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ABSTRACT

Background: Chromosome 1p/19q codeletion is increasingly being recognized as the crucial genetic marker for
glioma patients and have been included in WHO classification of glioma in 2016. Fluorescent in situ
hybridization, a widely used method in detecting 1p/19q status, has some methodological limitations which
might influence the clinical management for doctors. Here, we attempted to explore an RNA sequencing
computational method to detect 1p/19q status.

Methods: We included 692 samples with 1p/19q status information from TCGA cohort as training set and 222
samples with 1p/19q status information from REMBRANDT cohort as validation set. We reviewed and
compared five tools: TSPairs, GSVA, PAM, Caret, smoother, with respect to their accuracy, sensitivity and
specificity.

Results: In TCGA cohort, the GSVA method showed the highest accuracy (98.4%) in predicting 1p/19q status
(sensitivity=95.5%, specificity=99.6%) and smoother method showed the second-highest accuracy
(accuracy=97.8%, sensitivity=96.4%, specificity=98.3%). While in REMBRANDT cohort, smoother method
exhibited the highest accuracy (98.6%) (sensitivity= 96.7%, specificity=98.9%) in 1p/19q status prediction.
Conclusions: Our independent assessment of five tools revealed that smoother method was selected as the
most stable and accurate method in predicting 1p/19q status. This method could be regarded as a potential
alternative method for clinical practice in future.

INTRODUCTION

in oligoastrocytoma and oligodendroglioma are 50%~
70% and 70% ~80%, respectively [6].
Glioma is the most common and deadliest malignant

primary brain tumor in adults [1]. Oligodendroglial
tumors, including oligodendrogliomas and oligoastro-
cytomas, are the second common type of glioma [2-5].
Chromosome 1p/19q codeletion, complete deletion of
both the short arm of chromosome 1 and the long arm
of chromosome 19, is the specific hallmark of oligo-
dendrogliomas. The frequency of this genetic aberration

Nowadays, 1p/19q codeletion is increasingly recognized
as a crucial genetic aberration in glioma patients and was
first time included in the WHO classification of brain
tumor in 2016 [7]. This pathognomonic biomarker is
thought to commonly occur in the early phase of glioma
development [8]. In addition, numerous studies explored
the clinical significance of 1p/19q codeletion and found
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that it is a strong independent favorable prognosticator of
overall survival (OS) and progression free survival (PFS)
for glioma patients [8-11], and patients with this
aberration would benefit from radiation therapy plus
chemotherapy in comparison with radiation therapy alone
after surgery [10]. Hence, prediction of 1p/19q status
accurate become particularly critical for the precision
medical in glioma patients.

Fluorescent in situ hybridization (FISH), targeting
1p36/1p21 and 19q13/19p13 regions via fluorophore-
labelled DNA probes [12], was used as standard protocol
to detect 1p/19q status in most hospitals [13]. However,
FISH has some methodological limitations neuro-
pathologists need to be aware of in clinical practice.
Firstly, probes designed for chromosome 1p and 19q
span a long region that may not identify small interstitial
and terminal deletions. Secondly, FISH may not detect
hemizygous deletions if there is loss of one allele and
reduplication of the other allele [14]. Thirdly, FISH
analysis is time-consuming and subjective which requires
experienced pathologist to ensure result accuracy [15].
The incorrect 1p/19q status detecting by FISH may cause
improper treatment strategy for patients [16]. Moreover,
using FISH to detect 1p/19q status exerts a financial
burden on glioma patients and fails to get more genetic
alterations information.

Nowadays, next generation RNA sequencing (RNA-
seq) technologies greatly promote the exploration of
the complex and dynamic nature of cancer [17] and
could provide insights to previously undetected
changes occurring in disease [18]. RNA sequencing
data has been successfully applied in identifying single
nucleotide variants mutation [19], alternative splicing
[20], fusion genes [21] and RNA editing [22].
Comprehensive understanding of the gene expression
profile variation caused by copy number variation
provide us possibility to detect 1p/19q status.

