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INTRODUCTION 
 
Some genes identified as risk factors for aging-related 
neurodegenerative diseases - such as the allele 4 of 
Apolipoprotein E gene (APOE4) for Alzheimer’s disease 
(AD) - can have an early impact on different neuronal 
and non-neuronal features of the human brain, even 
starting from the perinatal periods or earlier. The possible 
early influence of APOE polymorphism on various 
cognitive and non-cognitive aspects through the entire 
human lifespan [1-8] poses the biological rationale for a 
wider re-consideration on how identical genes - for 
example, the ones identified as risk factors for aging-

related diseases - could differently interact with other 
genes and environmental factors from the beginning of 
the human life until the advanced or extreme age.  
 
Essentially, in this context, the main scientific question 
is: how do these genetic risk factors for late-life brain 
diseases impact, or have impacted, the general 
development of the brain and specific cytoarchitectural 
aspects of neuronal and non-neuronal cells and generate, 
or have generated, meaningful changes on complex 
cerebral functions (e.g. episodic memory, visual 
attention) and ultimately determine divergent clinical 
outcomes across the entire human lifespan? [9, 10]. 
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ABSTRACT 
 
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and 
simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. 
Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the 
most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer’s disease 
(AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism 
appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated 
with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier 
actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-
life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of 
neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.  
We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of 
various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - 
during both normal and pathological conditions of the brain. 
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It is in fact more and more evident that a series of mutual 
and long-term interactions between genetic and 
environmental factors control, or might even determine, 
quantitative differences between healthy and pathologic 
neural tissues [11-13]. Accordingly, it would be only 
after a relatively long period of time, normally measured 
in decades, that global or more selective quantitative 
differences across different types of neural circuits (e.g. 
extrapyramidal motor system, limbic system, pyramidal 
motor system) or brain regions (e.g. hippocampus, 
amygdala, frontal cortex), would affect specific cerebral 
functions later in life. Specifically, these cellular 
quantitative differences could culminate later in life in a 
more diffuse and irreversibly progressive neurodege-
nerative process such as dementia (e.g. Alzheimer’s 
disease [AD], dementia with Lewy bodies [DLB], 
frontotemporal dementias [FTDs]); in some more 
selectively distributed deficits (e.g. Parkinson’s disease 
[PD], progressive supranuclear palsy [PSP]); or in a more 
focally-distributed functional impairment of a specific 
neuronal circuitry (e.g. amnestic mild cognitive 
impairment [a-MCI], essential tremor [ET]). 
 
The concept about gene-environment influence on 
quantitative ratios between health and pathologic neural 
tissues implies that when certain specific amounts of 
neuronal and non-neuronal cells (e.g. glial), which we 
could term “cellular ratio thresholds” that support the 
global functioning of the brain (e.g. cardio-respiratory 
regulation through the cardio-respiratory circuits of the 
brainstem nuclei), or a cluster of specific cerebral 
functions (e.g. the executive functions through the 
signals elaboration in the frontal cortex, or the visual-
spatial functions through the temporal lobe activation), 
or a single cerebral function (e.g. the memory through the 
hippocampal neuronal firing integration) in a specific 
individual (a subject carrying a specific set of genes and 
exposed to either beneficial or detrimental environmental 
factors along his/her previous life) have been crossed, a 
neurodegenerative process begins to be clinically 
manifest and, only in appearance, to be linked to the 
aging process, but actually being the effect of a long-
lasting accrual of various pathogenic and detrimental 
elements accumulated in the previous decades of his/her 
life.   
 
Maintaining adequate cellular ratios between healthy and 
pathologic neural tissues would consist in maintaining 
enough amounts of still-functioning (normal) vs. non-
functioning (pathologic) cells able to keep and preserve 
a normal operational status of the brain. This normal 
operational status would be the one accounting for 
keeping motor, sensory, cognitive, emotional, and 
behavioral skills still functional enough in order to 
conduct the normal daily functions of life in an 
independent manner [14]. Importantly, these functional 

neural ratios (neuronal and non-neuronal cells) kept 
below the “dysfunctional cellular ratio thresholds” would 
not be simply determined by the passive accumulation of 
a single or multiple brain pathologies (e.g. accumulation 
of extracellular insoluble β-amyloid in the cerebral 
cortex or intracellular formation of hyperphosphory-
lated-tau neurofibrillary tangles as in AD) but also on 
how certain “predisposing genes” in a specific 
CNS/brain/person have mutually interacted with a 
specific group of environmental factors throughout 
his/her life.  
 
One of the most striking examples of the possibility to 
maintain normally-functioning neural ratios despite the 
presence of brain lesions accumulation, it is observation 
that some older subjects can be categorized as 
asymptomatic AD subjects (ASYMAD). ASYMAD are 
cognitively normal older subjects that show, at autopsy, 
an equivalent or even higher amounts of AD pathology 
in comparison to those found in age-matched, or even 
younger subjects, which did receive a clinical diagnosis 
of AD [15-21]. These autopsy-confirmed findings 
greatly support the hypothesis that genetic or 
environmental factors might contribute to the clinical 
silencing of AD pathology, at least in a certain group of 
older subjects (e.g. the ASYMAD subjects). Moreover, 
these clinicopathologic discrepancies between brain 
pathology and clinical manifestations (of absence of 
them) in AD or generally in dementia, support, among 
others, the general concept of the “cognitive/brain 
reserve” [22-24].  
 
The cognitive/brain reserve concept, though, needs to 
necessarily correspond to some biological reservoir of 
still-functioning cells and neural circuits, which 
ultimately result from the cumulative balance between 
beneficial and detrimental genetic and environmental 
factors that have impacted the architecture of the brain 
(e.g. synaptic contact distribution in the hippocampus) 
and that consequently have modified specific brain 
functions (e.g. memory) across all the previous periods 
of life [25]. Additionally, gene-environment interactions 
accounting for the cognitive/brain reserve capacities in a 
specific individual across his/her entire lifespan should 
consider possible prenatal genetic and behavioral factors 
originating from each parent since the fetal times [26-
28]. 
 
APOE is one of the best examples that shows how a well-
established genetic risk factor for an aging-related 
disease (AD) exerts its influence throughout the entire 
human lifespan and is part of complex metabolic and 
gene-environment interactions, especially in terms of 
brain cholesterol metabolism and synaptic formation 
[29]. The fact that the APOE polymorphism (presence of 
three possible alleles [APOE2, APOE3, APOE4] and for 
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each individual the possibility to have only one of the six 
possible APOE genotypes [APOE2/2, APOE2/3, 
APOE2/4, APOE3/3, APOE3/4, APOE4/4]) correlates 
with different, sometimes divergent, clinical, pathologic, 
and survival outcomes, implies fundamental questions on 
which are the specific gene-environmental molecular 
mechanisms that determine those different effects across 
the entire human lifespan [30]. 
 
