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INTRODUCTION 
 
The metabolome represents the functional endpoints of 
a complex network of biological events, including 
genomic, epigenomic, transcriptomic, proteomic, and 
environmental factors [1]. Being the final downstream 
product, the metabolome is the closest to the phenotype 
among the biological systems [2], making it particularly  

 

relevant to investigate. Age is known to be the single 
largest risk factor of most prevalent diseases in 
developed countries [3]. A better understanding of how 
the metabolome changes with age could further reveal 
the mechanisms by which age influences disease risk 
and could facilitate the identification of high-risk 
metabolomic profiles that are suggestive of the early 
stages of particular diseases.  
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ABSTRACT 
 
Understanding how metabolites are longitudinally influenced by age and sex could facilitate the identification 
of metabolomic profiles and trajectories that indicate disease risk. We investigated the metabolomics of age 
and sex using longitudinal plasma samples from the Wisconsin Registry for Alzheimer’s Prevention (WRAP), a 
cohort of participants who were dementia free at enrollment. Metabolomic profiles were quantified for 2,344 
fasting plasma samples among 1,212 participants, each with up to three study visits. Of 1,097 metabolites 
tested, 623 (56.8%) were associated with age and 695 (63.4%) with sex after correcting for multiple testing. 
Approximately twice as many metabolites were associated with age in stratified analyses of women versus 
men, and 68 metabolite trajectories significantly differed by sex, most notably including sphingolipids, which 
tended to increase in women and decrease in men with age. Using genome-wide genotyping, we also report 
the heritabilities of metabolites investigated, which ranged dramatically (0.2–99.2%); however, the median 
heritability of 36.2% suggests that many metabolites are highly influenced by a complex combination of 
genomic and environmental influences. These findings offer a more profound description of the aging process 
and may inform many new hypotheses regarding the role metabolites play in healthy and accelerated aging. 
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Previous studies have provided important evidence that 
age and sex influence the metabolome [4-10]. While 
informative, these studies are limited by their cross-
sectional designs and the relatively small number of 
metabolites assessed by most. According to the Human 
Metabolite Database (HMDB) v4.0, there are an 
estimated 25,424 blood metabolites [11]. However, due 
to current technical limitations in identifying and 
quantifying metabolites, most recent studies have only 
been able to confidently capture ~100-600 of these. A 
larger panel of metabolites will provide a more com-
prehensive understanding of the metabolomics of age 
and sex. Further, in order to assess the metabolomics of 
aging, it is crucial to use a longitudinal study design that 
can capture age-related phenomena, particularly due to 
the high variability of metabolites [12]. Longitudinal 
assessments also facilitate the examination of meta-
bolite trajectories, which can address important 
biological questions.  
 
Using longitudinal plasma samples from the Wisconsin 
Registry for Alzheimer’s Prevention (WRAP), we 
investigated how a large panel of metabolites is 
influenced by age and sex, and whether metabolite 
trajectories vary by sex. To facilitate the interpretation 
of our results and determine whether identified meta-
bolites are more strongly influenced by genetic or 
environmental factors, we used genome-wide geno-
typing data to assess the heritability (h2) of metabolites.  
 
RESULTS 
 
Participants 
 
A total of 1,212 WRAP participants with 2,344 
longitudinal fasting plasma samples were available for  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

analyses. At the baseline visit for the current study, 
participants were 61 years old on average, 69% were 
female, and 94% were Caucasian (Table 1). Most 
individuals were unrelated (n=825), but 147 families 
had >1 individual (family sizes ranged from 1-9 
members, with an average of 1.2 individuals per 
family). Analyses stratified by sex included 838 women 
and 374 men, who had similar characteristics with the 
exception of more men taking cholesterol lowering 
medications than women. Participants each had 1,097 
plasma metabolites available for analyses, 347 (31.6%) 
of which were of unknown chemical structure. 
Correlations between metabolites were assessed using 
Pearson r and the first available sample for each 
individual (i.e., using a cross-sectional approach). 
Metabolites were largely uncorrelated with each other 
(Figure S1). Properties of each metabolite, such as 
biochemical name, super pathway, and sub pathway, are 
described in Table S1. 
 
Metabolome-wide association study 
 
Associations were tested using linear mixed effects 
regression models implemented in the SAS MIXED 
procedure. Primary predictors included age and sex, 
which were assessed within the same models. To 
examine effect modification of the metabolomics 
trajectories by sex, analyses were repeated stratifying 
the sample by sex. To assess the statistical significance 
of the effect modification, separate models were run 
that included an interaction term for age-by-sex using 
the full sample (men and women combined). All models 
included random intercepts for within-subject cor-
relations (due to repeated measures) and within-family 
correlations (due to siblings). Models included fixed 
effects for age, sex, self-reported race, body-mass in- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. WRAP Participant Characteristics at Baseline for the Current Study. Mean (SD) or N (%). 