However, the comprehensive study that integrated RNA-
seq data analysis methods to predict 1p/19q status has not
been conducted yet. Therefore, in this study, we reviewed
and assessed five methods which were designed to detect
gene expression variations with RNA-seq data, and
attempted to find out a precise, objective and cost-
effective method to replace FISH for identifying 1p/19q
status in clinical practice in the future.

RESULTS

Chromosome 1p/19q co-deleted patients exhibited a
distinct expression profile

In order to assess the feasibility of predicting 1p/19q
status with RNA expression data, we used whole

genome expression profiling (20501 genes) from TCGA
dataset to explore the relationship between 1p/19q
status and gene expression profiles. As shown in
Supplementary Figure 1A, hierarchical cluster method
separated the dendrogram into two branches. The first
branch was consisted by five subgroups while the
second branch contained only one subgroup. The
majority of 1p/19q co-deleted patients were in group 1,
3 and 5, while the 1p/19q intact patients were mainly in
the rest of groups (group 2, 4, 6). The result indicated
that there were some obvious differences in expression
profiles between 1p/19q intact patients and 1p/19q co-
deleted patients. However, the classification process
was interfered by noisy genes and it was hard for us to
predict 1p/19q status clearly with raw RNA sequencing
data. Then we tried to change the threshold of gene
expression to improve the classification accuracy in
detecting 1p/19q status. Previously studies used MAD
value to evaluate highly variable expression genes with
RNA sequencing data [2, 23]. Here, we used highly
variable genes (MAD >2, 886 genes) for hierarchical
clustering, and the distance between 1p/19q co-deleted
samples (Supplementary Figure 1B) was closer than
clustering with whole gene expression profiles
(Supplementary Figure 1A). And the hierarchical
assignment in clustering chromosome 1p and 19q genes
(n=1775) expression profile exhibited a similar result
(Supplementary Figure 1C). Those results indicated that
the significant differences of RNA sequencing data
between 1p/19q co-deleted and intact patients could
provide a feasibility to predict 1p/19q status by RNA
expression data.

Overview of five methods in predicting 1p/19q status

Based on this finding, we selected five methods which
have been used to process RNA sequencing data to
identify 1p/19q status.

TSPairs method which compared the two genes
expression ratio was used in breast cancer and lung
adenocarcinoma for classification and prognosis [24,
25]. In the training dataset, with the zspcalc function,
HDACI1(Histone deacetylase 1) and DRG2
(Developmentally regulated GTP binding protein 2)
gene pair which had the highest TSP score (0.962)
was selected as the most consistent switch (Figure
1A). In 1p/19q co-deleted group, 89.6% (172/192)
1p/19q co-deleted patients had a lower expression of
HDACI1 than DRG2, while 100% (500/500) 1p/19q
intact patients had a lower expression of DRG2 than
HDACI (Figure 1B, p=0.0063, chi-square test). And
the Receiver Operating Characteristic (ROC) curve
showed that this model achieved an area under the
curve (AUC) of 0.9878 (Figure 1D). With this
prediction model, in the validation dataset, we got a
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similar result (Figure 1C, p<0.0001, chi-square test)
and the AUC was 0.9165 (Figure 1E). Previously
studies showed that HDACI, locating at chromosome
1p, might serve as a good diagnostic and prognostic
marker for lung cancer [26]. Overexpressing DRG2,
locating at chromosome 17p, could delay cell-cycle
arrest and apoptosis [27].