We aimed to briefly review some of the well-established 
findings on the APOE polymorphism associated with 
different, sometimes paradoxical, effects of this gene on 
the CNS structures and functions. We aimed to focus on 
human studies that evidence the effects of APOE 
polymorphism on the development of the brain, on 
different neuropsychiatric phenotypes, and on some 
higher cognitive functions present in humans only (e.g. 
language). Furthermore, we succinctly describe some of 
the possible molecular mechanistic aspects and 
biochemical pathways that have been proposed to 
explain the apparently paradoxical effects of APOE 
across the human lifespan [31]. 
 
ApoE (protein) 
 
In humans, the apolipoproteins E (ApoE2, ApoE3 and 
ApoE4) are molecules expressed in peripheral tissues 
(liver, spleen, kidneys, and macrophages) [32, 33] and 
within the CNS [34]. ApoE is an essential apolipoprotein 
for the catabolism of triglyceride-rich lipoprotein 
constituents and it is found in chylomicron, low- and very 
low-density lipoproteins (LDLs, VLDLs) [35]. While 
liver and macrophages are the primary peripheral tissues 
where ApoE is produced, astrocytes are the main, and 
apparently the only cells within the CNS, that produce 
ApoE. Functionally, in the peripheral tissues, ApoE is 
part of cholesterol metabolism, while in the CNS it has 
been recognized as the principal carrier of cholesterol 
[36]. ApoE transfers cholesterol to neurons and represents 
an essential molecule for neuronal growth, synaptic 
plasticity, and membrane reparative processes [37]. The 
transfer of ApoE (cholesterol) to neurons occurs through 
the interaction of ApoE receptors [38]. These receptors 
such as LDLR, VLDLR, ApoER2, and LRP1 receptors 
belong to the low-density lipoprotein receptor gene 
family [39]. While the different chemical differences 
across the three isoforms of ApoE proteins started to be 
lately better defined [40], their different roles and effects 
in each cellular type remain to be completely understood 
yet [41,42].  
 
APOE (gene)  
 
ApoE, the protein, is codified by a gene localized on the 
long arm (“q” arm) of the chromosome 19 in the sub-
band 32 of region 13 (19q13.32): APOE gene (APOE). 

The APOE has three alleles (genetic polymorphism): 
APOEpsilon2 (APOE2), APOEpsilon3 (APOE3), and 
APOEpsilon4 (APOE4). Each allele codifies to 
corresponding protein isoforms (ApoE2, ApoE3, 
ApoE4) that differ in amino acid sequence at the residue 
112 (also called “site A”) and 158 (also called “site B”). 
Specifically, APOE2, APOE3, APOE4 (the alleles) 
codify respectively for ApoE2, ApoE3, ApoE4 (the 
proteins), which at the position 112 and 158 of their 
amino acidic sequence, contain respectively cysteine/ 
cysteine, cysteine/arginine, and arginine/arginine [43]. 
These amino acid differences in the primary sequence of 
each ApoE protein determine a different number of 
charges (0, 1+, 2+) and account for their variant tertiary 
and quaternary conformations and electrophoretic 
differences [44]. Four individual mutations give 
electrophoretically separated bands at the E2 position. 
Using the isoelectric focusing techniques [45] at least 
four different bands (corresponding to different ApoE2 
conformational status) have been identified: E2 (arg158-
to-cys) [46], E2 (lys146-to-gln) [47], E2 (arg145-to-cys), 
and E2-Christchurch (arg136-to-ser) [48]. E2 (arg158-to-
cys) is the most common of all four. In general, these 
“minimal” physical-chemical differences among ApoE 
proteins determine massive metabolic and structural 
consequences at tissue and metabolic level, especially 
within the human CNS [49, 50].  
 
Genetic epidemiology 
 
In the general population, the distribution of APOE 
alleles can vary across different ethnic groups [51]. 
These variations seem to be related to different non-
genetic factors such as geographical latitude [52], local 
temperature and altitude, metabolic rate [53], hypoxia 
[54], “local” availability of lipophilic nutrients [55], 
climate [56] and others [57-60]. 
 
Notably, from an evolutionary point of view, APOE4 has 
been determined to be the “oldest allele” (which is also 
the only allele found in non-human primates and other 
mammals) followed by the APOE3, and then by the 
APOE2, which is indeed the “most recent allele” [61]. 
APOE2 has been estimated to appear in humans only 
about 80,000 years ago [62-64]. The more recent 
appearance of APOE2 in humans could be explained by 
the relative advantage provided by the corresponding 
product of this allele (APOE2 protein), which seems to 
increase the neural plasticity, synaptic reparative and 
clearance capacities of the CNS [65], as well as human 
longevity [66]. Intriguingly, however, while carrying the 
APOE2 could represent a protective factor late in life, 
especially for delaying dementia and cognitive deficits 
during aging, this is not necessarily the case early in life, 
especially during the very early phases of life (see 
antagonistic pleiotropy paragraph).  
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APOE and Antagonistic Pleiotropy 
 
APOE began to appear as one of the best examples of 
genetic “antagonistic pleiotropy” (AP), a concept 
applicable to human traits and diseases, and to human 
cognition, neurodegenerative diseases, and brain 
diseases in general [67-71]. AP is defined as a genetic 
phenomenon existing when a gene can control for more 
than one trait (pleiotropy) with at least one possible trait 
beneficial and another detrimental (antagonistic) to the 
fitness of that same organism [72,73]. Once considered a 
rare genetic phenomenon, AP seems rather to be a much 
more frequent event, especially when considering human 
diseases [74], and in particular aging-related diseases and 
human longevity [75-77]. Among the APOE 
polymorphism-associated traits that appear to have AP 
characteristics are included the different biochemical 
consequences that ApoE2, ApoE3, ApoE4 proteins have 
on the metabolism of cholesterol, which have important 
implications, among others, on the metabolism of β-
amyloid and synaptogenesis resistance in younger vs. 
aged mammalians, and could so explain the 

“paradoxical” beneficial effects of APOE4 on specific 
cognitive skills (e.g. verbal memory in schizophrenic 
patients [78], memory performance [79], and attention in 
young [80]), and the observation that APOE4 is an 
advantageous factor on survival and infertility in 
infectious environments [81, 82], or that APOE alleles 
are associated with conscientiousness personality-trait in 
relationship to gray matter volume [7] and greater 
cortical connectivity [83]. Figure 1 shows graphs 
describing the antagonistic pleiotropy concept applied to 
APOE polymorphism. 
 