Characteristic 
Overall 

(N=1,212, 
obs=2,344) 

Male 
(n=374, obs=731) 

Female 
(n=838, obs=1,613) 

Age (years) 60.8 (6.7) 61.2 (6.9) 60.7 (6.6) 

Caucasian 1,135 (93.7) 351 (93.9) 784 (93.6) 

Cholesterol lowering 
medication 387 (31.9) 146 (39.0)* 241 (28.8)* 

Sample storage (days) 1,510.5 (415.7) 1,511.2 (424.3) 1,510.2 (412.0) 

obs=number of longitudinal observations 
*Differs between men and women with P=3.9e-4 
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dex, sample storage time, and cholesterol lowering 
medication use, which was the most commonly used 
class of medications in our sample. Since our cohort has 
increased risk for Alzheimer’s disease, we performed 
sensitivity analyses including additional fixed effects 
for parental history of Alzheimer’s and participant 
cognitive impairment status, and results were largely 
unchanged. Each set of analyses was corrected for 
multiple testing using the Benjamini-Hochberg [13] 
adjustment with an alpha of 0.05. 
 
Aging metabolomics 
All metabolome-wide association results are 
summarized in Table 2 and detailed in Table S1. After 
adjusting for multiple testing, the levels of 623 meta-
bolites (56.8% of metabolites assessed) significantly 
changed with age, 523 of which increased with age 
(Figure S2A and Figure 1). Of the total 34 steroid lipids  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tested, 29 significantly decreased with age (including 
19/22 androgenic, 5/5 progestin, 4/4 pregnenolone, and 
1/3 corticosteroids), while two, 11-ketoetiocholanolone 
glucuronide, an androgenic steroid, and cortisol, 
significantly increased with age. Higher levels of most 
fatty acid lipids were associated with increased age 
(including 13/14 long chain fatty acids, 28/34 acyl-
carnitines, and 42/78 other fatty acids). Higher levels of 
sphingolipids tended to be associated with increased age 
(24/25 associated sphingolipids).  
 
The majority of amino acids associated with age 
increased with age (87.6% or 92/105 associated amino 
acids), including glutamine and tyrosine of the 20 
common amino acids that are encoded directly by the 
genetic code. Five other common amino acids decreased 
with age (histidine, threonine, tryptophan, leucine, and 
serine), while the 13 others were not associated with age.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Adjusted effects of a 10-year increase in age on the top 100 metabolites most strongly influenced by age. 
Positive values indicate the amount a metabolite increased over 10 years, whereas negative values indicate the amount a metabolite 
decreased over 10 years. Black vertical lines indicate standard errors. 
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Table 2. Metabolome-wide association results summary. Number of metabolites associated with each trait by pathways 
and recurrent sub pathways after correcting for multiple comparisons. 
 Age Sex Age in Women Age in Men Age*Sex (female/male) 

Metabolite Super/Sub Pathways 

(#Metabolites) 

