic factor expression, reverses vascular and alveolar
morphogenesis in the gel. Compensatory lung growth after unilateral pneumonectomy is inhibited in 24M old
mice, which is reversed by overexpression of LRP5. These results suggest that LRP5 mediates age-related
inhibition of angiogenesis and alveolar morphogenesis. Modulation of LRP5 may be a novel intervention to
rejuvenate regenerative ability in aged lung and will lead to the development of efficient strategies for aging-
associated CLD.

INTRODUCTION need for the development of more effective ways to
treat CLD in aging people. Impairment of lung
The aging population, aged 65 and older, is rapidly regeneration and repair is one of the most important
growing and is estimated to reach 83.7 million in 2050 factors in COPD progression [7, 8]. It has been reported
(US Census Bureau). Because of chronic inflammation, that compensatory lung growth after unilateral pneu-
oxidative stress, abnormal shortening of telomeres, and monectomy (PNX) is highly induced in the lungs of
changes in local microenvironment and stem cell juvenile people [9, 10], while it is significantly
populations, the aging population is at high risk for diminished in older people [9, 11, 12]. Thus,
CLD including chronic obstructive pulmonary diseases rejuvenation of the intrinsic regenerative ability in aged
(COPD) [1-6]; the number of COPD patients is 4 times lungs could be a promising strategy for CLD in aging
higher in the aging population compared to that in people.
younger populations and COPD is the fourth leading
cause of the death in aging people (ALA Epidemiology Wnt signaling plays important roles in lung vascular
and Statistics Unit). These figures indicate a critical and alveolar development [13-17]. Wnt signaling is
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suppressed in aging organs including lungs [18] and
activated Wnt signaling inhibits cellular senescence [18-
20]. Reduced Wnt signaling is associated with aging-
associated diseases such as heart disease [21],
Alzheimer’s disease [22], osteoporosis [23], diabetes
[24], and COPD [1, 25, 26]. We and other groups have
shown that the Wnt ligand co-receptor, low-density
lipoprotein receptor-related protein 5 (LRP5) controls
various angiogenic pathways (e.g., angiopoietins
(Angs)-Tie2 [15, 17], VEGF-VEGFR2 [27, 28], neuro-
pilin (NRP2) [29]), and stimulates retinal [27, 30-32]
and lung vascular development in neonatal mice [14-
17]. LRP5 also mediates compensatory lung growth
after PNX in young adult mice through Ang-Tie2
signaling [33]. Thus, LRP5 signaling may be the key
control point for the impairment of vascular and
alveolar morphogenesis in the aged lung.

Here we have demonstrated that angiogenesis and
alveolar morphogenesis are impaired in aged mouse
lungs through suppression of LRPS signaling. Activa-
tion of LRP5 signaling restores the age-related decline
in lung vascular and alveolar morphogenesis. Modu-
lation of LRP5 signaling would be an efficient thera-
peutic strategy for aging-associated lung diseases.

RESULTS

Vascular and alveolar structures are disrupted in
the aged mouse lung

When we examined vascular and alveolar structures in
the young (2 months (2M) old) vs. aged mouse lungs
(24M old) using histological (hematoxylin & eosin
(H&E) staining) and immunohistochemical (IHC)
analyses, the structure of aquaporin 5 (AQPS5)- and
surfactant protein-B  (SPB)-positive alveolar units
(septation) and CD31-positive blood vessel structures in
the septa were disrupted in 24M old mouse lungs
compared to those in 2M old mice (Figure 1A); alveolar
size characterized by measuring the mean linear
intercept (MLI) was 2.1-times higher, while the alveolar
number was 57% lower in the 24M old mouse lungs
compared to those in the 2M old mouse lungs (Figure
1B). Although vascular density was not significantly
changed in the alveolar septa, vessel diameter was 2.5-
times larger and the expression of major angiogenic
factor receptors, VEGFR2 and Tie2, in ECs decreased
by 39% and 49%, respectively, in the 24M old mouse
lungs compared to those in the 2M old mouse lungs
(Figure 1B). We also analyzed the age-dependent
effects on blood vessel structures using the microfil
casting system (Figure 1C). The casting reagents that
leaked out of the blood vessels increased by 1.5-fold in
the 24M old mouse lungs compared to those in the 2M
old mouse lungs (Figure 1C, D).