APOE polymorphism in normal and pathologic 
conditions of the brain across all ages   
 
In general, APOE4 and its association with different 
measurable clinical variables such as dementia severity 
[84], neuropsychological scores [85], pathology burdens 
[86], cortical morphometry [5], morphometric-MRI [87, 
88], functional-MRI [89-91], electroencephalographic 
(EEG) [92, 93] and magnetoencephalographic (MEG) 
signals [94], evoked potentials (EPs) changes [95, 96], 

 
 

Figure 1. The figure shows the theoretical antagonistic pleotropic (AP) effect of APOE gene across the entire human 
lifespan. The increased probability of early survival and normal cognition later in life are alternatively correlated with the presence of 
APOE4 and APOE2 allele. However, other genes and environmental factors through their mutual interactions from the in-utero life until 
centenarian age can probably potentiate the beneficial or detrimental effects on the onset and manifestations of brain diseases and, 
respectively, reduce or potentiate the genetic predisposition toward more negative or positive clinical outcomes during different 
periods of life.   
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and other methods [97] has been investigated much more 
extensively than APOE2 [98-100]. In fact, studies 
focusing on APOE2 and its association to different 
clinical and subclinical parameters and possible 
molecular mechanisms of brain protection have been 
historically, less numerous than investigations 
comparing APOE4 vs. APOE3 for example. 
Furthermore, although APOE4 and APOE2 appear to 
have divergent effects on cognitive outcomes during 
aging, their corresponding protective or deleterious 
effects on other periods or conditions of life as brain 
development, birth prematurity, infancy, childhood 
cognitive and behavioral outcomes, as well as early-adult 
and mid-adult life predisposition for neurodegeneration 
have been generally much less investigated.  
 
We organized the description of the reviewed findings on 
the effects of APOE polymorphism across the human 
lifespan using a bio-chronological order. We first 
described the effects of APOE polymorphism in normal 
and pathological conditions of the CNS during in-utero 
life followed by the neonatal, infancy, teenaging, and 
adult mid-life, and finally we describe data on APOE and 
the effect on elders and extreme old subjects including 
octogenarian, nonagenarian and centenarian populations. 
 
APOE and brain during in-utero life (before birth) 
and in preterm babies (<38 weeks of gestation)  
 
Studies focusing on the possible clinical correlations 
between APOE polymorphism and divergent cognitive or 
behavioral outcomes of in-utero life, preterm babies, and 
infant populations are scarce. Due to its historical 
predominant consideration as a gene negatively associ-
ated with later life brain diseases, especially AD, APOE 
and its possible effects on the normal brain development 
or as a genetic modifier of specific pathologic conditions 
such as motor-behavioral delay, cerebral palsy, 
prematurity, and in-utero life brain abnormalities has 
received little attention until recent times [101]. In-utero 
life events imply complex interactions among maternal 
and fetal APOE genotypes, which might determine a 
highly complex spectrum of different biochemical inter-
actions [102, 103]. For example, recent findings propose 
that maternal APOE genotype could be a relevant risk 
factor for poor outcomes at birth, premature delivery, and 
predisposition for preeclampsia [27, 104, 105]. These 
maternal-fetal gene-metabolism interactions during in-
utero life seem to potentially determine specific patterns 
of biochemical imprinting events directly at cerebral 
level, or alternatively, on different organs and systems 
such as the vascular system, which could indirectly 
include the cerebral vasculature [106, 107]. However, 
based on more recent observations about AP 
phenomenon associated with APOE polymorphism and 
on more consolidated data showing that the APOE2 is, 

per se, a protective allele against dementia and cognitive 
decline during aging even independently on the β-
amyloid accumulation and “classic” AD pathology 
[109], it would be possible in the future to investigate on 
unprecedented aspects of the cholesterol metabolism 
related to genetic aspects of APOE polymorphism whom 
influence seem to go well behind specific cognitive 
aspects and to be actually a “general modulator” of 
neuronal structures and functions, synaptic formation, 
brain repair,  and neural regenerative mechanisms [110-
111]. Consequentially, the APOE polymorphism appears 
to acquire an important general role in terms of brain 
development, impact on neuroreparative capacities and 
neuroplasticity potentialities across the entire human 
lifespan. Moreover, coherently with the concept of an 
early impact of APOE on brain structures, Stoknes et al. 
[112] have hypothesized that APOE2-carriers have a 
higher risk of death in-utero life following brain injury 
probably due to an altered or abnormal metabolism of the 
cholesterol. Other investigators have shown similar 
results and proposed similar APOE-based pathogenetic 
mechanisms [113]. These initial observations could 
explain why some findings show a non-significant 
association between APOE polymorphism and cerebral 
palsy (CP) simply due the fact that APOE2 carriage 
would represent actually a major risk factors for in-utero 
life survival (increased prenatal mortality). Recently, 
another group of investigators showed that APOE gene 
and weight at birth are risk factors for future 
cardiovascular diseases, and these factors seem to be 
independent factors as well [114]. To note, nonetheless, 
that these latter findings make the possible mechanistic 
(molecular) correlations among APOE, cholesterol 
metabolism, and vascular diseases much less linear than 
what could have been expected earlier [115, 116]. 
Furthermore, data in support of the interaction between 
APOE alleles and environment suggest that a specific 
APOE genotype is a risk factor able to potentiate the 
toxic effects of various environmental contaminants. For 
instance, it has been shown that APOE4-carriage implies 
lower cognitive scores in preterm neonates exposed to 
higher levels of mercury [117, 118]. 
 
APOE and brain during normal neonatal (1 day-30 
days full-term babies) and infancy (1-12 months full-
term babies) periods 
 
Studies on the impact of APOE polymorphism on various 
clinical outcomes in full-term normal neonates and 
infants are rare [119-121]. However, some investigations 
performed on selected types of neonate populations, 
suggest that APOE has indeed AP features. In fact, an 
over-representation of APOE 4/4 and 2/4 with a 
reduction in APOE 2/3 and 3/3 when compared with 
adult population [122] suggests that APOE4 is related to 
an increased risk of premature death. Furthermore, data 
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from the same group of investigators found an over-
representation of APOE2 in perinatal deaths populations 
[123]. This apparent paradoxical inversion of the 
protective effect of APOE2 vs. APOE4 in neonates, in 
contrast with the findings observed in elders, fits very 
well with the hypothesis that APOE has indeed 
antagonistic pleiotropic properties across the entire 
human lifespan [67, 124, 125]. Nevertheless, considering 
that the distributions of APOE alleles in healthy general 
populations are linked to various types of factors such as 
ancestry, geography, etc. (see paragraph Genetic 
epidemiology), much larger population cohorts stratified 
by the “local” APOE frequencies (corrected for all other 
identified influencing factors) together with a more 
precise definition of the periods of life to consider 
(perinatal deaths can have different definition across 
different countries) and large multi-institutional 
collaborative investigations are necessary to expand our 
knowledge on the possible pre-natal or peri-natal effects 
of APOE on early life events as well as on later life 
physiological or pathological events.  
 