GSVA method was designed for integrating genes that
shared common biological functions or chromosomal
locations and was widely used in cancer research [24,
28, 29]. Gene set enrichment score of genes on 1p and
genes on 19q were calculated with gsva function,
respectively. Hierarchical clustering was performed
based on the enrichment scores in the training dataset.
Two branches were identified: 95.5% (169/177) 1p/19q
co-deleted samples were clustered into the first branch
while 99.6% (513/515) 1p/19q intact samples were

L]
o |
g
o
@
o B Intact
S o o
3 B Codeletion
15
S ode
T
™~ Score=0.962 °
L]
T T T T T
7 8 9 10 11
DRG2 expression
TCGA
D &4
o |
8
£ 8+
z
2 AUC: 98.8%
2
8%
8 -
o 4
T T T T T T
100 80 60 40 20 0
Specificity (%)

Expr(HDAC1)-Expr(DRG2)

clustered into the second branch (Figure 2A). The ROC
curves of the enrichment score of 1p and 19q showed an
AUC of 0.97 (Figure 2B) and 0.845 (Figure 2C),
respectively. In the validation dataset, two branches
were identified: 81.6% (31/38) 1p/19q co-deleted
samples were clustered into the first branch, while
98.9% (182/184) 1p/19q intact samples were clustered
into the second branch (Figure 2D). In the validation
dataset, ROC curves of the enrichment score of 1p and
19q showed an AUC of 0.595 (Figure 2E) and 0.567
(Figure 2F), respectively.

PAM method exhibited powerful predictive capabilities
in rectal cancer by selecting a group of genes [30]. The
centroid shrinkage value of 10.984 which containing a
minimum of 53 genes and 7 misclassification errors was
selected in the training dataset (Figure 3A). Then the
RNA expression profile of the 53 genes in the two
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Figure 1. Predicting 1p/19q status by TSPair algorithm. (A) HDAC1 and DRG2 pair was the top scoring pair in predicting 1p/19q
(score=0.962). The expression values of training set were normalized as Expr=log2(RSEM+1). (B) the values (HDAC1 - DRG2 expression values)
were significantly different (p=0.0063) between 1p/19q co-deleted group and intact group in TCGA cohort. (C) the values (HDAC1 - DRG2
expression values) were significantly different (p<0.0001) between 1p/19q co-deleted group and intact group in Rembrandt cohort. (D and E)
ROC curve for 1p/19q status prediction in TCGA cohort and Rembrandt cohort, AUC=0.988 and 0.916, respectively.
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datasets were clustered. In the training dataset, two
branches were identified: the first branch contained
91.0% (172/189) 1p/19q co-deleted samples, while the
second branch contained 100% (503/503) 1p/19q intact
patients (Figure 3A). In the validation cohort, two
branches were identified as expected. The first branch
contained 45.5% (25/55) 1p/19q co-deleted patients.
Meanwhile, 98.8% (164/167) 1p/19q intact patients
were grouped into the second branch (Figure 3B).

Caret method, a powerful machine learning
algorithm, was designed for predictive modeling in
practice with gene expression data and has been
applied in predicting clinical outcome of patients
with Alzheimer's disease [31]. In each cross
validation, 20% samples in the training dataset were
selected as TCGA-Train data to build predictive
model and the rest of samples in the training dataset
were grouped into TCGA-Test data to estimate the
efficiency of the model. In the TCGA-Train dataset,
the partial least squares discriminant analysis
(PLSDA) method [32] was performed to build
regression models and 10-fold cross-validation was
used to examine the predictive efficiency [33]. As
shown in ROC curve, the AUC was more than 0.999
in every repeated cross-validation cohort (Figure 4A)
and the maximum value was 1.0 (ncomp=1). Then we
predicted 1p/19q status with the best model. In the
TCGA-Test dataset, 93.48% (43/46) 1p/19q co-
deleted patients and 100% (126/126)1p/19q intact
patients were successfully predicted. And in the
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validation dataset, 85.7% (30/35) 1p/19q co-deleted
patients and 98.4% (184/187) 1p/19q intact patients
were successfully predicted. The AUC values for
TCGA-Test dataset and validation dataset were 0.985
(Figure 4B) and 0.966 (Figure 4C), respectively.

Smoother method, which could modify individual
noise, have been performed in the analysis of esopha-
geal squamous cell carcinoma [34] and breast cancer
[35]. Firstly, genes expression data in 1p and 19q from
start to end were smoothed by a 100 genes window.
Then the combined 1p and 19q smoothed RNA
expression profile were clustered. In the training
dataset, two branches were clustered: 96.4% (163/169)
1p/19q co-deleted patients were clustered into the first
branch, while 98.3% (514/523) 1p/19q intact patients
were clustered into the second branch (Figure 5A). In
the validation dataset, 96.9% (31/32) 1p/19q co-
deleted patients were in the first branch, while 98.9%
(188/190) 1p/19q intact patients were in the second
branch (Figure 5B).