Tot +β –β Tot +β –β Tot +β –β Tot +β –β Tot +/+ –/– +/– –/+ 

Amino Acids (175) 105 92 13 112 27 85 98 90 8 42 36 6 7 2 0 4 1 

    Common Amino Acids (20) 7 2 5 15 2 13 6 3 3 0 0 0 0 0 0 0 0 

Carbohydrates (23) 16 16 0 13 6 7 17 17 0 5 5 0 1 1 0 0 0 

Cofactors and Vitamins (28) 20 18 2 15 7 8 20 17 2 9 7 2 2 1 0 1 0 

Energy (8) 6 6 0 5 3 2 4 4 0 2 2 0 0 0 0 0 0 

Lipids (353) 194 152 42 252 177 75 187 155 32 72 38 34 46 12 12 20 2 

    Fatty Acids (126) 88 83 4 90 60 30 88 87 1 24 22 2 6 4 0 1 1 

        Acylcarnitines (34) 28 28 0 26 9 17 31 31 0 7 7 0 4 3 0 1 0 

    Phospholipids (65) 20 12 8 52 48 4 15 13 2 15 6 9 8 0 3 5 0 

        Lysophospholipids (24) 2 1 1 17 15 2 2 2 0 1 0 1 4 0 0 4 0 

        Phosphatidylcholines (19) 8 5 3 17 16 1 7 5 2 10 4 6 4 0 3 1 0 

        Phosphatidylethanolamine (9) 4 3 1 7 7 0 3 3 0 1 0 1 0 0 0 0 0 

    Sphingolipids (40) 25 24 1 35 35 0 26 25 1 4 0 4 15 4 2 9 0 

    Steroids (34) 31 2 29 29 2 27 30 2 28 19 1 18 8 0 7 0 1 

        Androgenic (22) 20 1 19 20 0 20 20 1 19 15 0 15 4 0 2 0 1 

        Progestin (5) 5 0 5 2 0 2 5 0 5 0 0 0 5 0 5 0 0 

        Pregnenolone (4) 4 0 4 4 0 4 4 0 4 3 0 3 0 0 0 0 0 

        Corticosteroids (3) 2 1 1 3 2 1 1 1 0 1 1 0 0 0 0 0 0 

Nucleotides (35) 20 19 1 24 1 23 17 17 0 11 10 1 1 1 0 0 0 

Partially Characterized Molecules (5) 4 4 0 2 0 2 5 5 0 0 0 0 0 0 0 0 0 

Peptides (22) 18 18 0 16 3 13 17 17 0 4 4 0 0 0 0 0 0 

Xenobiotics (101) 45 40 5 52 18 34 35 31 4 16 15 1 2 0 0 2 0 

Unknown (347) 196 158 37 204 67 137 165 138 27 94 72 22 9 3 1 2 3 

Total (1,097) 623 523 100 695 309 386 565 492 73 255 189 66 68 20 13 29 6 

Shaded rows represent super pathways, which sum to the “Total” row. Sub pathways are indented. In the Sex columns, + means the 
metabolite was higher in women, whereas – means the metabolite was higher in men. For all other columns, + means the metabolite 
increased with age, whereas – means it decreased with age. In the Age*Sex columns, +/+ means the metabolite increased with age in 
both women and men, –/– means it decreased with age in both women and men, +/– means it increased with age in women and 
decreased with age in men, and –/+ means it decreased with age in women and increased with age in men. Results from the Age and Sex 
columns were assessed within the same model; results from the Age in Women and Age in Men columns were assessed within separate 
models stratifying the sample by sex; and results from the Age*Sex column were assessed within a separate model including an age-by-
sex interaction term.  
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Sex metabolomics 
Six hundred and ninety-five metabolites (63.4% of 
metabolites assessed) significantly differed by sex, with 
the slight majority (386 metabolites or 55.5%) found in 
lower levels in women (Figure 2B and Figure 2). Of the 
metabolites associated with sex, 405 were also 
associated with age. Twenty-nine steroid lipids were 
associated with sex, all of which were found in 
significantly lower levels in women, with the exception 
of two corticosteroids (cortisol and corticosterone), 
which were found in higher levels in women. Andro-
genic steroids constituted the three metabolites most 
strongly associated with sex (5alpha-androstan-3alpha, 
17beta-diol monosulfate, P=1.4e-311, 5alpha-
androstan-3alpha, 17beta-diol 17-glucuronide, P=3.1e-
228, and 5alpha-androstan-3alpha, 17beta-diol disulfate, 
P=5.7e-185).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ninety fatty acids were associated with sex, 60 of which 
were found in higher levels in women. Acylcarnitine 
fatty acids were an exception, as 17/26 significantly 
associated acylcarnitines were found in lower levels in 
women. Among all tested phospholipids, 73.8% (48/65) 
were higher in women, as were 87.5% (35/40) of all 
tested sphingolipids.  
 
The majority of amino acids associated with sex were 
found in lower levels in women (75.9% or 85/112), 
including 13 of the 20 common amino acids (alanine, 
tyrosine, methionine, arginine, proline, aspartate, 
asparagine, tryptophan, glutamate, phenylalanine, and 
the three branched-chain amino acids (BCAAs): leucine, 
isoleucine, and valine), while two were found in higher 
levels in women (glycine and serine). The remaining five 
did not significantly differ by sex.  

Figure 2. Adjusted effects of the top 100 metabolites most strongly influenced by sex. Positive values indicate that the 
metabolite was higher in women, whereas negative values indicate that the metabolite was higher in men. Black vertical lines indicate 
standard errors. 
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Effect modification of metabolomics trajectories by sex 
Analyses stratified by sex identified 565 metabolites 
(51.5% of metabolites assessed) that were significantly 
associated with age among women (Figure S3A and 
Figure S4) and 255 metabolites (23.2% of metabolites 
assessed) among men (Figure S3B and Figure S5), with 
188 being common to both groups.  
 
The trajectories of 68 metabolites (6.2%) significantly 
differed over time by sex (Figures S3C and S6). The 
three most significant metabolites were sphingolipids, 
which were also the largest group of metabolites whose 
trajectories differed by sex (22.1% or 15/68). Nine of 
these sphingolipids increased with age among women 
and decreased with age among men. Several other 
groups of metabolites had trajectories that also differed 
by sex, including six fatty acids, five of which showed 
larger increases with age among women than men; eight 
steroid lipids, seven of which showed larger decreases 
with age among women than men; eight phospholipids, 
five of which increased in women and decreased in men 
with age; and cholesterol, which increased in women 
and decreased in men with age. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Metabolite heritability estimates 
  
The h2 of each metabolite was estimated using a 
variance components method that jointly models 
narrow-sense h2 and the h2 explained by genotyped 
variants [14], which allows for the inclusion of both 
closely and distantly related individuals, as imple-
mented in GCTA [15]. A genetic relationship matrix 
was created from 272,839 weakly linked (R2<0.50) and 
common (MAF>0.05) directly genotyped variants. 
Analyses of h2 were cross-sectional, using the first 
available metabolomics sample for 1,111 Caucasians 
that had both metabolomic and genomic data, and 
adjusted for sex and age. To assess whether metabolite 
h2 could influence the effect of age or sex on metabolite 
levels, Pearson r was used to calculate correlations 
between h2 estimates and the strength of associations 
(i.e., P-values) for age and sex. 
 
Metabolite h2 estimates ranged widely (0.2–99.1%) and 
had a median h2 of 36.3%, with a first quartile (Q1) of 
25.5% and a third quartile (Q3) of 49.7% (Figure 3 and 
Table S1). The metabolites with the lowest h2 were three 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Pinwheel plot of metabolite heritabilities. Each bar indicates the heritability of the corresponding 
metabolite. Heritability estimates can also be found in Table S1. 
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lipids: adipoylcarnitine (C6-DC), an acylcarnitine (h2 = 
0.2%), 15-methylpalmitate (i17:0), a branched fatty acid 
(h2=0.2%), and glycosyl-N-stearoyl-sphingosine (d18:1/ 
18:0), a ceramide lipid (h2=0.6%). The metabolites with 
the highest h2 estimates were two unknown metabolites 
(X-12093 and X-24328, h2=99.1% and 91.1%, 
respectively) and a nucleotide involved in purine 
metabolism (N2, N2-dimethylguanosine, h2=90.0%). 
Metabolon recently identified X-12093 as N2-acetyl, 
N6 methyllysine, an amino acid in the lysine catabolic 
sub pathway. 
 