At a more speculative level, we retain that the possible 
early life effects associated with APOE polymorphism 
could primarily act on the cholesterol metabolism during 
the development of the brain and other organs and 
apparatuses (vascular system, liver, lungs, kidneys, etc.). 
Theoretically, APOE could also manifest a protective or 
detrimental effect on the brain development or its 
functions through indirect pathways [126, 127]. Pivotal 
MRI-imaging studies focusing on morphometric aspects 
of gray matter (GM) in very preterm infants seem to 
predict some future aspects of neurodevelopmental 
outcomes [128]. While no imaging studies have been 
performed in large cohorts of normal full-term neonates 
or infants in the attempt to correlate GM morphometric 
aspects to APOE genotype, a link between APOE 
genotype and cortical thickness using neuroimaging 
techniques has been shown in young adults [129].  
 
APOE and brain during pathological neonatal (1 day-
30 days) and infancy (1-12 months) periods 
 
Another example of the possible negative effect of 
APOE2 on brain functions is the detrimental association 
between APOE2 and neurodevelopmental dysfunction 
observed in neonate and infants after cardiac surgery 
[130, 131]. However, this potentially detrimental effect 
of APOE2 early in life could be biased by the higher 
incidence of neonatal sudden death associated with 
APOE4 or other genetic variants [132, 133]. In fact, the 
supposed detrimental APOE2 effect in infants after 
cardiac surgery could be simply due to a possible 
skewing effect toward APOE2 (risk of a reduced 
survival) in the absence of the chance to test an 
equivalent number of APOE4-carrier subjects with 

similar conditions underwent to cardiac surgery and 
subsequently assessed. However, if this after cardiac 
surgery detrimental APOE2-cognitive outcomes 
association will be confirmed, it will corroborate the 
hypothesis that APOE has AP properties.  
 
To date, the AP properties in humans are not well timed, 
particularly in relationship to the various phases of the 
brain development. It has been suggested that the AP 
effects of the genes related to the brain function could 
begin to be assessed only after the first year of life. This 
could be due to the fact, for example, that specific skills 
(e.g. motor skills) are “localized and matured” in specific 
circuits of the brain, only after certain periods of the brain 
development [134,135]. Consequently, it would be 
difficult, or impossible, at clinical level, to evaluate or 
pre-evaluate the possible future outcomes of each type of 
motor or non-motor skill until the full genetically-
determined neurodevelopmental program has been 
completed. Furthermore, it is possible to hypothesize that 
not only there is a life-lasting AP effect of APOE across 
the entire human lifespan, but that this AP effect is 
present in different areas or brain circuits at different 
times of the development as well as in the same brain at 
different ages. In addition, it is not unconceivable to 
exclude that the AP effects might be additionally 
modulated by non-genetic factors (e.g. nutrition, 
environmental toxins, infections, etc.), especially before 
the conclusion of the major process of maturation of the 
CNS [136-138]. Of course, APOE is not the only gene 
involved in various highly complex phenomena of the 
human brain maturation but seems to be part of a cluster 
of genes that reciprocally interact during the different 
phases of the neurodevelopment [139]. Accordingly, it 
would be through these multiple short- and long-term 
interactions between parental genes and gestational 
environments that APOE polymorphism could influence 
neurodevelopmental trajectories during early life periods 
and infancy and later, by pre-establishing a higher risk 
for “aging-related” conditions, or at least influencing, 
clinical onset or phenotype in neurodegenerative diseases 
such as AD, Parkinson’s disease (PD) [140] or ALS 
[141]. Therefore, it is not possible to exclude that those 
specific metabolic abnormalities or environmental events 
occurring during the very early period of life could 
trigger specific biochemical compensatory mechanisms 
(including synaptic formation and biochemistry) in 
preterm babies, which are different from those possibly 
activated during a regular gestation period ending in full-
term birth [142]. For example, there are data showing that 
children exposed to environmental intoxication can have 
a different cognitive impact based on the APOE genotype 
[143], and that these ApoE-toxicants interactions can be 
activated during earlier periods of life and establish the 
“neural ground” for potential future abnormal reactions in 
the context of a later normal environment. Finally, other 
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types of illnesses such as intra-uterine infections could 
directly or indirectly and differently affect cognitive 
outcomes of children based on their specific APOE 
genotype [144]. 
 
APOE and brain during normal childhood and 
teenaging  
 
As investigations on the APOE polymorphism get 
performed considering human subjects with earlier age 
in life, the possible influence of each APOE genotype in 
these younger populations should consider that APOE2 
and APOE4 can be part of AP phenomena occurring in 
the same individual (e.g. APOE2/E4) and across different 
individuals (e.g. APOE3/E2 vs. APOE3/E4) at different 
ages. The AP effect of APOE suggests that it would be 
fundamental to precisely define the specific periods of 
life to investigate and in which of those periods AP 
effects take place [145]. In fact, during earlier periods of 
life, the deleterious effects of APOE4 vs. APOE2 appear 
to be paradoxically reversed in some cases in respect to 
older age [31, 129, 146, 147]. Although studies focusing 
on the allelic effects of APOE on young adults and 
children are relatively rare, a series of recent analyses 
evidenced an increased risk for poorer outcomes in 
APOE2- vs. APOE4-carriers in pediatric populations 
[130]. However, this effect is paradoxical only in 
appearance if the AP concept is considered. The 
“switched” effect of APOE4 (and alternatively of 
APOE2) during aging (in comparison to earlier periods 
of life), fits very well with the genetic AP concept for 
which the function of a gene can change during the time 
(i.e. from infancy to extreme age) or it can be otherwise 
activated in presence of different or mutated 
environmental conditions [148]. In support of the AP 
properties of APOE alleles, recent imaging studies have 
demonstrated a negative correlation between APOE4 and 
GM maturation in subjects between 3 and 20 years old 
[149]. However, more specific aspects of cortical 
connectivity and cognition - such as fluid intelligence - 
resulted to be lower in APOE4-carriers vs. non-APOE4-
carriers [150]. Yet, in this last study, no direct analyses 
were performed to compare APOE4- vs. APOE2-carriers. 
Other studies, however, have also analyzed the 
interaction between APOE (e.g. non-APOE4 carriers) 
and other genes such as SORL1 showing that is the 
interaction between these two genes to determine 
different levels of hippocampal connectivity [151]. 
Again, when studying the APOE effects across different 
ages, it looks like of extreme relevance to define in a very 
precise way, the quantitative parameters or qualitative 
variables (including other genetic traits or genes) to 
analyze (e.g. clinical signs or symptoms, cognitive 
scores, imaging measures, neurophysiological values, 

etc.) and the specific system, organ, tissue or function to 
study. 
 