Consistent with the results of aged lung tissues, Vegfr2
and Tie2 mRNA levels were lower by 79% and 68%,
respectively, in ECs isolated from 24M old mouse lungs
compared to those in the gender-matched 2M old mouse
lungs (Figure 2A). The protein levels of VEGFR2 and
Tie2 were also lower by 83% and 80%, respectively, in
24M old mouse lung ECs when analyzed using IB
(Figure 2B). LRPS5 stimulates lung development and
regeneration through Angl-Tie2 signaling [15, 17, 33]
and Wnt signaling and angiogenic signaling are reduced
in aging organs including the lungs [18, 34-40]. We
have reported that Lrp5 knockout (KO) mouse reveals
retarded postnatal alveolar development and decreases
angiogenic factor expression in the lung [15]. We have
also demonstrated that compensatory lung growth after
unilateral PNX is inhibited in Lrp5 KO mice [33]. Thus,
we next examined the expression of LRP5 in the aged
mouse lungs. The mRNA and protein levels of LRPS
were lower by 79% and 86%, respectively in ECs
isolated from 24M old mouse lungs compared to those
in 2M old mouse lung ECs (Figure 2A, B). Over-
expression of LRP5 wusing Ientiviral transduction
restored VEGFR2 and Tie2 mRNA and protein
expression in ECs isolated from 24M old mouse lungs
(Figure 2C, D). LRP5 overexpression also increased [3-
catenin protein expression in 24M old mouse lung ECs
when analyzed using IB and immunocytochemical
analysis (Figure 2D, Supplementary Figure S1A), sug-
gesting that LRP5 stimulates angiogenic factor
expression in aged ECs through canonical Wnt
signaling. When we evaluated the lung vascular and
alveolar morphology in 24M old Lip5 KO mice,
vascular and alveolar structures were more severely
disrupted in 24M old Lrp5 KO mouse lungs compared
to those in 24M old wild-type (WT) mouse lungs
(Figure 2E). The alveolar number was 32% lower and
MLI was 1.2-fold higher in the 24M old Lrp5S KO
mouse lungs compared to those in the 24M old WT
mouse lungs. These results suggest that suppression of
LRP5 expression mediates age-dependent decreases in
VEGFR2 and Tie2 expression in lung ECs and
contributes to the inhibition of vascular and alveolar
morphogenesis in the aged mouse lung.

LRPS mediates age-related decline in angiogenesis
and alveolar morphogenesis in the lung

To further study the effects of aging on newly formed
vascular and alveolar morphogenesis in the lung, we
implanted fibrin gel on the 2M vs. 24M old mouse
lungs [41-43] and characterized the vascular and
alveolar epithelial morphogenesis in the gel. Consistent
with the decreases in the expression of angiogenic
factors in aged mouse lung ECs (Figure 2), CD31-
positive blood vessel formation, which is well develop-
ed in the gel implanted on the 2M old mouse lungs, was
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attenuated in the gel implanted on the 24M old mouse (Figure 3A, B). The levels of VEGFR2 and Tie2 were

