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Paradoxes of senolytics

Mikhail V. Blagosklonny

Senolytics are drugs that extend lifespan and delay
some age-related diseases by killing senescent cells [1-
4]. In fact, drug screens have identified a diverse group
of drugs that are preferentially toxic to at least some
senescent cells in some cellular models [2-9]. So far,
however, their selectivity against senescent cells is
modest and cell-type-specific [8-11]. Nevertheless,
targeting senescent cells has been shown in animal
models to prevent such age-related pathologies as
emphysema [12], lung fibrosis [13-15], atherosclerosis
[16, 17], osteoporosis [18], osteoarthritis [19-20], renal
disease [21], intervertebral disk pathology [2], hepatic
steatosis [22] and other age-related conditions [4, 7, 18,
23, 24].

In this editorial commentary, I want to draw your
attention to the paradoxes associated with senolytics,
which argue against the dogma that says aging is a
functional decline caused by molecular damage. This
dogma predicts that senolytics should accelerate aging.
If aging is caused by loss of function, then killing
senescent cells would be expected to accelerate aging,
given that dead cells have no functionality at all.
Instead, however, senolytics slow aging, which high-
lights a contradiction in the prevailing dogma.

Commentary

The theory of hyperfunctional aging [25-32] addresses
this paradox. Killing senescent cells is beneficial
because senescent cells are hyperfunctional [33]. The
hypersecretory phenotype or Senescence-Associated
Secretory Phenotype (SASP) is the best-known example
of universal hyperfunction [34-36]. Most such hyper-
functions are tissue-specific. For example, senescent
beta cells overproduce insulin [37] and thus activate
mTOR in hepatocytes, adipocytes and other cells,
causing their hyperfunction, which in turn leads to
metabolic syndrome (obesity, hypertension, hyper-
lipidemia and hyperglycemia) and is also a risk factor
for cancer [38-40]. SASP, hyperinsulinemia and
obesity, hypertension, hyperlipidemia and hypergly-
cemia are all examples of absolute hyperfunction (an
increase in functionality). In comparison, relative
hyperfunction is an insufficient decrease of unneeded
function. For example, protein synthesis decreases with
aging, but that decrease is not sufficient [30]. In
analogy, a car moving on the highway at 65 mph is not
“hyperfunctional.” But if the car were to exit the
highway and enter a residential driveway at only 60
mph it would be “hyperfunctional,” and stopping that
car would likely prevent damage to other objects.
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Figure 1. Target of senolytics in the aging quasi-program. In post-mitotic quiescent cells in an
organism, growth-promoting effectors such as mTOR drive conversion to senescence. Hyperfunctional
senescent cells activate other cells (including cells in distant organs), rendering them also hyperfunctional,
which eventually leads to organ damage. This process manifests as functional decline, a terminal event

secondary to initial hyperfunction.

Senolytics such as ABT263 or 737 kill hyperfunctional senescent cells,

preventing damage to organs. Gerosuppressants such as rapamycin suppress geroconversion and may decrease
hyperfunction of already senescent cells, thereby slowing disease progression (not shown here in scheme).
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Similarly, killing hyperfunctional cells can prevent
organismal damage. Senolytics eliminate hyper-
functional cells, which otherwise damage organs
(Figure 1).

Senolytics should not be confused with gero-
suppressants (Figure 1). Gerosuppressants, such as
rapamycin, do not kill cells; they instead prevent
cellular conversion to senescence (geroconversion) [33].
Rapamycin also slows disease progression by limiting
the hyperfunction of senescent cells. Notably, some
senolytics are also gerosuppressants. For example,
inhibitors of MEK [41-43] or PI3K [2, 41] are both
gerosuppressants [41] and senolytics [2, 42, 43].

It may seem paradoxical that senolytics are anticancer
drugs [44] because standard anticancer agents cause
molecular damage. According to the hyperfunction
theory [45], molecular damage does not cause aging.
Although accumulation of molecular damage does
happen and would destroy the organism eventually, no
organism lives long enough for that to occur because
TOR-driven (hyperfunctional) aging kills it first. If
TOR-driven aging (i.e., aging as we currently know it)
were abolished, then organisms would die from “post-
aging syndrome” due to molecular damage (see Figure
8 in ref. [25]). Molecular damage contributes to some
age-related diseases. But these diseases would arise
even without molecular damage [45]. Molecular
damage is essential for most types of cancer, but a
senescent microenvironment [46] and overall organism
aging (and associated diseases such as diabetes) also
play roles [47], as does clonal selection for mTOR
activation in cancer cells [48]. Importantly, molecular
damage renders cancer cells robust and hyperfunctional.
Cancer cells kill an organism not because molecular
damage makes them weak; it is because the molecular
damage makes them robust and hyperfunctional. If
accumulation of molecular damage leads to
immortalization and robustness, then aging cannot
represent functional decline caused by molecular
damage [48].

All senolytics, without exception, were initially
investigated or specifically developed as anticancer
drugs. But not all anticancer drugs are senolytics. Both
senolytics and gerosuppressants belong to a very special
subgroup of oncotargeted drugs [49]. Various pathways
involving IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO,
PI3K, mTOR, S6K, and NF«xB comprise a mTOR-
related network and are involved in aging [49].
Oncoproteins promote aging, while tumor suppressors
are gerosuppressors, which inhibit aging [48, 50]. As
depicted a decade ago (see Figure 3 in ref. [51] and
Figures 4 and 9 in ref. [25]), oncotargets are gerotargets
that are also mTOR activators, while tumor and aging
suppressors are mTOR inhibitors. In brief, gerocon-
version and oncogenic transformation are two sides of
the same process [50]. Gerogenic oncogenes activate

the mTOR pathway, driving geroconversion of cell
cycle-arrested cells.  When cell cycle control is
disabled, they drive oncogenic transformation [48, 50].
Many puzzles remain. For example, killing senescent
adipocytes, macrophages or foam cells will slow
diseases such as atherosclerosis and metabolic diseases,
and killing senescent glial cells can prevent cognitive
decline [23]. On the other hand, killing some senescent
cell types may be counterproductive. For example,
killing senescent beta cells may lead to diabetes [37],
and killing of senescent hyperfunctional neurons in
Alzheimer’s disease may have unpredictable conse-
quences. Fortunately, senolytics are tissue-specific and
only kill some types of senescent cells [8-11], which
may make them safer.

To add further complication to the paradoxes associated
with senolytics, it was shown that many detected p16/p-
gal-positive cells are not senescent cells, but are instead
hyperfunctional macrophages, which contribute to aging
[52-54]. Notably, B-gal staining is a marker of hyper-
functional lysosomes [55]. A combination of markers,
including mTOR targets, is needed to define senescence
[33]. Some senolytics that target Bcl2 family proteins
may theoretically kill leukemia/lymphoma cells. I hope
to discuss these and other issues in a scheduled review
“Senolytics, gerosuppressants and conventional life-
extending drugs.”
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