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ABSTRACT

Natural killer cells lacking expression of CD56 (CD56"°® NK cells) have been described in chronic HIV and
hepatitis C virus infection. Features and functions of CD56"® NK cells in the context of latent infection with CMV
and / or EBV with age are not known. In a cohort of healthy donors >60 years of age, we found that co-infection
with CMV and EBV drives expansion of CD56"® NK cells. Functionally, CD56™® NK cells displayed reduced
cytotoxic capacity and IFN-y production, a feature that was enhanced with CMV / EBV co-infection. Further, the
frequency of CD56"°® NK cells correlated with accumulation of end-stage-differentiated T cells and a reduced
CD4 / CD8 T cell ratio, reflecting an immune risk profile. CD56"¢ NK cells had a mature phenotype characterized
by low CD57 and KIR expression and lacked characteristics of cell senescence. No changes in their activating NK
cell receptor expression, and no upregulation of the negative co-stimulation receptors PD-1 or TIM-3 were
observed. In all, our data identify expansion of dysfunctional CD56"® NK cells in CMV'EBV" elderly individuals
suggesting that these cells may function as shape-shifters of cellular immunity and argue for a previously

unrecognized role of EBV in mediating immune risk in the elderly.

INTRODUCTION

CMYV and EBV are the most ubiquitous herpes viruses,
with a prevalence of up to 95% for EBV and close to
50% for CMV in the adult Western population [1].
Following primary infection, most often during early
life, both viruses establish life-long latent infection.
While immune-competent hosts are mostly asympto-
matic, CMV and EBV can cause illness in immune-
compromised individuals. Importantly, CMV is known
to significantly shape the immune system with in-
creasing age. Specifically, inflation of CMV-specific
CD8" T cells with a terminally differentiated phenotype
(CD8'CD28") and an inverted CD4/CD8 T cell ratio
have been described in CMV-positive individuals [2, 3].

The OCTO Immune Longitudinal Study established an
immune risk profile (IRP) — characterized by latent
CMYV infection, inversion of the CD4 / CD8 T cell ratio,
and accumulation of T cells lacking expression of CD28
— which was predictive of 2-year mortality in healthy
donors of more than 80 years of age [4, 5]. Follow-up
studies over the entire adult life span established that
these immune changes as well as mortality rates
associated with the IRP markedly increase in the age
range of 60-94 years [6]. Recent work extended these
findings, showing that CMV is a driving force behind
the IRP [7]. The contribution of EBV to immune-
senescence is far less well studied, not least because the
high prevalence of EBV-positive individuals among the
adult population is making detailed studies challenging.

WWWw.aging-us.com

AGING



NK cells are group 1 innate lymphoid cells (ILC-1) with
high cytotoxic activity and an ability to produce large
amounts of IFN-y when interacting with infected or
transformed target cells [8]. Human NK cells can be
divided into two main populations based on their
relative expression of the adhesion molecule CD56 and
the low-affinity Fc receptor CD16 [9, 10]. CD56"™
(CD56'CD16™") NK cells constitute the majority of NK
cells in peripheral blood and represent the main effector
population [9], while CD56™¢" (CD56"CD16) cells
are predominantly found within lymphoid tissues and
constitute 5-10% of peripheral blood NK cells [11].
Developmentally, CD56""" NK cells are thought to be
precursors of the more differentiated CD56™™ NK cell
subset [12-14]. More recently, a third NK cell subset
has been described that lacks CD56 expression (CD56"
CD16"; referred to as CD56" NK cells throughout the
manuscript) [15-21]. Loss of CD56 expression, in con-
juncture with the lack of an alternative NK cell-specific
marker in humans, complicates characterization of this
NK cell subset. Earlier studies identified CD56"*® NK
cells by exclusion of cells expressing CD3, CD4, CD14,
and CD19 [19, 22-24]. A more recent report further
established exclusion of cells lacking expression of
CD7 from the CD3-negative lymphocyte fraction as a
more reliable means to exclude cells of the myeloid
lineage (monocytes, dendritic cells) from the NK cell
population [22, 25, 26].

Persistent viral infections have a significant impact on
NK cell phenotype and function [27, 28]. In chronic
HIV infection, a dramatic increase in CD56"® NK cells
has been described [15-21]. Compared to CD56%™ NK
cells these cells were shown to be markedly impaired in
their capacity to secrete IFN-y, lyse HLA-I-deficient
target cells, and participate in antibody-dependent
cytotoxicity (ADCC) [15, 17, 18, 21, 29]. Although less
pronounced, expansion of CD56"® NK cells was also
reported in chronic hepatitis C virus (HCV) infection
[23] and in patients with Burkitt’s lymphoma [30].
Similar to HIV-infected individuals, patients with
chronic HCV infection accumulated CD56"* NK cells
that were impaired in their capacity to degranulate and
secrete IFN-y and TNF-a in response to target cell
stimulation [23]. It has therefore been hypothesized that
the expansion of this assumed defective CD56"* NK
cell population reflects a mechanism by which viruses
subvert NK cell responses.

Here we performed phenotypic and functional analyses
of CD56™® NK cells in a cohort of healthy donors of
>60 years of age (n=38, median 64 years, range 62-70
years) with known CMV and EBV serostatus. Spe-
cifically, we enumerated CD56"™® NK cells and tested
their cytotoxic capacity in response to target cell and
cytokine stimulation, determined the differentiation

stage of CD56"™® NK cells relative to other NK cell
subsets, and assessed cell senescence and exhaustion
characteristics.