APOE and brain during pathological conditions of 
childhood and teenaging  
 
There have been various studies that focused on 
neurological disorders during childhood and adolescence 
that attempted to identify possible meaningful 
correlations between manifestation and progression of a 
disease, or its variable phenotypic characterization, and 
the APOE genotype. Initial findings by Treble-Barna et 
al. [152] suggest an APOE-environmental interaction in 
terms of long-term outcomes in children with a history of 
traumatic brain injury (TBI). This possible gene-
environmental interaction has been further suggested by 
Kassam et al. [153] based on meta-analytic results 
showing that APOE4 is undoubtedly associated with a 
worse prognosis after a TBI in both children and young 
adults and that this effect might be due to mechanisms 
quite different from those linked to neurodegeneration 
during aging.  
 
In support of the hypothesis that APOE4-related effects 
could be linked to different pathomechanisms than the 
ones leading to neurodegeneration when considering 
short- or long-term outcomes in the context of the same 
disease, for example traumatic brain injury (TBI) where 
there are data showing the possible association between 
APOE and post-concussive syndrome in children, which 
do not have any significant difference between APOE4- 
vs. non-APOE4 carriers, in particular when immediate or 
short-term outcomes are considered [154]. By contrast, 
in other types of brain diseases such as epilepsy, APOE 
genotype resulted to be a strong modifying factor in 
terms of both neuronal and glial neuropathological 
changes [155]. Nonetheless, depending on the specific 
type of disease associated with seizures or epileptic 
syndromes, the impact of APOE polymorphism seems to 
vary and it is not always associated with a direct 
epilepsy-inducing pathogenetic effect [156], but rather 
with other clinical aspects such as the age of onset of the 
disease [157]. 
 
In summary, APOE polymorphism during childhood and 
teenaging does not seem to be necessarily associated with 
specific structural brain changes but does seem to act in a 
much more complex way on a series of clinical outcomes 
characterizing the natural history of a specific disease 
such as cognitive decline, age of onset, or other associated 
co-morbidities related to the primary pathologic condition 
[113]. Though, earlier in life, the influence of APOE 
genotype seems to operate on a wider set of aspects either 
at the structural as functional level [158, 159]. 
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APOE and brain during normal adulthood (3rd-7th 
decade of life) 
 
A series of APOE-associated white matter (WM) and 
gray matter (GM) microstructure differences in adult life 
have been described and they support the hypothesis that 
APOE polymorphism has indeed an early impact on 
various neurocytological aspects and different 
neurophenotypic aspects during normal and pathologic 
conditions of the CNS. For example, recent cognitive-
morphological MRI investigations in normal adult 
populations described an earlier influence of the APOE 
genotype on specific morphometric aspects of different 
brain regions as an independent variable that is, as a 
variable that is not linked to any other known associated 
genetic or environmental risk factor [83, 160-164]. 
Moreover, functional MRI (fMRI) studies showed 
significant differences in normal older as well young-
adult populations when clustered based on APOE4 vs. 
non-APOE4 carriers [165-168]. In addition, other factors 
such as brain metabolism [169] and vascular reactivity 
[170] seem to be associated with an APOE genotype, 
which predisposes to cognitive impairment later in life.  
 
Although studies using normal human brain tissue for 
comparisons across different APOE genotypes are very 
rare, Love et al. [171] were able to demonstrate different 
levels of synaptic proteins in the temporal cortex of 
normal brains between APOE4 vs. non-APOE4 carrier 
subjects.  
 
APOE and brain during pathological conditions in 
adulthood (3rd-7th decade of life) 
 
There are different investigations demonstrating that 
APOE genotype can influence the clinical phenotype of 
brain diseases during adulthood. For example, different 
levels of neuroinflammation associated with epilepsy 
were directly correlated with a specific APOE genotype 
in adult patients [172]. Specifically, APOE3 conferred a 
higher level of protection against neuroinflammatory and 
neurodegenerative processes associated with epilepsy 
[155]. In other brain diseases, such as TBI, it has been 
shown that different clinical outcomes are present in 
young adults (in contrast with findings in children) 
APOE4-carriers vs. non-APOE4 carriers [173, 174]. In 
this case, it has been shown that a specific APOE allele 
can directly influence the reparative capacities of the 
brain and consequently the clinical outcomes based on a 
specific allele, the APOE4 in this case [175].  
 
Another fascinating set of data proposed that there is a 
significant association between sleep disorders and 
APOE genotype [176, 177], as well as among APOE, 
sleep-wake cycle, and deposition of β-amyloid [178]. 
This is a further indication that during adult age APOE4 

confers negative effects to those subjects that have sleep-
disordered breathing illnesses. By contrast, it has been 
evidenced that APOE2 confers a higher risk for 
intracranial hemorrhage in the contest of the natural 
history of brain arteriovenous malformations in young 
adults [179].  
 
Then, importantly, as the mean age of the subjects 
analyzed in each different clinical or epidemiological 
study becomes lower, it is valuable to consider the 
possible AP effect of APOE alleles together with a clear 
distinction of the pathologic conditions to investigate, for 
example a clear distinction should be kept if a specific 
study is considering a vascular vs. non-vascular diseases. 
In fact, as the mean age of the subjects analyzed across 
different studies lowers also the different type of tissues, 
organs, or functional systems to target could vary together 
with the notion that an AP phenomenon can affect 
different organs or functions at different biological 
periods of life as well as different areas of the same organ 
(e.g. the brain) across those different periods of life.  
 