Comparing the prediction accuracy of five methods

Finally, we summarized the similarities and differences
between five methods and evaluated the most appropriate
method to predict 1p/19q status with ROC curves. The
1p/19q status results that identified by single nucleotide
polymorphism (SNP) array were used as golden standard
in our study. As shown in the Figure 6A a total of 183
patients were classified into 1p/19q co-deleted group
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Figure 2. Predicting 1p/19q status by GSVA algorithm. (A and D) the hierarchical clustering of TCGA and Rembrandt cohorts based on
the enrichment scores of 1p and 19q genes, respectively. (B, E) ROC for 1p/19q status prediction by 1p genes enrichment scores, AUC (TCGA
cohort) = 0.970, AUC (Rembrandt cohort) = 0.595. (C, F) ROC for 1p/19q status prediction by 19q genes enrichment scores, AUC (TCGA

cohort) = 0.845. AUC (Rembrandt cohort) = 0.567.
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by five RNA processing methods and 181(88.3%) of
them were identified by SNP array. While 99.7%
(649/651) 1p/19q intact patients were identified by
SNP array (Figure 6B).

Meanwhile, when integrated samples in TCGA and
Rembrandt dataset, the smoother (96.5%) and PAM
(82.3%) exhibited the highest sensitivity and lowest
level of sensitivity among five methods, respectively
(Figure 6C). And TSPair (97.9%) showed the lowest
level of specificity. The sensitivity and specificity of
five methods in predicting 1p/19q status in TCGA

A
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dataset exhibited similar trends (Figure 6D). Except
TSPair (89.6%), the sensitivities of other methods
were all more than 90% and smoother (96.5%) was
still the highest one. The TSPair (100%) and PAM
(100%) methods had the highest specificity while
smoother method (98.3%) had the lowest specificity.
However, in Rembrandt dataset, the sensitivities of
GSVA (81.6%), PAM (45.5%), Caret (85.7%) and
TSPair (64.5%) were all decreased obviously. Only
smoother (sensitivity = 96.7%, specificity = 98.8%)
method remained a higher accuracy in predicting the
1p/19q status.
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Figure 3. Predicting 1p/19q status by PAM algorithm. The hierarchical clustering samples in TCGA and Rembrandt cohorts using 53

signature genes, respectively.
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Figure 4. Predicting 1p/19q status by Caret algorithm. (A) The ROC values of 15 PLS models were compared to select the optimal
prediction model (hcomp.1) using TCGA-Test data. (B and C) ROC curves for 1p/19q status prediction by applying the ncomp.1 model, AUC

(TCGA-Test data) = 0.985, AUC (Rembrandt) = 0.966.
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After synthetical comparing the differences of sensitivity,
specificity and accuracy among five methods in two
individual datasets, we found that smoother method
clearly outperformed the other methods in predicting
1p/19q status with little room for improvement.

DISCUSSION

With the rapid expansion of multi-platform integrated
analysis of glioma, molecular markers have greatly
facilitated the understanding of the genetic progress
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Figure 5. Predicting 1p/19q status by smoother algorithm. The hierarchical clustering of TCGA and Rembrandt cohorts by using

smoothed gene expression on 1p and19q respectively.
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Figure 6. Comparing the sensitivity, specificity and accuracy of five algorithms. (A) Overlap among of the 1p/19q co-deleted
samples found by five methods. (B) Overlap among of the 1p/19q intact samples found by five methods. (C) Comparing the sensitivity and
specificity of five algorithms in predicting 1p/19q status in 914 samples. (D) Comparing the sensitivity and specificity of five algorithms in
predicting 1p/19q codeletion in TCGA dataset. (E) Comparing the sensitivity and specificity of five algorithms in predicting 1p/19q codeletion

in Rembrandt dataset.
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underlying the progress of cancer and provided key
insights on precision medicine. The status of chromosome
1p/19q is one of the most crucial molecular markers in
glioma, which has shown well-established association with
the diagnosis and prognosis of patients [36].