RESULTS AND DISCUSSION

CD56neg NK cells with impaired effector function
expand in CMV / EBV co-infected hosts >60 years of
age

The imprint of chronic viral infections on immunity is
most pronounced during later stages of life. To study
the impact of CMV infection on NK cell immunity
during aging we first determined frequencies of NK cell
subsets in 20 young (<35 years (median 31 years, range
25-34 years)) and 41 elderly (>60 years (median 64
years, range 62-70 years)) donors stratified according to
CMV serostatus. Intriguingly, CMV infection in healthy
donors >60 years of age was associated with a distinct
increase in the frequency of CD56"™* and a decrease in
CD56"™ NK cells (Figure 1A). In contrast, young
CMV-positive donors had less CD56°"" NK cells but
an increased proportion of CD56%™ cells (Figure 1A).
No changes in the frequency of CD56™® NK cells were
seen in young CMV-positive donors (Figure 1A) — in
line with 2 previous reports [31, 32]. To delineate the
relative contribution of CMV vs. EBV infection to the
observed increase in CD56"¢ NK cells, we next divided
the cohort of elderly donors into CMV EBV™ (n=11),
EBV-positive (CMV EBV', n=24), CMV-positive
(CMV'EBV, n=6) and CMV'EBV' (n=14) donors
[33]. NK cells were identified in total PBMCs by gating
on CD3 and CD7" positive lymphocytes [26], then
divided into three subsets based on their CD56 and
CD16 expression: CD56™¢" (CD56"'CD16), CD56%™
(CD56'CD16™), and CD56™* (CD56 CD16") NK
cells (Supplementary Figure 1A). When comparing NK
cell subsets between cohort subgroups stratified
according to CMV and EBV serostatus, we found a
significant increase in frequency (Figure 1B,
Supplementary Figure 1B) and absolute cell numbers
(Figure 1C) of CD56™® NK cells in CMV EBV"
individuals only, although the low sample number in the
CMV'EBV  subgroup poses some limitation to this
conclusion. Expansion of CD56™® NK cells in
CMV'EBV' donors was accompanied by a reduction in
CD56%™ NK cell numbers compared to CMV" donors
without EBV infection (Figure 1C).

CD56™ NK cells with reduced cytotoxic function have
been described in chronic HIV and HCV infection [15-
21]. Aiming to investigate effector functions of CD56"*
NK cells in CMV and EBV co-infected donors, we
FACS-sorted CD56™ and CD56“™ NK cells from all 4
cohort subgroups stratified according to CMV and EBV
serostatus as described above. We then assessed
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expression of CD107a and production of IFN-y in
response to stimulation with K562 target cells, IL-12 /
IL-18 (Figure 1D, F) and the killing capacity toward
K562 target cells (Figure 1E). We found a significant
decrease in CD107a expression in CD56"* NK cells

compared to CD56%™ cells in CMV EBV™ (n=7) and
CMV'EBV  (n=6) donors, and an even more pro-
nounced decrease in CD107a in CD56neg NK cells
from CMV EBV" (n=5) donors (Figure 1D). Moreover,
in CMV'EBV" individuals CD107a expression was de-
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Figure 1. CD56" NK cells with impaired effector function expand in CMV and EBV co-infected individuals >60 years of
age. (A) Frequencies of CD56°"™, CD56"™ and CD56™% NK cells in YOUNG (<35 years) CMV™ (gray bars, n=10/10) and CMV* (black
bars, n=10/10) individuals compared to OLD (>60 years) CMV" (gray bars, n=20/21) and CMV" (black bars, n=17/20) donors analyzed
as in Supplementary Figure S1A. (B) Representative FACS dot plots from a CMV EBV™ and a CMV'EBV" donor are shown. Numbers
indicate the percentage of cells within total NK cells in peripheral blood. (C) Absolute cell numbers for CD56%™ and CD56"™% NK cells —
as determined by FACS analysis in total PBMCs— are shown in a cohort of HDs >60 years of age stratified as CMV EBV™ (n=11/11),
CMV EBV' (n=10/24), CMV'EBV™ (n=6/6), and CMV'EBV" (n=12/14). (D-F) FACS-sorted CD56"™ and CD56" NK cells from CMV EBV™
(n=7), CMV EBV" (n=4), CMV'EBV" (n=4) and CMV'EBV" (n=5) donors were either left un-stimulated (empty bars), stimulated with IL-
12 / IL-18 (green bars) or K562 target cells (blue bars) and D) CD107a expression (E) target cell lysis and (F) IFN-y production were
assessed after 6 hours of (co-)culture. Parametric data were compared by Student’s t-test and are shown as mean * SEM, non-
parametric data by Mann-Whitney test and are shown as median + IQR, respectively. * p<0.05, ** p<0.005, *** p<0.005.
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creased in response to both target cell and cytokine
stimulation in the CD56"™* cell subset (Figure 1D). We
then tested killing capacity of sorted CD56"™ and
CD56™® NK cells from all 4 cohort subgroups by
measuring lysis of K562 target cells, a more direct
measure of cytotoxic capacity. In co-culture with K562
target cells, CD56"% NK cells from CMV'EBV_ and
CMV'EBV" donors had a significantly lower killing
capacity than CD56"™ NK cells from the same donor
(Figure 1E). Analogous to the expression of CD107a,
production of IFN-y was significantly lower in CD56"*
as compared to CD56"™ NK cells in CMV EBV'(n=4),
CMV'EBV™ (n=5) and CMV'EBV" (n=5) donors after
stimulation with K562 target cells (Figure 1F). In
response to IL-12 / IL-18 stimulation, only CMV EBV"
donors showed a significant reduction in IFN-y
production (Figure 1F). Intriguingly, CD56"™ NK cells
from CMV-positive donors had a significantly higher
capacity to secrete IFN-y than those from CMV-
negative individuals (Figure 1F). These data are in line
with previous reports that established a role for CMV in
shaping immune reactivity of CD56"™ NK cells both in
vitro and in vivo [34, 35], a phenomenon that was not
recapitulated in the CD56"® NK cell subset (Figure 1F).
In all, our data suggested that CD56"® NK cells had
reduced cytotoxic capacity and IFN-y production
compared to CD56"™ NK cells, a feature that was
further pronounced in the context of CMV / EBV co-
infection.