lungs for 7 days; vascular density was 60% lower than also lower by 70% and 91%, respectively in the gel
that in the gel implanted on the 2M old mouse lungs implanted on the 24M old mouse lungs (Figure 3A, B).
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Figure 1. Age-dependent changes in vascular and alveolar structures in the mouse lungs. (A) H&E-stained 2M and 24M old
mouse lungs (top, scale bar, 20 um). Immunofluorescence micrographs showing CD31-positive blood vessels and AQP5-positive
alveolar type-I epithelial cells (2nd), CD31-positive blood vessels and SPB-positive alveolar type-Il epithelial cells (3rd), CD31-positive
blood vessels and VEGFR2 expression (4th), and CD31-positive blood vessels and Tie2 expression (bottom) in the 2M vs. 24M old
mouse lungs (scale bar, 20 um). (B) Graphs showing quantification of alveolar size (MLI, top), alveolar number (2nd), vessel diameter
(3rd), and area of ECs expressing VEGFR2 and Tie2 (bottom) in the 2M and 24M old mouse lungs (n=7, mean + s.e.m., *, p<0.05). (C)
Micrographs showing blood vessel structures in the 2M and 24M old mouse lungs analyzed using the Microfil casting system. Scale
bar, 1 mm. (D) Graph showing the quantification of casting reagent leaked out of the lung blood vessels (n=7, meanzts.e.m., ¥*p<0.05).
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Figure 2. LRP5 mediates age-dependent changes in angiogenic factor receptor expression in mouse lung ECs. (A)
Graph showing the mRNA levels of Vegfr2, Tie2, and Lrp5 in ECs isolated from 2M vs. 24M old mouse lungs (n=4, meants.e.m., *,
p<0.05). (B) Representative immunoblots showing VEGFR2, Tie2, LRP5, and B-actin protein levels in ECs isolated from 2M vs. 24M
old mouse lungs. Graph showing VEGFR2, Tie2, and LRP5 protein levels normalized by B-actin protein levels in ECs isolated from 2M
vs. 24M old mouse lungs (n=4, meants.e.m., *, p<0.05). (C) Graph showing the mRNA levels of Vegfr2, Tie2, and Lrp5 in ECs isolated
from 24M old mouse lungs treated with lentivirus overexpressing LRP5 (n=4, meants.e.m., *, p<0.05). (D) Representative
immunoblots showing VEGFR2, Tie2, LRP5, B-catenin, and B-actin protein levels in ECs isolated from 24M old mouse lungs treated
with lentivirus overexpressing LRP5. Graph showing VEGFR2, Tie2, LRP5, and B-catenin protein levels normalized by B-actin protein
levels in ECs isolated from 24M old mouse lungs treated with lentivirus overexpressing LRP5 (n=4, meants.e.m., *, p<0.05). (E) H&E-
stained 24M old WT and Lrp5 KO mouse lungs (top, scale bar, 50 um). Immunofluorescence micrographs showing CD31-positive
blood vessels in the 24M old WT and Lrp5 KO mouse lungs (bottom, scale bar, 20 um). Graphs showing quantification of alveolar
number (left) and alveolar size (MLI, right) in the 24M old WT and Lrp5 KO mouse lungs (n=4, mean * s.e.m., ¥, p<0.05).

AQP5- and SPB-positive alveolar epithelial cells
aligned along the ECs in the gel implanted on the 2M
old mouse lungs, while these alveolar epithelial morpho-
genesis was inhibited when the gel was implanted on

the 24M old mouse lungs: AQP5- and SPB-positive
alveolar epithelial cell area was lower by 61% and 38%,
respectively compared to that in the gel implanted on
the 2M old mouse lungs (Figure 3A, Supplementary
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Figure S1B). We also manipulated LRP5 expression in cells (Supplementary Figure S1C). LRP5 DNA

2M vs. 24M old mice using intravenous injection of intravenous injection increased LrpS mRNA levels in

LRP5 DNA (retroorbital injection, twice/week) [43]. CD31°, VE-cadherin’, CD45" EC populations and

Consistent with others’ reports [44, 45], LRP5 was immune cells in the BAL fluid by 2.8- and 3.7-times,

expressed not only in CD31", VE-cadherin’, CD45 EC respectively when analyzed using qRT-PCR (Supple-

populations but also in other types of cells, including mentary Figure S1D). Intravenous injection of LRPS5

EpCAM " alveolar epithelial cells and alveolar immune DNA also reversed angiogenesis, alveolar morphogene-
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Figure 3. LRP5 mediates age-dependent decline in vascular and alveolar epithelial morphogenesis in the gel implanted
on the mouse lungs. (A) Immunofluorescence micrographs showing CD31-positive blood vessels and AQP5-positive alveolar type-I
epithelial cells (top), CD31-positive blood vessels and SPB-positive alveolar type-Il epithelial cells (2nd), CD31-positive blood vessels
and VEGFR2 expression (3rd), and CD31-positive blood vessels and Tie2 expression (bottom) in the fibrin gel implanted on the 2M vs.
24M old mouse lungs or in combination with LRP5 overexpression for 7 days (scale bar, 20 um). (B) Graphs showing quantification of
CD31-positive blood vessel numbers (left), area of ECs expressing VEGFR2 (middle) and Tie2 (right) in the gel implanted on the 2M vs.
24M old mouse lungs or in combination with LRP5 overexpression for 7 days (n=7, mean * s.e.m., ¥, p<0.05).
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sis, and angiogenic factor expression inhibited in the gel
implanted on the 24M old mouse lungs (Figure 3,
Supplementary Figure S1B). These results suggest that
LRPS5 mediates age-dependent decline in angiogenesis
and alveolar morphogenesis in the gel implanted on the
mouse lungs.

