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ABSTRACT

Cystic fibrosis (CF) and Wilson disease (WD) are two monogenetic, recessively inherited lethal pathologies that
are caused by ionic disequilibria. CF results from loss-of-function mutations in CF transmembrane conductance
regulator (CFTR), a channel that conducts chloride across epithelial cell membranes, while WD is due to a
deficiency of ATPase copper transporting beta (ATP7B), a plasma membrane protein that pumps out copper
from cells. Recent evidence suggests that both diseases are linked to perturbations in autophagy. CFTR
deficiency causes an inhibition of autophagic flux, thus locking respiratory epithelial cells in a pro-inflammatory
state and subverting the bactericidal function of macrophages. WD is linked to an increase in autophagy, which,
however, is insufficient to mitigate the cytotoxicity of copper. Pharmacological induction of autophagy may
delay disease progression, as indicated by preclinical evidence (for CF and WD) and results from clinical trials, in
particular in CF patients with the most frequent CTRT mutation (CFTRdel506). Thus, CF and WD exemplify
pathologies in which insufficient autophagy plays a major role in determining the chronology of disease
progression, much like the pace of ‘normal’ aging that is dictated by disabled autophagy as well.

Autophagy is probably the best-established anti-aging
mechanism. As organisms age, their autophagic
capacity declines [1]. Measures to increase autophagy
by genetic manipulation (such as overexpression of
essential autophagy genes including Azg5 or intro-
duction of gain-of-function mutations in the gene
coding for Beclin 1, Becnl) [2, 3], caloric restriction or
periodic fasting [4], provision of agents that mimic the
biochemical consequence of caloric restriction (“caloric

restriction mimetics”) [5-7], as well as by other
pharmacological inducers of autophagy (such as
rapamycin) [8, 9], can extend health span and longevity
[10, 11]. This has been shown for many model
organisms (yeast, nematodes, flies, mice) and may
apply to non-human primates (in which caloric
restriction has beneficial effects) [12] and humans (in
thus far that a diet rich in the autophagy inducer
spermidine correlates with reduced mortality) [13, 14].
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These antiaging effects of autophagy may be explained
by its contribution to renew (and hence to rejuvenate)
the cytoplasm of cells, thereby counteracting many if
not most of the molecular and cellular hallmarks of
aging [15]. In other words, autophagy may be conceived
as (one of) the most important process(es) that
antagonize(s) the time-dependent deterioration affecting
macromolecules  (proteins, ribonucleotides, mito-
chondrial DNA, membrane lipids etc.) and cytoplasmic
organelles (i.e. all organelles except the nucleus), thus
acting to decelerate the biological clock [16, 17].

The two most frequent lethal monogenetic diseases
affecting humans are cystic fibrosis (CF, also called
‘mucoviscidosis’) and Wilson disease (WD). As any
other disease, both progress with age, though with
rather distinct kinetics. CF Kkills between childhood and
early adulthood, while Wilson disease kills middle-aged
adults. Surprisingly, insufficient autophagy appears to
be a major determinant of disease pathogenesis for both
CF and WD (Figure 1).

CF is due to loss-of-function mutations of the cystic
fibrosis transmembrane conductance regulator (CFTR),
reducing the expression or function of this chloride
channel at the plasma membrane. Among 2000 different
CFTR mutations, the most frequent one is CFTRdel506,
accounting for the pathogenesis of 70-90% of all CF
cases [18]. As a consequence of CFTR mutations, the
function of epithelia (mostly in the lung but also in the
gastrointestinal tract) and macrophages are com-
promised, ultimately causing defective clearance of
mucus and infectious microorganisms [19, 20]. This
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Then triggers chronic pulmonary infection and
inflammation as the primary cause of morbidity and
mortality. The treatment of cystic fibrosis remains
largely symptomatic, although drugs that increase the
expression or improve the function of CFTR are being
developed. Importantly, the CFTR defect (be it a lack of
expression or a lack of function) compromises auto-
phagy by several mechanisms including the depletion of
the essential pro-autophagic protein Beclin 1 (BECN1),
locking the cell in a state of deficient proteostasis [18,
21]. Successful pharmacological treatment of patients
bearing the CFTRdel506 mutation with a combination
of epigallocatechin gallate (EGCG, an inhibitor of the
autophagy-inhibitory acetyl transferase EP300, an
important regulator of autophagy) [22-25] and
cysteamine (an inhibitor of transglutaminase-2) can
induce autophagy in vivo, and enhance the expression
of the mutated CFTRdel506 protein at the cell surface,
of nasal respiratory epithelial cells from CF patients
[26-28]. Of note, mice that bear the CFTRdel506
mutation respond to this combination therapy (EGCG
plus cysteamine) only if they are autophagy-competent,
yet fail to do so, if they are autophagy-deficient due to
the heterozygous knockout of Becnl. These expe-
riments confirm that autophagy is required for the
treatment to work [18, 21].