Super pathway median h2 estimates ranged from 23.2–
46.3%, with peptides having the highest median, 
followed by amino acids (40.4%), and partially 
characterized molecules having the lowest median, 
although the latter pathway only contained five 
metabolites. Among the metabolite subgroups that were 
recurrent themes in our association results (i.e., sub 
pathways highlighted in Table 2), the 20 common 
amino acids had a median h2 of 49.3% (Q1–Q3: 36.9–
65.1%); fatty acids overall had a median h2 of 30.3% 
(Q1–Q3: 16.9–42.4%), while acylcarnitines had a 
slightly higher median h2 of 41.3% (Q1–Q3: 26.6–
56.0%); phospholipids overall had a median h2 of 35.9 
(Q1–Q3: 24.7–53.3%), while phosphatidylcholines had a 
slightly lower median h2 of 30.6% (Q1–Q3: 22.6–
39.6%); sphingolipids had a median h2 of 42.0% (Q1–
Q3: 31.8–51.7%); and steroid lipids overall had a 
median h2 of 39.6% (Q1–Q3: 35.0–50.7%), while andro-
genic steroids had a median h2 of 42.5% (Q1–Q3: 37.6–
50.7%). 
 
Metabolites associated with age and sex had h2 
estimates that were representative of overall metabolite 
h2 estimates. Among the 623 metabolites associated 
with age, the median h2=36.1% and Q1–Q3: 26.2–
50.0%. Similarly, among the 695 metabolites associated 
with sex, the median h2=37.2% and Q1-Q3: 25.6–50.7%. 
Overall, metabolite h2 estimates were not correlated 
with the strength of associations for age or sex (Pearson 
r=-0.01 and -0.02, respectively). 
 
DISCUSSION 
 
To our knowledge, this is the first longitudinal 
metabolomics assessment of aging and sex and uses one 
of the largest panels of metabolites reported to date. Our 
results provide strong evidence that most plasma 
metabolite levels are highly influenced by aging and 
that aging has a broader effect on metabolites in women 
than men. Metabolites are also highly influenced by sex, 
with men and women having substantially different 
metabolomic profiles. We report h2 estimates on more 
metabolites than previously reported and find that most 
are influenced by a complex combination of genetic and 

environmental factors, consistent with previous studies 
[16, 17]. How heritable a metabolite was did not appear 
to influence the effect of age or sex on metabolite 
levels. 
 
Differences in levels of plasma lipid steroids, including 
androgens, progestins, and pregnenolones, were among 
the most significant findings for both age and sex. 
Steroid differences by sex serve as a proof of concept, 
as it is well established that androgens are present in 
lower levels in women than men [18]. Androgens are 
also known to decrease with age among men [19, 20] 
and women [21, 22]. 
 
Plasma metabolites we identified to be associated with 
sex and age are consistent with findings from previous 
cross-sectional studies. The UK Adult Twin Registry 
(TwinsUK) study reported 165 out of 280 (58.9%) 
tested serum and plasma metabolites to be associated 
with age in cross-sectional analyses [5]. Our data had 
114 of these 165 metabolites, of which 72 were 
significantly associated with age, and 66 had effects that 
were in the same direction as those reported in the 
TwinsUK study (Table S2). The metabolites that had 
the opposite direction of effect between studies were 
four amino acids (dimethylarginine, leucine, serine, and 
tryptophan), one nucleotide (uridine), and one 
xenobiotic (theophylline), all of which we reported 
decreased with age, with the exception of dimethyl-
arginine, which increased with age, contradictory to 
findings from the TwinsUK study. However, other 
studies have reported that serum tryptophan levels 
decrease with age [4, 9]. Among the 66 metabolites 
with the same effect, 27 were lipids, all of which 
increased with age (the majority were fatty acids, 
including 10 long chain fatty acids, six polyunsaturated 
fatty acids, and four other fatty acids), and 14 were 
amino acids (including glutamine and tyrosine, which 
both increased with age, and histidine, which decreased 
with age). 
 
The Cooperative Health Research in the Region of 
Augsburg (KORA F4) study, which was also cross-
sectional, reported 180 out of 507 (35.5%) tested serum 
metabolites to be associated with sex [7]. Our data had 
98 of these 180 metabolites, of which 84 were sig-
nificantly associated with sex, and all had effects that 
were in the same direction as those reported in KORA 
F4 (Table S3). Among these were 33 amino acids 
(including 11 common amino acids, all of which were 
lower in women except glycine and serine, which is also 
consistent with Mittelstrass et al. [6]); 18 lipids 
(including five long chain fatty acids and three medium 
chain acids, all of which were higher in women, and 
three androgenic steroids, all of which were lower in 
women); and 18 unknown metabolites (all but one were 
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lower in women). The single most significant finding in 
the KORA F4 study was the third most significant in 
our study (5alpha-androstan-3beta,17beta-diol disulfate, 
an androgenic steroid; the two other andro-genic ste-
roids that were our first and second most significant sex 
findings were not tested in the KORA F4 study). Also 
consistent with our findings, other studies have reported 
serum and plasma phosphatidylcholines and sphingo-
lipids levels to be higher in women than men [6, 8, 23], 
and serum acylcarnitines to be lower in women [6].  
 