APOE and brain during normal aging: successful 
octogenarians, nonagenarians, and centenarians  
 
To date, APOE4 remains the best-established genetic risk 
factor associated with an increased risk of sporadic late-
onset Alzheimer’s disease (LOAD) [180, 181]. The 
possibility of APOE4 to determine an increased risk for 
other types of dementias is currently debated and under 
continued investigation [182-186]. While APOE4 has a 
deleterious effect on the onset and progression of AD as 
well as on cognition during pathological aging [187], 
APOE2 - the rarest allele of APOE gene in Caucasian 
populations - has been associated with a reduced risk of 
AD and increased longevity [77, 188, 189]. However, the 
detrimental effect of APOE4 on cognition (in both homo- 
and heterozygosis) has been largely confirmed by clinical 
[190], neuropsychological [191], neuroimaging [192], 
and neuropathological studies [193]. Conversely, fewer 
investigations have focused on the impact of APOE in 
normal brain aging conditions and specifically on APOE-
related influence on cognition and other brain functions 
during normal brain aging. Furthermore, for statistical 
purposes, APOE4 effects have been much more 
frequently contrasted to APOE3 (the most frequent APOE 
allele in Caucasian populations) and much less to APOE2 
due to its lower frequency in most human populations 
[194]. Very often, in fact, the rarity of APOE2 did not 
allow performing a correct and reliable statistical 
approach due to the marked differences in terms of 
population sample sizes to compare (e.g. numerosity of 
APOE4 vs. APOE2 subjects).  
 
Moreover, the harmful effect of APOE4 has been 
associated not only to a higher risk of AD but also to a 
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higher risk or different clinical outcomes for other 
neurological [195-198] and non-neurological conditions 
[199-203]. These latter findings support the hypothesis 
that APOE is very much indeed a possible general 
modifier of various biological and consequently, clinical 
phenomena. Curiously, APOE4 has also been associated 
with some apparently paradoxical effects [204-207]. For 
example, the absence of a higher risk for AD or cognitive 
deficits in some specific human populations has been 
found [206, 207]. Nonetheless, the variability of APOE4-
associated risk across different human populations not 
only reinforces the concept that APOE4 is “just” a risk 
factor (in contrast to a Mendelian mutation) but also that 
other environmental and genetic factors are possibly 
associated with a higher risk of dementia, its onset, and 
pathogenic progression [208, 209]. Significantly, the 
detrimental or beneficial biological mechanisms of APOE 
alleles during premorbid normal adult life periods are far 
from being completely clarified. 
 
In terms of APOE polymorphism-associated changes 
during normal aging, some studies have shown that 
APOE4 (vs. APOE3) is associated with a cortical thinning 
in a series of specific brain regions (e.g. medial and 
inferior temporal regions, including entorhinal cortex) 
[210]. These thinner cortical regions are the same cerebral 
regions more frequently affected in AD and particularly 
vulnerable to the AD pathology accumulation (e.g. β-
amyloid accumulation). Interestingly, though, the 
APOE4-associated thinning of those AD-vulnerable 
cortical regions seems to be, per se, independent from the 
extracellular β-amyloid accumulation, especially when 
cognitively normal vs. early mild cognitive impairment 
(EMCI) or AD subjects are taken in account [210]. This 
newer perspective on APOE4 that is, a genetic factor 
having its own impact independently from β-amyloid 
accumulation (or other pathologies?) seems to confirm a 
direct and autonomous influence of APOE4 on the 
cortical architecture in specific regions of the brain [211, 
212].  
 
The pathogenetic “independency” of APOE could be 
probably linked to basic cholesterol metabolic 
mechanisms related of the three different APOE alleles, 
their final protein products and cellular localizations 
[213]. In addition, the possible association among APOE 
genotypes, specific brain areas architecture and related 
brain functions, seems to go behind pure cognitive aspects 
and involve other non-cognitive functions such as the 
motor skills for example [214].  
 
Finally, it is relevant to consider that the effect of APOE4 
on the pathology and progression of AD, and probably 
on human cognition in general, appears to be mitigated 
by a series of other possible beneficial environmental 
factors [215]. However, it is not completely known 

which could be the possible environmental factors that 
could alternatively (beneficial or detrimental) potentiate 
the opposite effects of APOE4 and APOE2 during normal 
life conditions.  
 
This brief description of some most recent neuroimaging 
and population-based studies of the APOE impact in 
humans illustrates either the complexity and intrinsic 
plastic capacities of the human brain to produce different 
clinical outcomes as consequence of the mutual interplay 
among genetic risk factors (e.g. APOE4, is not a 
determinant of disease) on the neural tissue (e.g. cortical 
thinning), independent pathogenetic factors (different for 
example, from β-amyloid extracellular accumulation or 
intracellular phosphorylated-tau formation) and other 
possible environmental variables, which are not 
identified or completely investigated yet such as lifestyle, 
nutritional habits, stress, or history of infectious diseases. 
Moreover, it is important to mention that there are recent 
findings from relatively large cohort studies that enrolled 
cognitively normal centenarians, which started to 
investigate cognitive aspects related to APOE genotype 
at a very advanced age and started to show unexpected 
and interesting results. For example, APOE4 in 
centenarians seems to be positively correlated with 
negative rather than positive affect in interaction with life 
events [216].  
 
In general, these new findings seem to reinforce the 
concept that APOE not only influences some cognitive 
aspects until very late in life, until the 10th of life or later, 
but that there are much tighter possible links among 
cognition, emotions, and longevity in the human species 
[217]. 
 
APOE during pathological aging: Alzheimer’s 
Disease and other dementias in elders 
 
 In the context of neurodegenerative diseases, and 
dementia in particular, extensive analyses have shown 
that APOE genotype influences cognitive and non-
cognitive phenotypes of subjects with a clinical diagnosis 
of MCI or AD (clinically probable AD). For example, 
APOE4 has been found to cluster at least two different 
groups of cognitive outcomes among subjects with 
dementia [5]. Moreover, in behavioral terms, APOE4 has 
been associated with different compartmental subtypes 
of AD [218]. Other investigations have further 
demonstrated that APOE4 can generate different 
endophenotypes in terms of neuropathology. For 
example, Murray et al. [219] were able to distinguish 
different subtypes of AD when APOE4 was clustered 
together with age of onset of the disease. However, in 
other non-AD dementias it seems that the detrimental 
link between APOE4 and cognitive decline is much more 
complex than in AD [220, 221]. Moreover, previous and 
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more recent investigations began showing that in the 
context of non-AD dementias such as FTD or cognitive 
decline in ALS, the modifying action of APOE 
polymorphism can be rather different from what is 
observed in classical AD [222, 223]. For example, 
cognitive dysfunctions in ALS are associated with APOE 
genotype and other genes as well, such as SCNA gene. 
In this case, it seems that both genes cooperate for a 
higher risk of dementia in ALS only when related to the 
presence of Lewy bodies - a typical neuropathological 
feature of dementia with Lewy bodies (DLB) [224, 225]. 
These recent findings support the possible mutual 
interactions between APOE and other genes and other 
non-genetic factors and that these more complex 
molecular interactions can produce different clinical 
phenotypes during the manifestations of age-related 
neurodegenerative diseases and probably earlier in life as 
well [226, 227].  
 