Frequencies of CD56"® NK cells in donors >60 years
of age correlate with the immune risk profile

CMV infection has been associated with significant
changes in T cell subset distribution with age.
Population-based studies, pioneered by the Swedish
longitudinal OCTO immune study, established an
immune risk profile (IRP) characterized by CMV
positivity, an inversed CD4/CD8 T cell ratio and
accumulation of end-differentiated T cells with poor
proliferative capacity — an immunologic imprint that has
been associated with a higher 2-year-mortaliity rate in
healthy donors >60 years of age [6]. We next analyzed
whether an increase in CD56™® NK cells may be
associated with the IRP. To this end, we performed
phenotypic analysis of CD4  and CD8 T cells
classified as naive (N; CD27', CD45RA"), central
memory (CM; CD27", CD45RA"), effector memory
(EM; CD27, CD45RA") and terminally-differentiated
effector memory (EMRA; CD27, CD45RA") T cells,
and determined the number of double negative (DN;
CD27 CD28) T cells [36, 37] in all 4 subgroups of the
cohort (Supplementary Figure S1A). Indeed, fre-
quencies of CD56"® NK cells correlated with the
percentage of end-differentiated T cells, specifically
CD8" EMRA and CD27 CD28 T cells, and a reduced

CD4/CDS8 T cell ratio (Figure 2A). When stratified to
CMYV and EBV serostatus, only donors that were either
CMV- or EBV-positive (or both) showed a positive
correlation between the frequency of CD56™* NK and
CD8" EMRA T cells (Supplementary Figure S2A, left
panel).

This newly identified association of CD56"® NK cells
with the IRP raised the question whether CD56"® NK
cells are a terminally-differentiated subset as well, and
whether they display cell senescence characteristics. To
determine the differentiation stage of CD56"® NK cells
we analyzed cell surface expression of NKG2A,
CD62L, the Killer-cell Immunoglobulin-like Receptors
(KIRs), and CD57. Expression of NKG2A and CD62L
in NK cells is reciprocal to KIR and CD57 expression,
with a step-wise reduction in NKG2A and CD62L and
progressive acquisition of KIR and CD57 with
differentiation [38, 39]. In our cohort, CD56" NK cells
displayed a decrease in NKG2A and CD62L expression
and acqjuisition of KIR and CD57 compared to
CD56™ " NK cells irrespective of the serostatus of the
donors (Figure 2B and Supplementary Figure S2B),
suggesting that CD56™* cells have a mature phenotype.
Compared to CD56“™ NK cells, however, CD56"¢ NK
cells expressed significantly less KIR and CD57 (Figure
2B and Supplementary Figure S2B). CD57 expression
defines mature NK cells with potent effector function
[40], and acquisition of KIR 1is associated with
‘licensing’ of the NK cell (a process in which only cells
that express KIR for self-MHC molecules acquire
maximal functional capacity [41]). Absence of these
two markers could point to either a more immature cell
subset that has not acquired full effector functions, or a
cell subset with faulty licensing, respectively, which
would be in line with their reduced effector functions as
shown in Figure 1D-F.

Having established that CD56"® NK cells have a mature
phenotype, we next investigated whether they acquire
cell senescence characteristics. Loss of proliferative
capacity is a hallmark of cell senescence. Therefore, we
first assessed proliferation of NK cell subsets directly ex
vivo, by staining for Ki-67, expression of which is
found in cycling cells only. CD56"* NK cells had
intermediate levels of Ki-67 expression compared to
CD56™" and CD56%™ NK cells, recapitulating our
phenotyping results in Figure 2B, that established an
intermediate differentiation phenotype for the CD56"*
NK cell subset. Intriguingly, we observed reduced Ki-
67 expression in all three NK cell subsets in
CMV'EBV" donors when compared to CMV EBV~
individuals and this reduction was most pronounced in
CD56™" NK cells (Figure 2C). There was no sig-
nificant difference in Ki-67 expression between CMV~
EBV  and single positive (CMV EBV' and CMV'
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Figure 2. CD56"* NK cells do not acquire cell senescence characteristics. (A) Frequencies of CD56" NK cells in relation to
CD8" EMRA T cells (left panel), CD27 CD28 T cells (middle panel) and the CD4 / CD8 T cell ratio (right panel) as assessed by FACS
analysis in total PBMCs (n=53/55). Data were analyzed by linear regression: correlation strength (R and statistical significance (p-
value) are indicated for each scatter plot. (B) The differentiation stage of CD56"® NK cells was assessed by FACS analysis for
NKG2A, CD62L, KIR and CD57 expression in total PBMCs. CD56™ NK cells were compared to CD56” "™ and CD56°™ NK cells from
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CMV EBV™ (gray bars, n=10/11) and CMV‘EBV" donors (black bars, n=10/14). (C) Proliferation of NK cell subsets from CMV EBV~
(gray bars, n=10/11) and CMV'EBV" (black bars, n=10/14) donors as assessed directly ex vivo by FACS analysis for Ki-67 expression.
(D) Telomere length of NK cell subsets in CMV EBV™ (gray bars, n=10/10) and CMV'EBV" donors (black bars, n=10/14) as assessed by
FACS-based FISH-technique. Data are shown as geometric mean of fluorescence intensity (gMFI) of the telomere probe (TelC),
normalized to the gMFI TelC value of the total lymphocyte population for each donor. (E) Global phosphorylation of the histone
H2A.X (yH2A.X Ser139) in CD56°™ and CD56" NK cells in CMV EBV™ (gray bars, n=8/11) and CMV'EBV" donors (black bars, n=9/14)
as assessed directly ex vivo by FACS analysis. (F) Representative histograms for yH2A.X staining in a CMV EBV" (gray histograms) and
CMV'EBV® (blue histograms) donor. UV-irradiated PBMCs served as positive control. (G) Phosphorylation of p38-MAPK
Thr180/Tyr182 in CD56°™ and CD56™# NK cells in CMVEBV™ (gray bars, n=8/11) and CMV'EBV" (black bars, n=9/14) donors
analyzed directly ex vivo by FACS analysis. (H) Representative telomere fluorescence in situ hybridization images showing overlay
images of the nuclear staining (DAPI, purple) with telomere probe (red) and yH2A.X Ser139 (green) (top left) and co-localization of
telomere probe and yH2A.X foci = telomere-associated fluorescence (TAF) (top right panel). White arrows indicate TAF. Greyscale
stack images of the telomere probe (bottom left) and yH2A.X foci are shown (bottom right). (J) Cumulative data from CMV EBV"