WD results from the loss-of-function mutation of the
gene coding for ATPase copper transporting beta
(ATP7B), a plasma member protein that pumps out
copper from cells [29]. Depending on the nutritional
copper uptake and modulatory factors (such as obesity,
which accelerates disease pathogenesis), copper then
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Fiure. 1. Autophagy in cystic fibrosis and Wilson disease. The relationship between autophagy and CFTR mutations
in cystic fibrosis (A) or ATP7B mutations in Wilson disease (B) are depicted. BECN1, Beclin 1; TGM2, transglutaminase 2.
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accumulates in particular cell types (mostly in
hepatocytes, but also in cardiomyocytes and neurons)
beyond a critical threshold that causes cell death,
hepatic inflammation and insufficiency (and more rarely
cardiomyopathy and neurodegeneration). Excessive
cytosolic  copper electrophoretically enriches in
mitochondria, causing the crosslinking of proteins from
the inner and the outer membrane of these organelles,
ultimately resulting in mitochondrial destruction and
cell death [30]. The only known treatments of WD aim
at reducing the copper content in the diet and at
chelating copper by suitable molecules such as
penicillamine [31]. Recent evidence suggests that WD
pathogenesis is also linked to autophagy. Indeed, the
livers of WD patients and those of ATP7B” rats
manifest an increase in autophagic flux [32]. In vitro
experiments demonstrate that excessive incorporation of
copper into cells triggers autophagy, which acts a
cellular defense mechanism to reduce the probability of
cell death. Hence, autophagy has a cytoprotective
function that is, however, insufficient to avoid the
pathogenesis of WD [32]. That said, it remains to be
determined whether pharmacological stimulation of
autophagy would reduce copper toxicity in WD
patients.

The aforementioned results suggest that autophagy
plays a prominent disease-decelerating function in both
CF and WD (Figure 1). Of note, these finding may have
broader implications. Indeed, recent evidence suggests
that CFTR function of enterocytes is inhibited in celiac
disease (also called ‘gluten enteropathy’), due to its
direct inhibition by gluten-derived peptides [33]. As in
CF, CFTR inhibition results in reduced expression of
Beclin 1 protein, thus compromising autophagy. Of
note, potentiation of CFTR function by suitable drugs
(‘CFTR potentiators’) can reverse the pro-inflammatory
effect of gluten-derived peptides and restore Beclin 1
expression [33]. Decreased CFTR expression has also
been observed in several mouse models of autoimmune
disease that respond to pharmacological treatment with
CFTR potentiators, suggesting that defective CFTR
function (and presumably its downstream consequence,
autophagy inhibition) might play a rather general role in
the pathophysiology of distinct disease entities [34, 35].
Similarly, the accumulation of toxic heavy metals (such
as cadmium, copper, lead and mercury) may play a
general role in accelerating age-related diseases [36-38].
Circumstantial evidence suggests that the toxicity of
heavy metals such as cadmium is counteracted by
autophagy as well [39].

Based on the aforementioned examples, it is tempting to
speculate that autophagy has a general role in slowing
down time-dependent processes that ultimately lead to
age-related diseases. Indeed, genetic defects in different

autophagy-relevant genes cause a broad range of
distinct pathologies across a wide spectrum of cardio-
vascular, infectious, inflammatory, metabolic, neo-
plastic, neurodegenerative diseases (Levine and
Kroemer, in press). It remains to be determined, how-
ever, which would be the optimal strategy to increase
autophagy for extending the health span in the general
population without such gene defects.
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