The “special” case of APOE2 and neurodegeneration 
during aging  
 
As described earlier in this review, only few studies have 
focused on the relative impact, including possible 
molecular mechanisms, of APOE4 vs. APOE2 in terms 
of different cognitive outcomes during normal or 
cognitively successful aging [228-231]. Those few 
studies that have attempted to verify the possible 
associations between cognitively normal older subjects 
and APOE polymorphism have shown that the protective 
effect of APOE2 is not directly associated with 
mechanisms linked, for example, to the extracellular β-
amyloid accumulation into the brain or to the alterations 
of synaptic and neuroinflammatory levels in the CNS 
[232, 233]. These latter observations are of special 
interest since they could open other and different views 
on the possible protective mechanisms of APOE2 
independent on the “classic” AD pathology [234, 235]. 
These more recent findings allow hypothesizing that the 
protective effects of APOE2 on the brain and its functions 
are intrinsic to the molecular features of APOE alleles 
and its protein products. In fact, the beneficial effects of 
APOE2 later in life can be only partially, or indirectly, 
related to the reduction of those pathologic factors 
currently considered as the “pathogenetic” causes of AD: 
extracellular accumulation of β-amyloid pathology, 
hyperphosphorylated-tau formation and spreading, 
increased levels of neuroinflammation and synaptic loss 
[236, 237]. Therefore, these more recent findings imply 
that also other factors linked to the intrinsic molecular 
advantage of APOE2 need to be taken in account [228, 
238, 239]. However, the new molecular aspects of 
APOE2 need future confirmation by analyzing data from 
very large prospective studies aiming to measure the real 
effect of APOE2 protein in a large multi-factorial 
statistical model that would include both biological 

(genetic) and non-biological (environmental) factors 
[240, 241]. These studies should include human brain 
donations to increase the chance to quantifying ratios 
between residual (normal/still-functional) and pathologic 
tissues (dysfunctional neuronal or non-neuronal) that 
could directly derive from the action of APOE2 vs. 
APOE4 on the neural tissue through probably its 
biochemical interaction with cholesterol metabolism. 
Therefore, it could be possible to hypothesize that the 
APOE2-related action on the cholesterol metabolism 
would be capable to delay the cognitive decline during 
normal aging by specific molecular mechanisms that 
could be modulated using pharmacological compounds 
or non-pharmacological treatments, or alternatively, 
offer the opportunity to potentiate their beneficial action 
in a more preventive or protective manner. Unfortu-
nately, the specific APOE2 molecular mechanisms are 
currently not completely known [242]. Nonetheless, 
some molecular mechanisms have been proposed based 
on new and unexpected metabolic links between 
different biochemical pathways. For example, new 
possible links between homeostatic pathways of iron and 
lipids metabolism [243] or between APOE2 and disease-
onset of other mutations through the interaction of 
APOE2 and genes involved in cellular proliferation, 
protein degradation, apoptotic and immune dysregulation 
processes has been shown [244]. Moreover, differential 
phenomena of neuroplasticity as based on APOE4 vs. 
APOE3 have been proposed [245]. Furthermore, as for 
possible differences across the three APOE proteins, 
recent pilot investigations started to show that APOE 
genotypes is associated with different plasmatic levels of 
APOE2 vs. APOE3 and APOE4 proteins as hourly 
measured in human subjects [246]. These newer 
biochemical findings on APOE have been made possible 
by recent methodological advancement especially those 
based on mass spectrometry [247] and highly complex 
techniques [248].  
 
APOE, higher cognitive functions, and modulatory 
effects of personality-traits 
 
APOE2 in older subjects, even in the presence of high 
levels AD pathology and clinically silent dementia, have 
shown a significant association with higher language 
skills acquired early in life [249]. Furthermore, recently, 
MRI findings showed that specific spectroscopy signals 
are associated with cognitive and language development 
at term-equivalent period in some of the identical brain 
areas (e.g. hippocampus) that are later often affected by 
aging-related diseases such as AD [250-251]. However, 
it is not known, yet, if these imaging findings are also 
directly linked to APOE or to other genetic 
polymorphisms. Nonetheless, it is highly possible that 
language skills, as well as other higher cognitive human 
functions, could be connected to more specific gene-
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environmental interactions during either in-utero life and 
during the very first months or years of life as based on a 
cluster of genes, including APOE, whose function or 
dysfunction, directly predispose an individual to a higher 
risk of neurological and psychiatric risk later in life due 
to the very early impact of those gene-environmental 
interactions on specific brain structures and functions 
“already set up for” at birth or earlier. These early gene-
environmental neurobiological phenomena could 
predispose to specific types of neurophenotypes later in 
life during the youth, middle-age or aging of that 
individual [253].  
 
Intriguingly, APOE genotype seems to be associated or 
interacting with specific traits of personality [254], and 
even with GM volumes in specific areas of the brain that 
can have a modulatory effect on cognition. Among the 
personality traits that seem to be associated with an 
APOE-personality modulatory interaction there is the 
conscientiousness [7]. Although many of these studies 
were limited by the relatively small number of subjects 
analyzed, they do represent initial and important findings 
of the more plastic relationship between APOE and 
personality-based behavioral aspects that could represent 
useful clinical tools in establishing a higher risk of 
dementia before any clinical manifestation [255, 256]. 
 
FUTURE PERSPECTIVES 
 
This necessarily succinct review focusing on the possible 
types of impact of APOE polymorphism on human brain 
structures, cerebral functions, and brain illnesses across 
different ages in normal and pathological conditions of 
the brain and possible modulatory effects of specific 
personality traits (e.g. conscientiousness, neuroticism) 
suggests that future larger longitudinal investigations 
would need to consider numerous genetic and 
environmental variables to fully identify the molecular 
mechanisms of APOE as well as the interactions between 
the APOE with other genes and other aspects such as 
environmental imprinting (nutritional, educational, 
behavioral, etc.) during the early phase of life [257, 258]. 
 
APOE started to appear a gene associated with relevant 
antagonistic pleiotropic phenomena and it seems to be 
involved in different human diseases, not only brain 
diseases [259]. APOE appears, in fact, to have an 
important and modifying impact on lung diseases [200], 
infectious diseases [202, 260], and on very specific 
pathologic processes [203]. Finally, APOE seems to be 
involved in the different behavioral outcomes and 
personality-traits modulatory effects whose molecular 
mechanisms still need to be completely elucidated [261]. 
 