(gray bars, n=3) and CMV'EBV" (black bars, n=3) donors are shown analyzed as in (H). Top panel shows the frequency of TAF+ cells,

dim

bottom panel the number of TAF / TAF+ cell in CD56
(H, J) Experiments were performed on FACS-sorted CD56

dim

and CD56" NK cells. (A-G) Experiments were performed on total PBMCs.
and CD56"°® NK cells. For parametric data mean * SEM, for non-

parametric data median  IQR are shown. * p<0.05, ** p<0.005, *** p<0.005, **** p<0.0005, ns=not significant.

EBV") donors (Supplementary Figure 2C). In senescent
cells, the defect in proliferative capacity is occasionally
associated with telomere erosion. To test whether
CD356"® NK cells display telomere-dependent senes-
cence, we measured telomere length by flow-cytometry
based fluorescence in situ hybridization (FISH)-method.
CD56™* NK cells displayed intermediate telomere
length compared to CD56™€" and CD56“™ NK cells,
excluding critical telomere shortening in CD56"® NK
cells as an explanation for the low Ki-67 levels (Figure
2D). Interestingly, telomere shortening was associated
with CMV and EBV co-infection in more immature cell
subsets such as CD56™¢" NK cells (Figure 2D) and
naive CD8" T cells (Supplementary Figure 2D).
Alternatively, cell senescence can be induced by DNA
damage such as DNA double strand breaks (DSBs),
which are marked by phosphorylation of histone 2A. X
(yYH2A.X) and that elicit DNA repair mechanisms
collectively termed as DNA damage response (DDR).
Similar to telomere-associated replicative senescence,
stress-induced and age-associated senescence leads to
the formation of DNA-damage foci and activation of the
DDR [42]. To test for DDR activation in CD56"® NK
cells we first probed global phosphorylation of H2A.X
and spontaneous activation of p38 mitogen-activated
protein kinase (MAPK) [43, 44] in CD56"* and
CD56"™ NK cells by FACS. Interestingly, H2A.X
phosphorylation (Figure 2E, F) and p-p38 MAPK levels
(Figure 2G) were lower in CD56™® compared to
CD56%™ NK cells (Figure 2G) and no significant effect
of CMV and EBV co-infection was seen on H2A.X and
p38 phosphorylation (Figure 2E-G). In a recent report
from Hewitt et al., persistent DNA damage foci, that
failed to be resolved by the DDR, mapped to telomeres/
telomere associated structures rather than genomic
DNA, presumably because of the inaccessibility of
telomeres to the DDR machinery [42]. Such persistent
DNA damage foci can be revealed by co-localization of

YyH2A. X with telomeres in a fluorescence in situ
hybridization protocol and reliably identified senescent
fibroblasts [42]. To further corroborate our findings of
telomere-independent senescence, we applied this
immune-FISH procedure on sorted CD56™* and
CD56%™ NK cells from all four subgroups of the cohort
(n=3 each). Telomere-associated fluorescence (TAF)
was defined as co-localization of YH2A.X with the telo-
mere probe (Figure 2H). We found that the frequency of
TAF-positive cells was strongly donor-dependent,
ranging from 11 to 38% of NK cells, and it showed no
clear association with CMV and EBV serostatus (Figure
2] and Supplementary Figure 2E, upper panels). There
was no difference in the frequency of TAF-positive
cells between CD56™¢ and CD56"™ NK cells (18.2% vs
19.6% (mean TAF+ cells CD56™% vs CD56%™).
Likewise, the number of TAF foci / TAF+ cell was not
different between the groups (Figure 2J and Supple-
mentary Figure 2E, bottom panels). Taken together, our
data argue against a senescent phenotype in CD56"™*
NK cells.