DNA sequencing, processing the order of nucleotides in
DNA, is considered as the most accurate method in
detecting large regions chromosome variation [37].
However, the cost to generate a high-quality DNA
sequencing was almost $2,500 and the medical insurance
does not cover the cost for genetic tests [38]. DNA
sequencing as routine tool to detect 1p/19q status was
limited due to the high cost. There is some uncertainly
about detecting 1p/19q status with FISH method due to the
limitations. Thus, quality assurance remains an issue,
finding a more cost-effective and accurate way to obtain
1p/19q status information would greatly promote the
widespread of genetic-guided precision medicine of
glioma. Next-generation sequencing technologies have
revolutionarily advanced genome-related research with the
advantages of high-throughput, high-sensitivity, and low-
cost [39]. RNA-seq is now being used widely for detecting
molecular aberrations in cancer research [40]. It is well
known that the copy number variations (CNVs) typically
result in a corresponding gene expression changes,
especially large chromosome amplification or deletion
[41]. CNV-related gene expression changes supported us
detecting 1p/19q status with RNA sequencing data.

The main purpose of this study was to explore an
appropriate RNA sequencing computational method to
detect 1p/19q status. In this study, several analysis
pipelines have been applied to analyze gene expression
data for predicting 1p/19q status. TSPairs method,
which identifies an alteration by comparing ratio of two
genes expression, has been used in breast cancer and
lung adenocarcinoma for molecular classification and
predicting prognosis [24, 25]. GSVA method is
designed for interpreting gene expression data. By using
GSVA method, scientists are able to get further insights
into leukemia and lung cancer [42, 43]. PAM method
exhibits powerful predictive capabilities in rectal cancer
by selecting a group of genes [30]. Caret method relates
the practice of predictive modeling and has been applied
in predicting prognosis of Alzheimer's disease [31].
Smoother method is designed for removing the noise
and scatter of RNA sequencing data [44]. Finally,
smoother method was selected as the most stable and
accurate method in TCGA and Rembrandt datasets.

There were some advantages in inferring 1p/19q status
with gene expression data. Firstly, the cost in RNA
sequencing is much less than FISH. Prediction 1p/19q
status with RNA sequencing data could reduce financial
burden for patients. Secondly, identifying 1p/19q status by

gene expression data could eliminate the limitation of
FISH probes of testing only two regions. Thirdly, the RNA
sequencing data could also be applied to call or predict
IDH mutation, ATRX mutation, TERT mutation,
EGFRUVIII deletion, fusion genes and so on. The integrated
analysis of DNA sequencing technology, RNA sequencing
technology and FISH were shown in Supplementary Table
1. The experiment in RNA sequencing used the shortest
time and least amount of money.

However, several limitations should be considered in this
research. Firstly, the prediction models based on five RNA
sequencing data processing methods were established
retrospectively. The prospective longitudinal study was
need to estimate this research in future. Second, the
consistency between FISH and prediction models in
predicting 1p/19q status could not be evaluated due to the
limitation of FISH information of glioma patients in
TCGA database and REMBRANDT database.

In summary, along with the application of next-generation
sequencing in clinical practice, we believed that RNA
sequencing processing method will show great potential as
the standard detection method to detect various genetic and
molecular alterations. For detecting 1p/19q, we would
recommend smoother method using RNA sequencing
data, which was more cost-effective and convenient in
clinical practice.