Future studies, possibly stratified by individual APOE 
genotype, should be able to identify the precise molecular 

mechanisms by which a specific compound could modify 
or halt the detrimental effects of APOE4 during late-life 
period or, by “paradoxical” contrast, enhance its effects 
during the early or very early phases of life. Different 
types of molecules with possible pharmacological actions 
on the APOE gene products, and especially on APOE4 
gene product, are under constant investigation [262, 263], 
using newer technological sequencing and computational 
advancements that better inform us on the possible 
genome-based mechanisms of health maintenance [264, 
265]. Moreover, APOE4 has been identified as a ligand 
for the LDL receptors (LDLRs) family and that ApoE 
receptor 2 (ApoEr2) [266], together with VLDL receptor 
(VLDLR), have major impacts on brain development and 
adult synaptic plasticity [267, 268]. ApoEr2 acts through 
the activation of Reelin [269-271], whose function could 
be modulated by specific compounds that secondarily 
would act or reduce the APOE4 detrimental effects on the 
CNS in general, or on dementia being the main genetic 
risk factor for AD [272, 273]. 
 
Finally, new and exciting facets of CNS biology and 
aging such as those related to the glymphatic system 
[274], or the CNS-associated lymphatic system [275], 
have recently opened new ways to better understand the 
CNS biology, its clearance capacities, as well as the 
possibility to associate these new discoveries with 
acquired knowledge about APOE, its pathogenic 
contribution to neuropathology of dementia, and the 
effects of APOE alleles across the entire human lifespan.   
 
BOX 1. POSSIBLE APOE-LINKED BIOLOGICAL 
TRAITS ASSOCIATED WITH ANTAGONISTIC 
PLEIOTROPY FEATURES  
 
Although this review aimed to describe the findings 
about different functional brain outcomes, in normal and 
pathological conditions of the brain, associated or 
influenced by the APOE allelic polymorphism in 
humans, we also briefly describe some of the possible 
APOE-molecular and non-molecular traits that could be 
associated with the proposed AP features of APOE. 
There is a plethora of animal studies (experiments 
employing transgenic animals, mainly rodents) that 
define various genetic (APOE), metabolic (ApoE 
proteins), and ApoE receptors (intracellular functional 
consequences) molecular aspects that would be 
impossible to describe here in an exhaustive way. For this 
reason, we preferred to focus on those possible APOE-
traits that seem to have some antagonistic pleiotropic 
(AP) features across the lifespan in mammalians.  
 
We retain that the following “APOE-linked traits” are 
among the most suitable candidates able to explain the 
antagonistic pleiotropic effects of the APOE polymor-
phism:  
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APOE4-carrier as “Higher β-amyloid accumulator 
subject” 
 
Using different animal models and different biochemical 
approaches, it has been demonstrated that APOE4-
animals have a reduced capacity to catabolize and 
consequently to reduce, the progressive accumulation of 
1-42 β-amyloid, one of the main constituents of 
extracellular β-amyloid accumulation [276-278]. 
Furthermore, APOE4 seems also to indirectly exacerbate 
tau-mediated neurodegeneration [279]. Moreover, the 
APOE4 seems to determine this reduction of catabolic 1-
42 β-amyloid (as well as of other forms of β-amyloid 
[280, 281]) in a regionally-based manner [282-284]. If 
these deleterious effects of APOE4 on the β-amyloid 
metabolism during aging or adult life are deleterious as 
well for the brain or other tissues in early life is not 
known or, by contrast, if APOE2 has a beneficial effect 
in early-life is not completely understood [285, 286]. 
Curiously, however, newer investigations both in 
animals and humans showed a “paradoxical” (due to 
actually to the AP?) effect of APOE2, specifically in case 
of APOE2 homozygosis (APOE2/E2) [287]. Zhao and 
colleagues, for example, show increased levels of tau 
lesions in cases of Progressive Supranuclear Palsy (PSP), 
a typical tauopathy, when associated with APOE2 
homozygosis. 
 
APOE4-carrier as “Lower synaptic/spine 
replacement/ repairing capacity subject” 
 
A consistent series of experiments either in-vitro and in-
vivo aiming to compare the formation of synapses or the 
capacity to repair synapses in the presence of APOE4 vs. 
APOE3 or APOE2 have now consolidated the evidence 
that APOE polymorphism is indeed directly linked to 
differential capacities of the brain, both in terms of 
synapses formation and repair, when one of those three 
alleles are expressed. For example, in the specific context 
of AD - where entorhinal cortex lesions represent some 
of the very initial pathogenetic events ending in the 
synaptic loss subjacent memory impairment - it has been 
demonstrated that APOE4 is associated to a reduced 
capacity to form new synapses as measured by GAP-43 
and synaptophysin proteins, which are typical molecular 
markers of neo-synaptogenesis [288, 289]. Furthermore, 
other investigators have demonstrated that APOE4 is 
specifically associated with a reduced capacity to 
produce spine and consequently contribute to the 
dendritic complexity [1, 290]. Although these animal 
models show the detrimental effect of APOE4 on the 
synaptic compartment, which is coherent with the 
APOE4 effect later in life, paradoxically, or better in 
antagonistic pleiotropic terms, there are studies in 
humans showing a higher performance of specific 
cognitive tasks in younger subjects when carrying 

APOE4 in comparison to APOE2 [291-293]. However, 
some new recent studies in humans show that even in the 
presence of APOE4 there are some morphometric 
alterations of the dendritic spines (e.g. in the frontal 
cortex), which could support the maintenance of normal 
cognitive functions despite the presence of AD pathology 
or aging [294]. 
 
APOE4-carrier and personality-traits, “Higher 
genetic-personality-trait susceptible subject”  
 
The neurohistologic structure as the neuronal and 
synaptic complexity associated to the different traits of 
personality defined in humans is not completely known 
[295]. The attempt to link specific connectomics aspects 
to each specific type of personality or behavior is still in 
its infancy [296-298]. However, initial studies are 
showing interesting findings when introducing the APOE 
polymorphism factor in the analyses of possible 
connectomics changes in APOE4 carrier individuals. 
Some recent studies [300, 301] show that the default-
mode network in APOE4 subjects differs from non-
APOE4 in a way that APOE4 seems to establish the 
functional communications across different brain regions 
(connectomics), which could predispose to some 
cognitive disadvantage across the entire lifespan. 
Moreover, some investigations pointed out that there is 
indeed an association between cognition measurements 
and personality traits [302,303]. If these links are also 
based, influenced, or modulated by a specific genotype, 
such APOE4 vs. APOE2 is under investigation. 
However, initial studies, show that specific personality 
factors (e.g. neuroticism and extraversion) can actually 
moderate the cognitive outcomes in APOE4 carriers 
[255, 261]. 
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