CD56"% NK cells lack features of exhausted cells

Exhausted NK cells have been described in chronic
HIV, CMV and hepatitis B and C virus infection, and in
human and animal cancers. Common characteristics of
exhausted NK cells are impaired cytotoxicity and
cytokine secretion, down-regulation of activating NK
cell receptors and upregulation of inhibitory receptors,
such as TIM-3 and PD-1. The transcription factors
Eomesodermin (Eomes) and T-box transcription factor
(T-bet) are modulated during maturation of NK cells,
with progressive T-bet upregulation and Eomes down-
regulation toward terminal differentiation [45]. Gill et
al. described reduced expression of Eomes and T-bet as
a molecular signature of exhausted NK cells in an
animal model of lymphoma [46]. To test if expanding
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on CD56"™ and CD56™# NK cells from CMV EBV™ (gray circles, n=8/11) compared to CMV'EBV* (black circles, n=9/14) donors. (C, D)
Values are expressed as gMFI for unimodal data, and as % of positive cells for bimodal data. (E) FACS-sorted CD56"™ and CD56™*
NK cells were either left un-stimulated (empty bars), stimulated with K562 cells alone (green bars) or K562 cells and a blocking
NKp44 monoclonal antibody (blue bars) or an isotype control (purple bars), respectively, and expression of CD107a, IFN-y and
target cell lysis was assessed as described. Experiments were performed on total PBMCs in (A-D) and on FACS-sorted CD56%™ and
CD56"™ NK cells in (E). For parametric data mean * SEM, for non-parametric data median + IQR are shown. Data were analyzed by
Student’s t-test and Mann-Whitney test, respectively. * p<0.05, ** p<0.005, *** p<0.005, ns=not significant.
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CD56"¢ NK cells in CMV'EBV" donors have features
of exhausted cells, we first assessed expression of T-bet
and Eomes in CD56™® NK cells within all 4 subgroups
of the cohort and compared them to CD56"™ NK cells.
We found reduced T-bet expression in CMV'EBV"
individuals compared to CMV EBV " donors for both
NK cell subsets (Figure 3A). This was exemplified by
an increase in cells expressing low levels of T-bet (T-
bet'®) and a decrease in cells with high T-bet expression
(T-bet™) (Figure 3B, upper panel). Eomes expression
tended to be lower in CMV EBV" compared to CMV~
EBV™ donors (Figure 3B, lower panel). CMV single
positive (CMV 'EBV") donors showed a similar trend in
T-bet and Eomes modulation as CMV'EBV" donors
(Supplementary Figure S3A), suggesting that changes
in T-bet and Eomes expression are associated with
CMV infection and are further enhanced by EBV co-
infection. Nonetheless, differences in T-bet and Eomes
expression between CD56%™ and CD56™¢ NK cells
were tenuous and cannot account for the reduced
effector functions seen in CD56"¢ NK cells.

Expression of the immune check-point inhibitors PD-1
and TIM-3 have been reported on NK cells in HIV and
HCV infection as well as various tumor models, and
blockade of each receptor alone, or in combination, was
shown to reverse NK cell exhaustion [47-49]. We
therefore tested for the expression of PD-1 and TIM-3
within all 4 subgroups of our cohort. There was no
difference in PD-land TIM-3 expression between
CD56%™ and CD56™% NK cells irrespective of the
serostatus of the donor (Figure 3C). We next performed
phenotypic analyses for the activating NK cell receptors
NKG2C, NKG2D, and the natural cytotoxicity receptors
(NCRs) NKp30, NKp44 and NKp46. The association of
the activating NK cell receptor NKG2C with CMV is
well established. Correspondingly, we found increased
levels of NKG2C on both NK cell subsets with CMV
infection that were further increased by EBV co-
infection (Figure 3D and Supplementary Figure S3B).
There was no significant difference in NKG2C
expression between CD56"™ and CD56™f NK cells
(Figure 3D and Supplementary Figure S3B). In contrast,
expression of the natural cytotoxicity receptor NKp30
was reduced with CMV and EBV co-infection on both
NK cell subsets (Figure 3D and Supplementary Figure
S3B). Further, CD56™* NK cells had higher levels of
NKp44 expression than CD56"™ NK cells irrespective
of the serostatus of the donors (Figure 3D and Sup-
plementary Figure S3B). In circulation, NKp44 is found
on activated NK cells only, and engagement of the
receptor by activating ligands mediates release of cyto-
toxic granules, IFN-y and TNF-a. In contrast to other
NCRs, NKp44 is endowed with an inhibitory function
as well, and it has been postulated that tumors exploit
this axis to escape NK cell attack [50, 51]. Therefore,

we next blocked NKp44 with a monoclonal antibody on
sorted CD56%™ and CD56™% NK cells, or an isotype
control, respectively, and tested expression of CD107a,
and IFN-y production in response to K562 target cells as
well as lysis of K562 target cells. While both CD56™
and CD56™® NK cells readily increased CD107a and
IFN-y expression after target cell stimulation, no effect
on effector functions was seen with NKp44 blockade or
the isotype control (Figure 3E) arguing against a role
for NKp44 in inhibiting NK cell effector functions.

CONCLUSIONS

In a cohort of healthy donors >60 years of age, we show
that CD56™® NK cells expanded in CMV / EBV co-
infection and that their frequency correlated with the
immune risk profile (IRP). CD56"™* NK cells were less
functional when compared to CD56“™ cells of the same
donor in terms of their degranulation, killing capacity
and IFN-y production when stimulated with K562 target
cells or IL-12 / IL-18, a feature that was more pro-
nounced in CD56"* NK cells from CMV EBV" donors.
Phenotypically CD56"® NK cells were mature cells, yet
compared to CD56“™ NK cells they were characterized
by a CD57°"KIR"" phenotype, reduced T-bet expres-
sion and had longer telomeres compared to CD56%™ NK
cells. CD56"® NK cells thus distinguished themselves
from CD56™ cells, the main effector population, as a
distinct cell subset. Neither reduced expression of
activating NK cell receptors, nor increased expression
of PD-1 and TIM-3 accounted for reduced functionality
of CD56™% NK cells. Likewise, no cell senescence
characteristics were detected in this cell subset. In all,
our data suggest that CD56"® NK cells can be viewed
as an additional marker of immune risk in the aging
host, and that EBV has a previously unrecognized role
in immune senescence.