LRPS mediates age-related inhibition of

compensatory lung growth after PNX

It has been reported that compensatory lung growth
after unilateral PNX is significantly diminished in older
people [9, 11, 12]. We have demonstrated that LRP5

A c VEGFR2 i W

et ———
LRP5 == S H_

—
P

8- B-Actin S == e |
PNX: - + + - o
LRP5DNA: - - + - - +
2M 24M
VEGFR2 Tie2 LRP5

IS
!

ung Weight/ BW (102 g/g)
[=2]

[}
°
21 2
3
3 ol <
PNX: s
LRP5 DNA: - - + - - + o
0
2m 24M PNX: - +4 -+ + -++-++ -+ +-++
LRPSDNA: - -4+ -- + --4-=-4 =- -+ --+
2M  24M 2M  24M 2M  24M

CD31 (green),

SPB (magenta) AQP5 (magenta)

CD31 (green),

D
o o

Vessel #/Field
=Y
o

N
o

LRP5DNA: - - + - - + - - 4 - -4 - -4 - - 4

Figure 4. LRP5 mediates age-dependent inhibition of post-PNX compensatory lung growth. (A) Graph showing the
ratio of the weight of right lung cardiac lobe to mouse BW in the 2M vs. 24M old mice after PNX or in combination with LRP5
overexpression for 7 days after PNX (n=7, mean % s.e.m., *, p<0.05). (B) H&E-stained mouse lungs (top, scale bar, 20 um),
CD31-positive blood vessels and AQP5-positive alveolar type-I epithelial cells (middle, scale bar, 20 um), and CD31-positive
blood vessels and SPB-positive alveolar type-Il epithelial cells (bottom) in the cardiac lobe of 2M vs. 24M old mice after PNX
or in combination with LRP5 overexpression for 7 days after PNX. Graphs showing quantification of alveolar size (MLI, left),
alveolar number (middle), and vessel number (right) in the cardiac lobe of 2M vs. 24M old mice after PNX or in combination
with LRP5 overexpression for 7 days after PNX (n=7, mean * s.e.m., *, p<0.05). (C) Representative immunoblots showing
VEGFR2, Tie2, LRP5, and [B-actin protein levels in the 2M vs. 24M old mouse lungs after PNX or in combination with LRP5
overexpression for 7 days after PNX. Graph showing the quantification of immunoblots (n=4, *, mean + s.e.m., *, p<0.05).
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mediates compensatory lung growth after PNX in
young adult mice [33]. Thus, we next examined whether
aging suppresses compensatory lung growth after PNX
through LRPS5 signaling using a mouse unilateral PNX
model. Consistent with previous reports [33, 46-48],
there was a significant increase in the ratio of the weight
of right cardiac lobe to mouse body weight (BW) 7 days
after left unilateral PNX on 2M old mice; the lung
weight to BW ratio was 5.4 x10? (g/g) in the sham-
operated control mice, while the ratio increased by 1.4-
fold in the lungs 7 days after PNX (Figure 4A).
Morphometric analysis of H&E-stained mouse lungs
also revealed that the size of the alveolar space
measured by MLI decreased by 33%. The number of
alveoli and CD31-positive blood vessels increased by
1.7- and 2.1- times, respectively, in the remaining lung
lobe after left PNX compared with control sham-
operated 2M old mouse lungs (Figure 4B). However,
these post-PNX effects on compensatory lung growth
and vascular and alveolar morphogenesis were
attenuated in the 24M old mouse lung after PNX
(Figure 4A, B). The protein levels of LRPS and angio-
genic factor receptors, VEGFR2 and Tie2, also in-
creased by 1.9-, 2.1-, and 2.9-times in the 2M old
mouse lungs 7 days after left PNX compared to those in
the sham-operated control mouse lungs, while these
increases were suppressed in 24M old post-PNX mouse
lungs (Figure 4C).