Consistent with results from our sex-stratified analyses, 
a previous KORA F4 publication also reported serum 
sphingolipids to increase in concentrations with age 
among women and acylcarnitines to increase with age 
among both women and men [4]. It has been shown that 
higher levels of acylcarnitines are associated with 
higher risk for type 2 diabetes and obesity, which are 
increasingly common conditions in the US, and 
correlate with poor glycemic control [24]. Follow up 
research is needed to investigate whether acylcarnitines 
are causally associated with obesity and could serve as a 
target for obesity intervention. The KORA F4 study, 
which had a sample of 1,038 women and 1,124 men, 
also similarly found twice as many metabolites 
associated with age among women than men. This 
suggests that our similar observation may not be driven 
solely by the differences in sample sizes between 
women and men in our study and that it may have 
biological implications; i.e., aging may influence a 
wider breadth of metabolites in women than men. A 
probable cause for such a difference may be that during 
menopause, women experience very abrupt and 
dramatic hormone changes and loss of ovarian function, 
whereas during “andropause”, men experience a gradual 
loss of hormones and decline in fertility[25]. These 
hormonal changes could be associated with other 
metabolic changes as well. Post-menopausal women 
have higher levels of sphingomyelins, fatty acids, 
acylcarnitines, lysophosphatidylcholines, and several 
amino acids than pre-menopausal women [26, 27], and 
a recent study found that plasma and urine metabo-
lomics can be used to predict menopause status with 
90% accuracy. Moreover, androgenic steroids have 
been linked to lipid levels in postmenopausal women 
[28]. Given that the baseline average ages of women 
and men in our sample are each ~61 years old, it is 
likely that our results are indicative of hormonal 
changes that occur in later ages and that most of our 
female participants have undergone menopause. It will 
be crucial to replicate these findings with a metabo-
lomics panel that captures a larger proportion of the 
~25,000 known blood metabolites in order to determine 
the validity of this hypothesis. 
 

Among the 68 metabolites with different trajectories 
between women and men were sphingolipids, phos-
phatidylcholines, and cholesterol. Metabolites from the 
latter two subgroups have been previously reported to 
have similar trajectories as what we identified, i.e., 
increasing with age in women and decreasing in men 
[26]. To our knowledge, a decrease of sphingolipid 
levels in men as our results suggest has not been 
previously reported. However, it has been reported that 
women have greater sphingomyelin increases with age 
than men [29] and that women with high sphingomyelin 
levels have reduced risk of AD, while men with high 
levels of sphingomyelins have increased risk of AD 
[30]. This could suggest that among men, declining 
levels of sphingolipids are a typical trait of healthy 
aging. While impaired sphingolipid metabolism is 
thought to be involved in AD [31], follow-up inves-
tigations are needed to verify whether declining 
sphingolipids indicate healthy aging in men but increase 
AD risk in women. 
 
Understanding how metabolites differ by sex and 
change with age could have implications for cancer. A 
recent study found that men with higher levels of serum 
androgenic steroids, which decrease with age in healthy 
men, measured up to 25 years prior to a diagnosis of 
prostate cancer were prospectively associated with 
increased risk of prostate cancer death [32]. 
Establishing “healthy” metabolite trajectories could 
help identify these high-risk individuals at different 
stages of life and be used to better understand changes 
occurring in the tumor microenvironment.  
 
We compared our metabolite h2 estimates to those 
recently estimated from a twin study of 1,930 
individuals in the TwinsUK cohort [17]. Among the 466 
metabolites overlapping with our study, h2 estimates 
were only moderately correlated (Pearson r=0.36) and 
our estimates were 9.6 percentage points lower on 
average. However, our metabolite h2 estimates were 8.9 
percentage points higher on average (and had a lower 
correlation of r=0.25) when comparing 191 overlapping 
metabolite h2 estimates from an earlier twin study based 
on 7,824 individuals from both the KORA F4 and 
TwinsUK cohorts [16]. Interestingly, despite having 
some overlapping participants, h2 estimates between 
these two previous studies were only moderately 
correlated: among 163 overlapping metabolite h2 
estimates, Pearson r was 0.38, with estimates based on 
the TwinsUK cohort being 18.8 percentage points 
higher on average than the combined KORA and 
TwinsUK study. Differences in h2 estimates may be 
driven by differences in population composition and 
size, phenotypic variation, and analytic approaches.  
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Although the strength of aging and sex metabolite 
associations were not associated with metabolite 
heritability, several of our aging and sex metabolites 
were identified to be associated with genetic variants 
(mQTLs, or metabolomic quantitative trait loci) in a 
previous study [16]. These aging and sex mQTLs are 
summarized in Tables S4 and S5, respectively. One of 
the androgenic steroids linked strongly to both sex and 
age in our analyses (5alpha-androstan-3beta, 17beta-
diol disulfate, h2=41.1%) is associated with a variant in 
the CYP3A5 gene (P=1.17e-29). CYP3A enzymes play 
a critical role in the metabolism of ~30% of clinically 
used drugs, and the capacity to metabolize drugs 
declines with age [33]. Expression of cytochrome P450 
(CYP) enzymes typically increases with age and has 
been shown to be influenced by interactions between 
age and sex [34]. It is likely that some of our observed 
metabolomic changes with age and differences by sex 
are linked to these CYP changes. An in-depth 
pharmacogenomics investigation into relationships 
between CYP enzymes, androgenic steroids, age, and 
sex could further elucidate factors of aging that 
influence drug metabolism. 
 