MATERIALS AND METHODS

Blood sample collection and assessment of donor
CMYV and EBY serostatus

The cohort of elderly donors (>60 years (median 64
years, range 62-70 years)) was recruited at the
University Hospital Basel, Blood Transfusion Centre of
both Basel, Switzerland. After written informed consent
was obtained, healthy blood donors aged >60 years who
routinely presented at the center were assessed for their
serological EBV status by multiplex microparticle
technology (Luminex 200 Technology, Luminex,
Austin, TX, USA). Specifically, we probed for IgG
antibodies specific for the EBV antigens VCA, EBNA-1
and EA (EBV-IgG Plus Test, AtheNA Multi-Lyte,
Inverness Medical, Princeton, NJ, USA). We recruited
17 EBV-negative individuals and 38 EBV-positive age-
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and sex-matched controls for a second blood donation
where buffy coats were obtained. At the recall blood
donation, EBV serology was repeated for all EBV-
negative donors with multiplex microparticle tech-
nology. CMV serostatus was recorded from previous
donations for CMV-positive donors or assessed in
serum or plasma at the time of the recall donation (if
previously not tested or CMV-negative) utilizing CMV
lysate-coated microparticles (strain AD169) for the
capture of human anti-CMV IgG (ARCHITECT CMV
IgG Assay, Abbott, Baar, Switzerland). Samples from
this cohort were used for all experiments of this study
except in Figure 1A, left panel, where the young control
cohort was used.

20 young donors (<35 years (median 31 years, range
25-34 years)) who were recruited at the University
College London after approval of the Local Research
Ethics Committee of the Royal Free and the University
College London Medical School, served as a control
cohort. After informed consent was obtained, whole
blood was collected in standard heparinized tubes and
PBMCs were isolated wusing Ficoll Histopaque
(Amersham Biosciences). CMV status was obtained as
described in [52]. Briefly, PBMC were stimulated with
CMV viral lysate overnight and CMV status was
obtained by flowcytometry-based assessment of IFN-y
production in CD4" T cells. Previous data from our
group had shown good concordance between IFN-y
responses and CMV IgG serology as obtained from the
diagnostic laboratory of University College London
[52].

Cell isolation and sorting of NK cells

PBMCs were isolated from buffy coat preparations by
standard Lymphoprep (STEMCELL Biotechnology)
gradient centrifugation and stored in fetal calf serum
(FCS) 10% DMSO in liquid nitrogen. NK cells were
pre-sorted from frozen PBMCs samples by magnetic
bead isolation using the NK Cell Isolation Kit (MACS
Technology, Miltenyi Biotec) or the NK Cell
Enrichment Kit (EasySepTM from STEMCELL
Biotechnology). Enriched NK cells were then stained
with anti-CD3 (UCHT1), anti-CD7 (M-T701), anti-
CD56 (HCDS56), and anti-CD16 (3G8) (all from
BioLegend) and CD56™™ and CD56™¢ NK cells were
sorted on a FACSAria (BD Biosciences) cell sorter.
Sorted cells were cultured in complete medium (RPMI
1640 supplemented with 10% heat-inactivated FCS,
100 U/ml Penicillin, 100 mg/ml Streptomycin, and 2
mM L-glutamine; all from Invitrogen) at 37°C for 2h
prior to the functional assays. Sorted NKs were used in
Figure 1D, 1E, 1F; Figure 2H, 2J; Figure 3E; Figure
S2E. All other experiments were performed on bulk
PBMC:s.

Flow cytometry

The following antibodies (all from BioLegend unless
otherwise indicated) were used: anti-CD3 (OKT3), anti-
CD56 (HCD56), anti-CD16 (3G8), anti-CD7 (M-T701),
anti-CD4 (A161A1), anti-CD8 (RPA-TS), anti-CD27
(LG.3A10), anti-CD28 (CD28.A), anti-CD45RA
(HI100), anti-TIM3 (F38-2F2), anti-PD-1 (EH12.2H7),
anti-CD158el (DX9), anti-CD158b (DX27), anti-
CD158f (URR 1), CD158 (HP-MA4) anti-T-bet (4B10),
anti-Eomes (WD1928, EBioscience), anti-NKG2A
(131411, R&D Systems), anti-NKG2C (134591, R&D
Systems), anti NKG2D (149810, R&D Systems), anti-
NKp30 (Z25, Beckman Coulter Diagnostics), anti-
NKp44 (44.189, eBioscience), anti-NKp46 (9E2), Ki67
(B56, BD Biosciences). A fixable live — dead cell stain
(UV Zombie, BioLegend) was used to exclude dead
cells throughout. Biotin-conjugated antibodies were
detected using Cy5- or Cy3-conjugated Streptavidin
(BioLegend). T-bet, Eomes and Ki-67 staining was
performed with the Foxp3 Staining Set (Miltenyi
Biotec) according to the manufacturer’s instructions.
All samples were acquired on a LSRFortessa flow
cytometer (BD Biosciences). Data were analyzed using
FlowJo® V10.4 software (Tree Star, Ashland, OR).