To study whether LRP5 mediates age-dependent
inhibition of compensatory lung growth after PNX, we
treated mice with LRP5 DNA using intravenous
injection (retroorbital injection, twice/week) [43] after
unilateral PNX. LRP5 DNA injection, which increased
the LRP5 protein expression by 5.2-fold in the 24M old
mouse lungs 7 days after treatment (Figure 4C),
restored the lung growth 7 days after left unilateral PNX
in 24M old mice compared to that in the control-vector
injected mouse lungs (Figure 4A). LRPS overexpression
also restored the size of the alveolar space measured by
MLI, the number of alveoli expressing AQP5 and SPB,
and the vessel numbers in 24M old mouse lungs after
left unilateral PNX (Figure 4B). The protein levels of
VEGFR2 and Tie2 in the 24M old mouse lungs after
PNX were also restored by LRP5 overexpression
(Figure 4C). LRP5 overexpression did not have signi-
ficant effects on lung growth and vascular and alveolar
morphogenesis in 2M old post-PNX mouse lungs
(Figure 4A, B). We also investigated the endothelial and
alveolar epithelial cell proliferation in 2M vs. 24M old
mice after PNX and the effects of LRP5 overexpression
using FACS analysis of BrdU" cells (Supplementary
Figure SIE). 1.4% and 0.3% of CD31", VE-cadherin’,
CD45" endothelial cell populations were BrdU-positive
in 2M and 24M old sham-operated mouse lungs,
respectively. BrdU-positive CD31", VE-cadherin’,

CDA45" endothelial cell populations increased to 11.5%
after PNX in 2M old mouse lungs, while increased only
to 0.6% in 24M old post-PNX mouse lungs. LRP5
overexpression significantly increased BrdU-positive
CD31", VE-cadherin’, CD45 endothelial cell popu-
lations in the 24M old mouse lungs, while there was no
significant effect in the 2M old mouse lungs. Similar
trends were observed in EpCAM " alveolar epithelial cell
populations. 1% of EpCAM" cells were BrdU-positive
in both 2M and 24M old sham-operated mouse lungs.
BrdU-positive EpCAM" cell populations increased to
2.7% in 2M old mouse lungs after PNX, while
increased only to 1.2% in post-PNX 24M old mouse
lungs. LRP5 increased BrdU-positive EpCAM' cell
proliferations in the 24M old mouse lungs after PNX.
These findings suggest that LRP5 overexpression
increases angiogenic factor expression and stimulates
compensatory lung growth and vascular and alveolar
morphogenesis in the 24M old mouse lungs after PNX.

DISCUSSION

In this report, we have demonstrated that vascular and
alveolar structures are disrupted in the 24M old mouse
lungs. The expression of LRP5 and major angiogenic
factor receptors, VEGFR2 and Tie2, was lower in ECs
isolated from 24M old mouse lungs compared to those
from 2M old mouse lungs. Vascular and alveolar for-
mation was suppressed in the fibrin gel implanted on
the 24M old mouse lungs and compensatory lung
growth after PNX was inhibited in 24M old mice, while
these effects were restored by overexpression of LRPS5.
These results suggest that age-dependent decline in
LRPS5 expression decreases the expression of angio-
genic factor receptors and impairs angiogenesis and
alveolar morphogenesis in the aged mouse lungs.
Modulation of LRP5 expression may be one of the
promising strategies for age-related lung diseases and
delaying the aging processes in the lungs.