This study was not without limitations. Although our 
analyses adjusted for cholesterol lowering medication 
use, there could be residual confounding due to 
differences in duration or type of cholesterol lowering 
medication, which could be influencing the apparent 
lower lipid levels in men. An in-depth investigation into 
medication use could be informative. Our findings are 
likely driven by our panel of metabolites, and it is 
possible that a different panel of metabolites could 
produce different results. Many of our findings are in 
accordance with previous publications, thereby 
strengthening confidence in our results that have not 
been previously investigated with regards to age and 
sex. Accordingly, it will be crucial to replicate novel 
findings with an external cohort. However, we also 
identified several inconsistencies between our study and 
others regarding h2 estimates and a few of our 
association results, which could have been due to 
differences in study designs and sample populations. 
This challenge is common [35], as the field of 
metabolomics is rapidly developing and widely 
accepted standards for quality control techniques are 
forthcoming. Differences in platforms, quantification 
techniques, statistical analysis methods, laboratory 
techniques for sample handling (i.e., anti-coagulation 
method, preservation, storage duration), and fasting 
status at the time of the sample draw may result in large 
variations from one study to another [36]. The 
metabolomics quality control process we have outlined 
here as well as that described in Voyle et al. [37] could 
serve as guidelines for future studies. Many of our 
findings included metabolites that had unknown 

chemical structures, which is a current limitation of the 
field of metabolomics, as it can be difficult and costly to 
accurately identify metabolites. Further, we only 
investigated linear effects of age, but non-linear age 
effects may exist and should be investigated in future 
investigations. 
 
Using a large panel of longitudinal metabolomics data, 
we conducted a comprehensive investigation of the 
influence of aging and sex on metabolomics. Our 
findings suggest that levels of most metabolites are 
highly influenced by sex and age, and that sex 
differentially influences levels and trajectories of many 
metabolites. These findings underscore the importance 
of incorporating age and sex in the design and analysis 
of metabolomics investigations and offer a deeper 
understanding of the aging process that could inform 
many novel hypotheses regarding the role of 
metabolites in healthy and accelerated aging.  
 
MATERIALS AND METHODS 
 
Participants 
 
Study participants were from WRAP, a longitudinal 
study of initially dementia free middle-aged adults that 
allows for the enrollment of siblings and is enriched for 
a parental history of Alzheimer’s disease. Further 
details of the study design and methods used have been 
previously described [38, 39]. For the current analyses, 
follow-up occurred every two years. This study was 
conducted with the approval of the University of 
Wisconsin Institutional Review Board and all subjects 
provided signed informed consent before participation. 
 
Plasma collection and sample handling 
  
Fasting blood samples for this study were drawn the 
morning of each study visit. Blood was collected in 10 
mL ethylenediaminetetraacetic acid (EDTA) vacutainer 
tubes. They were immediately placed on ice, and then 
centrifuged at 3000 revolutions per minute for 15 
minutes at room temperature. Plasma was pipetted off 
within one hour of collection. Plasma samples were 
aliquoted into 1.0 mL polypropylene cryovials and 
placed in -80°C freezers within 30 minutes of sepa-
ration. Samples were never thawed before being 
shipped overnight on dry ice to Metabolon, Inc. 
(Durham, NC), where they were again stored in -80°C 
freezers and thawed once before testing.  
 
Metabolomic profiling and quality control 
  
An untargeted plasma metabolomics analysis was 
performed by Metabolon, Inc. using Ultrahigh Perfor-
mance Liquid Chromatography-Tandom Mass Spectro-
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metry (UPLC-MS/MS). Quantification was performed as 
previously described [40]; details are outlined in the 
Supplemental Note. Metabolites within nine super 
pathways were identified: amino acids, carbohydrates, 
cofactors and vitamins, energy, lipids, nucleotides, par-
tially characterized molecules, peptides, and xenobiotics. 
  
Up to three longitudinal plasma samples were available 
for each participant. Metabolites with an interquartile 
range of zero (i.e., those with very low or no variability) 
were excluded from analyses (n=178 metabolites). After 
removing these metabolites, samples were missing a 
median of 11.7% metabolites, while metabolites were 
missing in a median of 1.2% of samples. Missing 
metabolite values were imputed to the lowest level of 
detection for each metabolite. Metabolite values were 
median-scaled and log-transformed to normalize meta-
bolite distributions [41]. If a participant reported that 
they did not fast or withhold medications and caffeine 
for at least eight hours, the sample was excluded from 
analyses (n=159 samples). A total of 1,097 metabolites 
among 2,344 samples remained for analyses. 
 
DNA collection and genomics quality control 
 
DNA was extracted from whole blood samples using 
the PUREGENE® DNA Isolation Kit (Gentra Systems, 
Inc., Minneapolis, MN). DNA concentrations were 
quantified using the Invitrogen™ Quant-iT™ 
PicoGreen™ dsDNA Assay Kit (Thermo Fisher 
Scientific, Inc., Hampton, NH) analyzed on the Synergy 
2 Multi-Detection Microplate Reader (Biotek 
Instruments, Inc., Winooski, VT). Samples were diluted 
to 50 ng/ul following quantification.  
 