Phosphoflow cytometry

After cell surface staining as defined above cells were
fixed with PBS 2% paraformaldehyde (PFA) for 10min
at 37°C and permeabilized with ice-cold Perm Buffer III
(BD Biosciences). Cells were either stored in Perm
Buffer III at -20°C or stained immediately with the
following antibodies for 30 min at room temperature:
anti-yH2A.X-APC (20E3, BioLegend), anti-p-p38
MAPK (pT180/pY182)-PE (36/p38, BD Biosciences).
Samples were acquired immediately after the staining
on a LSRFortessa flow cytometer (BD Biosciences).
Data were analyzed using FlowJo® V10.4 software
(Tree Star, Ashland, OR).

Multi-color flow-FISH analysis of telomere length

Relative telomere length of NK and T cell subsets was
assessed as previously described [53]. Briefly, PBMCs
were first stained with a biotinylated anti-CD28
(CD28.A) antibody, followed by Streptavidin-
conjugated-Cy3, a fixable live — dead cell stain (UV
Zombie, BiolLegend) and anti-CD56 (HCDS56), anti-
CD7 (M-T701), anti-CD3 (OKT3), anti-CD4
(A161A1), anti-CD8 (RPA-TS), anti-CD16 (3G8), anti-
CD45RA (HI100), anti-CD27 (LG.3A10). Samples
were then washed in PBS, fixed with 1 mM BS3
(Thermo Scientific UK) and quenched with 50 mM
Tris—HCI in PBS (pH 7 2, 20 min, room temperature).
For the hybridization step, cells were resuspended in
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70% deionized formamide, 2.85 mM Tris—HCI pH 7.2,
1.4% BSA and 0.2 M NaCl and 0.75 pg/ml of PNA
TelC-Cy5 probe (PNA Bio, US) was added. Samples
were then heated for 10 min at 82°C before being
rapidly cooled down on ice. After 1 hour of incubation
at room temperature, samples were washed twice in
70% deionized formamide, 14.25 mM Tris—HCI pH 7.2,
0.14% BSA, 0.2 M NaCl, 0.14% Tween-20 in 2%
BSA/PBS twice before acquisition on a LSRFortessa
cytometer (BD Biosciences). Quantum Cy5 molecules
of Equivalent Soluble Fluorochrome (MESF) beads
(Bangs Laboratories, USA) were acquired alongside
samples in each experiment to ensure standardization of
FACS machine set up. Data were analyzed using
FlowJo® V10.4 software (Tree Star, Ashland, OR).

CD107a and IFN-y assay in sorted NK cells

Flow-sorted CD56"™ and CD56™¢ NK cells were
cultured in complete medium at 37°C for 2 hours prior
to stimulation. 100°000 NK cells / well were seeded in
96-well U-bottom plates and activated either with 1L-12
(10 ng / pl) and IL-18 (50 ng / pl) or with K562 target
cells at an effector-to-target ratio of 5:1 in complete
medium. Brefeldin A, Monensin and an anti-CD107a
antibody (BD Biosciences) were added after 30 minutes
of culture. NK cells were then harvested after 6 hours of
activation / co-culture and fixed in Fixation / Per-
meabilization solution (BD Bioscience) for 15 minutes
at room temperature. For the detection of intracellular
IFN-y, samples were stained with an anti-IFN-y
antibody (B27, Immunotools) in Perm/Wash buffer (BD
Biosciences) for 30 min at room tempe-rature. All
samples were acquired immediately after the staining on
a LSRFortessa flow cytometer (BD Bio-sciences). Data
were analyzed using FlowJo® V10.4 software (Tree
Star, Ashland, OR).

Cytotoxicity assay

Flow-sorted CD56“™ and CD56™ NK cells were
cultured in complete medium at 37°C for 2 hours prior
to stimulation. 100’000 NK cells were seeded in 96-
well U-bottom plates and stimulated with K562 target
cells labeled with Cell Proliferation Dye eFluor670
(ThermoFisher) at an effector-to-target ratio of 5:1 in
complete medium. To control for spontaneous cell
death, labeled target cells were plated in the absence of
effector cells. After 4 hours of incubation, cells were
stained with Zombie Green viability dye (BioLegend)
and analyzed by FACS. % specific lysis was calculated
as (% dead target cells in experimental condition - %
dead target cells in control) / (100% - % dead target
cells in control) x 100.

Telomere fluorescence in situ hybridization

Flow-sorted CD56™™ and CD56™¢ NK cells were
cytocentrifuged onto poly-L-lysine coated glass slides
(Cytospin, Thermo Scientific). Staining for telomere-
associated YH2A.X foci (TAF) was then performed as
previously described [42]. Slides were air dried prior to
hybridisation with 40 pM PNA probe targeting the TelC
telomeric repeat (Panagene, TelC Cy3, #14 1224PL-01)
for 2 hours. Sections were then counter stained for
YH2A.X (Ser139, Cell Signaling #9718), followed by
incubation with biotinylated secondary antibody (BA-
1000, Vector) and FITC-streptavidin (A-2011). Slides
were subsequently washed in formamide/SSC buffer
prior to mounting with Vectorshield/DAPI (Vector
Laboratories). Imaging was performed using a Leica
SPE2 confocal microscope (Leica Microsystem).
Analysis was performed using Fiji image analysis soft-
ware (Fiji.sc).