LRP5 controls various angiogenic pathways (e.g.,
angiopoietins (Angs)-Tie2 [15, 17], VEGF-VEGFR2
[27, 28], neuropilin (NRP2) [29]), and stimulates lung
vascular development in neonatal mice [14-17, 49] and
compensatory lung growth after PNX in adult mice
[33]. Given that the cooperative action of multiple
angiogenic pathways are required for optimal genera-
tion and maintenance of physiological and functional
blood vessels [50-55] and subsequent organ morpho-
genesis, manipulation of the expression of LRP5 could
be a promising strategy to reverse age-related decline in
lung vascular and alveolar formation. LRP5 over-
expression may simultaneously stimulate the expression
of antagonistic genes, which may eliminate the desired
angiogenic phenotype and functions. However, such
antagonistic pathways may also be necessary for the
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well-organized spatiotemporal control of angiogenesis.
Consistent with others’ reports [44, 45], LRPS is
expressed not only in ECs but in other cell types as well
(Supplementary Figure S1C), which influences lung
vascular and alveolar morphogenesis. We have found
that LRP5 DNA systemic injection restores vascular
and alveolar morphogenesis in the post-PNX aged
lungs. LRP5 DNA systemic injection increased LRPS
expression in multiple cell types (ECs, immune cells)
and may restore vascular and alveolar morphogenesis
and compensatory lung growth through signaling in the
multiple cell types in the aged lung. Furthermore, LRPS
DNA systemic injection may increase LRP5 expression
in other organs, which indirectly affects lung vascular
and alveolar morphogenesis. Further investigation using
conditional Lrp5 transgenic mice, in which LRPS5
expression is manipulated in specific cell types, would
elucidate the mechanism by which aging impairs
angiogenesis and alveolar morphogenesis. Continuous
activation of LRP5 may have additive toxicity resulting
from the control of multiple genes and promote tissue
fibrosis [56-58], various types of cancer and tumor
metastasis [59, 60], valve degeneration and calcification
[61, 62], and osteoarthritis [63, 64]. EC specific gene
manipulation during specific time frame will maximize
the regenerative ability of LRP5 and minimize the
potential toxicity.

Overexpression of LRP5 only partially restored
angiogenesis and alveolar morphogenesis in the aged
lung (Figs. 3, 4). This may be because aged senescent
cells secrete a number of cytokines, growth factors, and
proteases, which results in diverse inhibitory effects on
angiogenesis and lung alveolar regeneration in aged
lungs [65, 66]. Other signaling pathways associating
with LRP5 (e.g., LRP6, TGF-B, Twistl) [67, 68] may
also be altered during the aging processes and con-
tribute to inhibition of vascular and alveolar morpho-
genesis. For example, the expression of the transcription
factor Twistl, which also controls Tie2 [69] and other
angiogenic genes (e.g., PDGF [70], VEGFR2 [71]), is
regulated by LRPS and controls cellular senescence [68,
72].

To visualize the newly formed vascular and alveolar
morphogenesis in the mouse lungs, we implanted fibrin
gel on the mouse lung. Vascular structures in the aged
lung tissue and in the gel implanted on the aged mouse
lung seem to be different; blood vessel formation was
inhibited and only small immature vasculatures were
formed in the gel implanted on the aged lung (Figure 3),
while dilated tortuous blood vessels were accumulated
in the alveolar septa in the aged mouse lung (Figure 1).
This may be because of the differences in the micro-
environment between the gel and the lung tissues or the
experimental time course. Alternatively, impairment of

neovascularization in the aged lung (as observed in the
gel) may disturb homeostasis of aged blood vessels, and
consequently accumulate disrupted blood vessels in the
aged lung.

We have demonstrated that mechanical forces control
vascular morphogenesis and function [17, 73-75].
Appropriate physical properties of lung tissue are
necessary for physiological postnatal lung development
and LRPS5 signaling mediates ECM structure-dependent
angiogenesis and alveolar morphogenesis in the neo-
natal mouse lung [17]. Other mechanosensitive
transcription factors and co-activators (e.g., TFII-I,
GATA2, Twistl, YAP1) also control angiogenesis [43,
48, 73, 76], and contribute to lung diseases (e.g.,
pulmonary fibrosis, pulmonary hypertension) [42, 43,
77]. Aged fibroblasts produce more collagen and less
elastin, leading to increasing pulmonary stiffness and
lowering compliance [78]. Increases in tissue stiffness
in the aged lungs may change the LRP5 expression
and/or activity, and contribute to the impairment of
angiogenesis and alveolar morphogenesis in the aged
lung.

In summary, we have demonstrated that LRP5 mediates
age-related decline in vascular and alveolar morpho-
genesis as well as post-PNX compensatory lung growth
in the mouse lungs. Modulation of LRP5 would
potentially lead to the development of new therapeutic
strategies for aging-associated lung diseases.