A total of 1,340 samples were genotyped using the 
Illumina Multi-Ethnic Genotyping Array at the 
University of Wisconsin Biotechnology Center (Figure 
S7). Thirty-six blinded duplicate samples were used to 
calculate a concordance rate of 99.99%, and discordant 
genotypes were set to missing. Sixteen samples missing 
>5% of variants were excluded, while 35,105 variants 
missing in >5% of individuals were excluded. No 
samples were removed due to outlying heterozygosity. 
Six samples were excluded due to inconsistencies 
between self-reported and genetic sex.  
 
Due to sibling relationships in the WRAP cohort, 
genetic ancestry was assessed using Principal Com-
ponents Analysis in Related Samples (PC-AiR), a 
method that makes robust inferences about population 
structure in the presence of relatedness [42]. This 
approach included several iterative steps and was based 
on 63,503 linkage disequilibrium (LD) pruned (r2<0.10) 
and common (MAF>0.05) variants, using the 1000 
Genomes data as reference populations [43]. First, kin- 

ship coefficients (KCs) were calculated between all 
pairs of individuals using genomic data with the 
Kinship-based Inference for Gwas (KING)-robust 
method [44]. PC-AiR was used to perform principal 
components analysis (PCA) on the reference popula-
tions along with a subset of unrelated individuals 
identified by the KCs. Resulting principal components 
(PCs) were used to project PC values onto the 
remaining related individuals. All PCs were then used 
to recalculate the KCs taking ancestry into account 
using the PC-Relate method, which estimates KCs 
robust to population structure [45]. PCA was performed 
again using the updated KCs, and KCs were also 
estimated again using updated PCs. The resulting PCs 
identified 1,198 WRAP participants whose genetic 
ancestry was primarily of European descent. This 
procedure was repeated within this subset of par-
ticipants (excluding 1000 Genomes individuals) to 
obtain PC estimates used to adjust for population 
stratification in subsequent genomic analyses. Among 
European descendants, 160 variants were not in Hardy-
Weinberg equilibrium (HWE) and 327,064 were 
monomorphic and thus, removed.  
 
A total of 1,294,660 bi-allelic autosomal variants among 
1,198 European descendants remained for imputation, 
which was performed with the Michigan Imputation 
Server v1.0.3 [46], using the Haplotype Reference 
Consortium (HRC) v. r1.1 2016 [47] as the reference 
panel and Eagle2 v2.3 [48] for phasing. Prior to 
imputation, the HRC Imputation Checking Tool [49] was 
used to identify variants that did not match those in HRC, 
were palindromic, differed in MAF>0.20, or that had 
non-matching alleles when compared to the same variant 
in HRC, leaving 898,220 for imputation. A total of 
39,131,578 variants were imputed. Variants with a 
quality score R2<0.80, MAF<0.001, or that were out of 
HWE were excluded, leaving 10,400,394 imputed 
variants. These were combined with the genotyped 
variants, leading to 10,499,994 imputed and genotyped 
variants for analyses. Data cleaning and file preparation 
were completed using PLINK v1.9 [50] and VCFtools 
v0.1.14 [51]. Coordinates are based on GRCh37 
assembly hg19. 
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SUPPLEMENTARY MATERIAL 
 
SUPPLEMENTARY NOTE 
 
Metabolite profiling 
 
Plasma metabolites were profiled by Metabolon 
(Durham, NC) using Ultrahigh Performance Liquid 
Chromatography-Tandom Mass Spectrometry (UPLC-
MS/MS). Samples were prepared using the automated 
MicroLab STAR® system from Hamilton Company. 
Several recovery standards were added prior to the first 
step in the extraction process for QC purposes. To 
remove protein, dissociate small molecules bound to 
protein or trapped in the precipitated protein matrix, and 
to recover chemically diverse metabolites, proteins were 
precipitated with methanol under vigorous shaking for 2 
min (Glen Mills GenoGrinder 2000) followed by 
centrifugation. The resulting extract was divided into 
five fractions: two for analysis by two separate reverse 
phase (RP)/UPLC-MS/MS methods with positive ion 
mode electrospray ionization (ESI), one for analysis by 
RP/UPLC-MS/MS with negative ion mode ESI, one for 
analysis by HILIC/UPLC-MS/MS with negative ion 
mode ESI, and one sample was reserved for backup. 
Samples were placed briefly on a TurboVap® (Zymark) 
to remove the organic solvent. The sample extracts were 
stored overnight under nitrogen before preparation for 
analysis. 
 
Several types of controls were analyzed in concert with 
the experimental samples: a pooled matrix sample 
generated by taking a small volume of each experimen-
tal sample (or alternatively, use of a pool of well-
characterized human plasma) served as a technical 
replicate throughout the data set; extracted water 
samples served as process blanks; and a cocktail of QC 
standards that were carefully chosen not to interfere 
with the measurement of endogenous compounds were 
spiked into every analyzed sample, allowed instrument 
performance monitoring and aided chromatographic 
alignment. Instrument variability was determined by 
calculating the median relative standard deviation 
(RSD) for the standards that were added to each sample 
prior to injection into the mass spectrometers. Overall 
process variability was determined by calculating the 
median RSD for all endogenous metabolites (i.e., non-
instrument standards) present in 100% of the pooled 
matrix samples. Experimental samples were randomized 
across the platform run with QC samples spaced evenly 
among the injections. 
 