Statistics

GraphPad Prism software was used to perform all
statistical analyses. For parametric data Student’s t-test
or repeated measures ANOVA test with Greenhouse-
Geisser correction were used. For non-parametric data
Wilcoxon matched-pairs signed rank test or Friedman
test were used. P values <0.05 were considered
significant.
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Figure S1. Experimental gating strategy for NK and T cell subsets and frequencies of NK cell subsets within
cohort subgroups. (A) For all FACS experiments performed on total PBMCs, the following gating strategy was applied: (1)
Lymphocytes were identified by sideward (SSC) and forward scatter (FSC) parameters. (2) Doublet discrimination gating was
performed by plotting FSC-area (FSC-A) versus FSC-height (FSC-H) and excluding cells with disproportionate cell size as
indicated. (3) Dead cells were excluded by staining with a fixable viability dye. Only living cells were used for further
analysis. For analysis of NK cells, we first excluded T cells by gating on CD3™ lymphocytes only (4), followed by exclusion of
CD7 cells (5). These cells were then used to define CD56°™™, CD56%™ and CD56™# NK cells, as indicated in (6) T cells were
identified by gating on CD3", CD56 cells (4) followed by CD4 and CD8 gating (7). CD4* and CD8" T cells were further divided
into naive (N), central memory (CM), effector memory (EM) and terminally-differentiated effector memory (EMRA) subsets,
based on their expression of CD27 and CD45RA (8 and 10). Double-negative (DN) CD4* and CD8" T cells were determined by
CD27 and CD28 gating (9 and 11). (B) Frequencies of CD56" ™™, CD56"™ and CD56™# NK cells — as determined by FACS
analysis in total PBMCs— are shown in a cohort of HDs >60 years of age stratified as CMV EBV™ (n=11/11), CMV EBV"
(n=21/24), CMV'EBV™ (n=6/6), and CMV'EBV" (n=12/14). * p<0.05, ** p<0.005, *** p<0.005, **** p<0.0005.
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Figure S2. Impact of individual CMV and EBV infection on the correlation of CD56"* NK cells with the IRP, the
differentiation stage and cell senescence characteristics. (A) Frequencies of CD56"°® NK cells in relation to CD8" EMRA T
cells (left panel), CD27 CD28 T cells (middle panel) and the CD4 / CD8 T cell ratio (right panel) in CMV EBV ™ (gray dots, n=11/11), CMV"~
EBV' (green dots, n=13/24), CMV'EBV" (blue dots, n=6/6) and CMV'EBV" (red dots, n=13/14) donors as assessed by FACS analysis in total
PBMCs. No significant correlation was found for any subgroup as analyzed by linear regression analysis. (B) The differentiation stage of
CD56"™" CD56"™ and CD56" NK cells in CMV EBV™ (gray bars, n=11/11), CMV EBV" (green bars, n=13/24), CMV*EBV" (blue bars, n=6/6)
and CMV'EBV" (red bars, n=13/14) donors was assessed by FACS staining for cell surface expression of NKG2A, CD62L, KIR and CD57 in
total PBMCs. No significant differences in NKG2A, CD62L, KIR and CD57 expression were found in single positive compared to CMV EBV"
donors. (C) Proliferation was assessed directly ex vivo by FACS analysis for Ki-67 expression in CMV EBV™ (gray bars, n=10/11), CMV EBV"
(green bars, n=9/24), CMV'EBV" (blue bars, n=6/6) and CMV'EBV" (red bars, n=11/14) donors. (D) Telomere length in CD8" T cell subsets
as assessed by FACS-based FISH-technique is shown for CMV EBV (gray bars, n=10/11) and CMV'EBV" (black bars, n=10/14) donors. Data
are shown as geometric mean of fluorescence intensity (gMFI) of the telomere probe (TelC), normalized to the gMFI TelC value of the
total lymphocyte population for each donor. (E) Telomere fluorescence in situ hybridization (TAF) was analyzed in all 4 subgroups of the
cohort (n=3 each). Top panels show the frequency of TAF+ cells, bottom panels the number of TAF / TAF+ cell in CD56“™ and CD56™¢ NK
cells. (A-D) Experiments were performed on total PBMCs. (E) Experiments were performed on FACS-sorted CD56%™ and CD56" NK cells.
For parametric data mean * SEM, for non-parametric data median  IQR are shown throughout. Data were analyzed by Student’s t-test
and Mann-Whitney test, respectively. * p<0.05, ** p<0.005, *** p<0.005, **** p<0.0005, ns=not significant.
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Figure S3. Expression of T-bet and Eomes and activating NK cell receptors in relation to CMV and EBV infection. (A) The
frequency of T-bet'°, T-bet™ and Eomes® cells, as well as the T-bet / Eomes ratio (Tbethi / Eomes®) are shown in CMV EBV~ (gray bars,
n=11/12), CMV EBV" (green bars, n=9/24), CMV'EBV™ (blue bars, n=6/6) and CMV*EBV" (red bars, n=11/14) donors within CD56™
and CD56"°€ NK cell subsets. To test for an effect of CMV and EBV infection we compared T-bet and Eomes expression of each cohort
subgroup and within each cell subset. (B) Cell surface expression of activating NK cell receptors NKG2C and NKG2D and natural
cytotoxicity receptors NKp30, NKp44 and NKp46 in CMV EBV ™ (gray bars, n=11/11), CMV EBV" (green bars, n=9/24), CMV'EBV" (blue
bars, n=6/6) and CMV'EBV" (red bars, n=11/14) donors within CD56°™ and CD56"%€ NK cell subsets. To test for an effect of CMV and
EBV infection we compared expression of activating NK cell receptors and NCRs within each cohort subgroup and for each cell subset.
All experiments were performed on total PBMCs. For parametric data mean + SEM, for non-parametric data median + IQR are shown.
Data were analyzed by Student’s t-test and Mann-Whitney test, respectively. * p<0.05, ** p<0.005, *** p<0.005, ns=not significant.
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