MATERIALS AND METHODS

Materials

Anti-CD31  antibody was from  Transduction
Laboratories (Lexington, KY). Anti-AQP5, —-SPB, -j-
catenin antibodies were from Abcam (Cambridge, MA).
Anti-B-actin monoclonal antibody was from Sigma (St.
Louis, MO). Anti-VEGFR2 and LRP5 antibodies were
from Cell Signaling (Danvers, MA). Anti-Tie2
monoclonal antibody was from Upstate (Lake Placid,
NY). Anti-Tie2 polyclonal antibody was from Santa
Cruze Biotechnology (Dallas, TX). Anti-EpCAM, -
CD31, -VE-cadherin, and —CD45 antibodies were from
BioLegend (San Diego, CA).

Mouse lung cell isolation

Mouse lung ECs were isolated from C57BL6 mice of
different ages (2M and 24M old) using anti-CD31
conjugated magnetic beads as previously reported [42]
and sorted by FACS (CD31", VE-cadherin’, CD45").
Isolated ECs were validated by FACS for EC markers
(CD31", VE-cadherin’, CD45") before use. Isolated
mouse lung ECs were cultured in EBM2 medium
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containing 5% FBS and growth factors (VEGF, bFGF
and PDGF) [42] and were used between passages 1-2.
EpCAM " mouse lung epithelial cells were isolated from
C57BL6 mouse lungs using FACS sorting. Mouse lung
immune cells were collected from bronchoalveolar
lavage (BAL) fluid of C57BL6 mice [74].

Plasmid construction and gene knockdown

The retroviral pOC-LRPS5 plasmid was constructed as
reported [15, 33]. As a control, plasmid with vector
only was used. Generation of retroviral vectors was
accomplished as reported [15, 33, 73]. Viral super-
natants were collected starting 48 h after transfection,
for four consecutive times every 12 h, pooled, and
filtered through a 0.45 pm filter. Viral supernatants
were then concentrated 100-fold by ultracentrifugation
in a Beckman centrifuge for 1.5 h at 16,500 rpm.
Mouse lung ECs were incubated with viral stocks in
the presence of 5 ug/ml polybrene (Sigma) and 90-
100% infection was achieved 3 days later [15, 33, 73,
76].

Molecular biological and biochemical methods

Quantitative reverse transcription (qRT)-PCR was
performed with the iScript reverse transcription and
iTag SYBR Green qPCR kit (BioRad, Hercules, CA)
using the BioRad real time PCR system (BioRad).
Cyclophilin controlled for overall cDNA content. The
primers used for mouse Lrp5, Tie2, Vegfr2, and cyclo-
philin were previously described [15, 33, 73].

Fibrin gel mouse lung implantation

The in vivo animal study was carried out in strict
accordance with the recommendations in the Guide for
the Care and Use of Laboratory Animals of the National
Institutes of Health. The protocol was reviewed and
approved by the Animal Care and Use Committee of
Medical College of Wisconsin. C57BL6 mice (Jackson
Laboratory and NIA/NIH rodent colonies) and Lrp5 KO
mice (stock no. 005823; Jackson Laboratory, developed
by Deltagen Inc [15, 79]) were used for the study.
Fibrin gel was fabricated as described [41-43, 48].
Briefly, we added thrombin (2.5 U/ml) with angiogenic
factors (VEGF and bFGF at 100 ng/ml) to the fib-
rinogen solution (12.5 mg/ml), mixed well, and
incubated drops of the mixture at 37 °C for 30 min until
they solidified [41-43, 48]. We implanted the gel on the
mouse lungs of different ages for 7 days as described
previously [15, 41-43, 48]. To manipulate gene expres-
sion in the gel implanted on the lung, we treated mice
with pOC-LRP5 mixed with jetPEI in vivo transfection
reagent (retro-orbital injection, twice/week, Polyplus,
New York, NY) [43]. The formation of blood vessels

and alveolar epithelial morphogenesis are evaluated by
counting the number of blood vessels stained positive
for CD31 and the area stained positive for alveolar
epithelial cell markers (AQPS5, SPB) from five
different areas of the gel [15, 41, 43, 48]. Fluorescent
images are taken on a Leica TCS SP5 confocal laser
scanning microscope and morphometric analysis is
performed using Imagel software as we reported [15,
41-43, 48].