MATERIALS AND METHODS
Data collection

Training set: RNA-sequencing data of 692 glioma
samples downloaded from The Cancer Genome Atlas
(TCGA, http://cancergenome.nih.gov/), containing 172
1p/19q co-deleted and 520 1p/19q intact patients.
TCGA RNA-seq expression data was log2 transformed
before wusing. Validation set: RNA microarray
expression data of 222 glioma samples from Repository
for Molecular Brain Neoplasia Data (Georgetown Data-
base of Cancer G-DOC https://gdoc.georgetown.edu/
gdoc/), containing 33 1p/19q co-deleted and 189 1p/19q
intact patients. The characteristics of glioma patients
were described in Table 1.

Running predictors

We evaluated the efficacy of five different methods for
identifying 1p/19q status in two datasets. These
methods were described as bellow:

Top scoring pairs (TSPairs) contains functions for
selecting top scoring pairs whose relative rankings can
be used to accurately classify individuals into one of two
classes (20501*20500 =420500270 gene pairs) [45].
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Table 1. Clinicopathological characteristics of the patients.

Variable TCGA dataset Rembrandt dataset
Age >45 333 69
<45 296 103
NA 63 50
Gender Male 364 124
Female 265 56
NA 63 42
Preoperative KPS score >80 320 -
<80 70 -
NA 302 222
Grade I 223 27
11 245 29
v 161 131
NA 63 35
IDH1/2 status Mutation 440 -
Wild type 242 -
NA 10 222
1p/19q status Codeleted 172 33
Intact 520 189
Molecular subtype Astrocytoma (II, III) 170 50
Oligoastrocytoma (11, IIT) 118 6
Oligodendroglioma (11, I1T) 180 35
Glioblastoma 161 131
NA 63 0

Gene Set Variation Analysis (GSVA) is a non-
parametric, unsupervised method for estimating
variation of gene set enrichment through the samples of
an expression data set and bypasses the conventional
approach of explicitly modeling phenotypes within the
enrichment scoring algorithm [28].

Prediction analysis for microarrays (PAM), which can
be defined as a ‘nearest shrunken centroid classifier’ is
a statistical method for class prediction by adding a
‘fudge-factor’ to each statistic's denominator [46].
TCGA and Rembrandt datasets were removed batch
effects before using pam method.

Functions Relating to the Smoothing of Numerical Data
(smoother) could smooth numerical data, blur images
and remove detail and noise. The gaussian window
smoothing function allows users to infer the pattern of
DNA aberration from gene expression [47].

Classification and Regression Training(caret), a
machine learning algorithm, could integrate with the
features in training and the modeled interaction features.
The model was evaluated independently through
stratified (k=10)-folds cross-validation [48].

Hierarchical clustering was performed using complete
agglomeration algorithm and a distance metric equal
correlation coefficient with data processed by PAM,
smoother and GSVA methods. We obtained TSPairs
method from R package “tspair”, GSVA method from R
package “GSVA”, PAM method from R package “pamr”,
smoother method from R package “smoother”, caret
method from R package “caret”, Combat function for
removing batch effects [49] among TCGA and Rembrandt
datasets from R package “sva” and hierarchically clustered
function from R package “pheatmap”. All packages were
based on the statistical software environment R, version
3.3.4 (http://Wwww.r-project.org).
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Supplementary Figure 1. Expression profile revealed a distinct gene expression between Chromosome 1p19q codeleted and
intact patients. (A) Hierarchical clustering based on whole genome expression profiling (20501 genes), there were 92.4% (159/172) 1p/19q
co-deleted patients in group1, 3 and 5 and 85.7% (446/520) 1p/19q intact patients in the rest of groups. (B) Hierarchical clustering based on
highly variable expression genes (MAD >2, 886 genes), there were 96.5% (166/172) 1p/19q co-deleted patients in group2. (C) Hierarchical
clustering based on genes on chromosome 1p and 19q (1775 genes), there were 75% (129/172) 1p/19q co-deleted patients in group3

Supplementary Table 1. Integrated analysis of methods for detecting 1p/19q status.

Methods Cost Time Accuracy

Whole genome sequencing ~$2500 ~Imonth 100%

RNA sequencing ~$200 ~2weeks 97.8%

FISH ~$340 ~2weeks 1p36/1g21 and 19q13/19p13
Deletion Probe Kit
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