Microfil casting system

Vascular structure was characterized using the microfil
vascular casting system [48, 80]. After heparinization,
mice were euthanized and the cardiac apex was cut.
Microfil (0.5-1 ml, Flow Tech) was injected into the
pulmonary arteries through right ventricle. After
solidification of Microfil, the lungs were fixed with 4%
paraformaldehyde, dehydrated with ethanol, cleared
with methyl salicylate, and imaged. Quantification of
vasculatures was performed using the AngioTool and
Image] software programs (NIH).

Unilateral PNX

Unilateral PNX was performed as described [33, 48]. In
brief, mice (C57BL6, 2M and 24M old) were
anesthetized with isoflurane, and intubated with a 21-
gauge cannula and mechanically ventilated at 120
cycle/min with a tidal volume of 10 ml’kg using a
rodent ventilator (MiniVent, Harvard Apparatus,
Holliston, MA). After ensuring adequate anesthesia, a 1
cm incision was made through the skin, muscle above
the left lung along the intercostal space between the
fourth and fifth ribs were cut, and thoracotomy was
performed. A small retractor was placed to provide
access to the thoracic cavity. The left lung was gently
lifted through the incision and a 5-0 silk suture was
passed around the hilum and tied. The hilum was then
transected distal to the tie. The remaining portions of
the hilum and tie were returned back to the thoracic
cavity. The mouse was extubated and observed for
return of spontaneous respirations. Sham operated mice
underwent thoracotomy without PNX. Since the cardiac
lobe is routinely evaluated for compensatory lung
growth [47], the weight of the cardiac lobe was
measured and normalized to BW after the experiments.
Histological samples were prepared as previously
reported [15, 33, 42, 43, 48] and morphological analysis
of MLI and alveolar numbers was performed as
described [15, 33, 48]. The proliferation of ECs and
alveolar epithelial cells in the mouse lungs after PNX or
in combination with LRP5 overexpression was analyzed
by measuring the number of BrdU" cells using FACS
(BD Biosciences BrdU flow kit).
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Statistical analysis

All phenotypic analysis was performed by masked
observers unaware of the identity of experimental
groups. Error bars (SEM) and p values were determined
from the results of three or more independent expe-
riments. The F test (for two samples) or the Levene test
(for more than two samples) was performed to confirm
that the variances are homogeneous. Student’s t-test was
used for statistical significance for two groups. For
more than two groups, one-way ANOVA with a post-
hoc analysis using the Bonferroni test was conducted.
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Supplementary Figure S1. LRP5 mediates age-dependent decline in alveolar epithelial morphogenesis in the
mouse lungs. (A) Immunofluorescence micrographs showing B-catenin expression and distribution in ECs isolated from 24M
old mouse lungs treated with lentivirus overexpressing LRP5 (top, scale bar, 10 um). Graph showing the quantification of -
catenin expression in ECs isolated from 24M old mouse lungs treated with lentivirus overexpressing LRP5 (n=4, meants.e.m.,
*p<0.05). (B) Graphs showing quantification of AQP5- (top) and SPB- (bottom) positive epithelial cell area in the gel implanted
on the 2M vs. 24M old mouse lungs or in combination with LRP5 overexpression for 7 days (n=7, mean  s.e.m., *, p<0.05). (C)
Gel image showing LRP5 mRNA expression in CD31", VE-cadherin®, CD45 ECs (lane 1), EpCAM" alveolar epithelial cells (lane
2), and immune cells (lane 3) isolated from 2M old mouse lungs. (D) Graph showing the Lrp5S mRNA levels in CD31", VE-
cadherin®, CD45 ECs, EpCAM" alveolar epithelial cells, and immune cells (BAL) isolated from 2M old mouse lungs treated with
LRP5 DNA (n=4, *, mean # s.e.m., *, p<0.05). (E) Graph showing the % of BrdU-positive CD31", VE-cadherin®, CD45  ECs (top)
and EpCAM" alveolar epithelial cells (bottom) isolated from 2M vs. 24M old mouse lungs after PNX or in combination with
treatment with LRP5 DNA for 7 days (n=5, *, mean * s.e.m., *, p<0.05).
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