All methods utilized a Waters ACQUITY ultra-
performance liquid chromatography (UPLC) and a 
Thermo Scientific Q-Exactive high resolution/accurate 
mass spectrometer interfaced with a heated electrospray 

ionization (HESI-II) source and Orbitrap mass analyzer 
operated at 35,000 mass resolution. The sample extract 
was dried then reconstituted in solvents compatible to 
each of the four methods. Each reconstitution solvent 
contained a series of standards at fixed concentrations to 
ensure injection and chromatographic consistency. One 
aliquot was analyzed using acidic positive ion con-
ditions, chromatographically optimized for more hydro-
philic compounds. In this method, the extract was 
gradient eluted from a C18 column (Waters UPLC BEH 
C18-2.1x100 mm, 1.7 μm) using water and methanol, 
containing 0.05% perfluoropentanoic acid (PFPA) and 
0.1% formic acid (FA). Another aliquot was also 
analyzed using acidic positive ion conditions, however 
it was chromatographically optimized for more hydro-
phobic compounds. In this method, the extract was 
gradient eluted from the same afore mentioned C18 
column using methanol, acetonitrile, water, 0.05% 
PFPA and 0.01% FA and was operated at an overall 
higher organic content. Another aliquot was analyzed 
using basic negative ion optimized conditions using a 
separate dedicated C18 column. The basic extracts were 
gradient eluted from the column using methanol and 
water, however with 6.5mM Ammonium Bicarbonate at 
pH 8. The fourth aliquot was analyzed via negative 
ionization following elution from a HILIC column 
(Waters UPLC BEH Amide 2.1x150 mm, 1.7 μm) using 
a gradient consisting of water and acetonitrile with 
10mM Ammonium Formate, pH 10.8. The MS analysis 
alternated between MS and data-dependent MSn scans 
using dynamic exclusion. The scan range varied 
slighted between methods but covered 70-1000 m/z. 
Raw data files are archived and extracted as described 
below. 
 
Raw data was extracted, peak-identified and QC 
processed using Metabolon’s hardware and software. 
These systems are built on a web-service platform 
utilizing Microsoft’s .NET technologies, which run on 
high-performance application servers and fiber-channel 
storage arrays in clusters to provide active failover and 
load-balancing. Compounds were identified by com-
parison to library entries of purified standards or 
recurrent unknown entities. Metabolon maintains a 
library based on authenticated standards that contains 
the retention time/index (RI), mass to charge ratio 
(m/z), and chromatographic data (including MS/MS 
spectral data) on all molecules present in the library. 
Furthermore, biochemical identifications are based on 
three criteria: retention index within a narrow RI 
window of the proposed identification, accurate mass 
match to the library +/- 10 ppm, and the MS/MS 
forward and reverse scores between the experimental 
data and authentic standards. The MS/MS scores are 
based on a comparison of the ions present in the 
experimental spectrum to the ions present in the library 
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spectrum. While there may be similarities between these 
molecules based on one of these factors, the use of all 
three data points can be utilized to distinguish and 
differentiate biochemicals. More than 3300 commer-
cially available purified standard compounds have been 
acquired and registered into LIMS for analysis on all 
platforms for determination of their analytical 
characteristics. Additional mass spectral entries have 
been created for structurally unnamed biochemicals, 
which have been identified by virtue of their recurrent 
nature (both chromatographic and mass spectral). These 
compounds have the potential to be identified by future 
acquisition of a matching purified standard or by 
classical structural analysis. 
 
A variety of curation procedures were carried out to 
ensure that a high quality data set was made available  
 
 
SUPPLEMENTARY FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

for statistical analysis and data interpretation. The QC 
and curation processes were designed to ensure accurate 
and consistent identification of true chemical entities, 
and to remove those representing system artifacts, mis-
assignments, and background noise. Metabolon data 
analysts use proprietary visualization and interpretation 
software to confirm the consistency of peak identifica-
tion among the various samples. Library matches for 
each compound were checked for each sample and 
corrected if necessary. 
 
Peaks were quantified using area-under-the-curve. A 
data normalization setp was performed to correct 
variation resulting from instrument inter-day tuning 
differences. Essentially, each compound was corrected 
in run-day blocks by registering the medians to equal 
one and normaling each data point proportionately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S1. Heatmap of metabolite correlations. Pearson correlations (r) are displayed and hierarchical 
clustering was used to sort metabolites. Clusters of strong positive correlations are largely between amino 
acid–amino acid and between lipid–lipid (i.e., correlations between super pathway had weaker correlations). 
Negative correlations are less common and all have an r≥-0.62. 
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Figure S2. Manhattan plots of metabolome-wide associations results. (A) Age significantly influenced 623 
metabolites. (B) Sex significantly influenced 695 metabolites. Both sets of results use a Benjamini-Hochberg adjusted 
p-value threshold (red horizontal line). 
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Figure S3. Manhattan plots of metabolome-wide associations results. (A) Age significantly influenced 565 metabolites 
in women. ()) Age significantly influenced 255 metabolites in men. ()) Trajectories of 68 metabolites significantly differ by sex. 
Each set of results uses a Benjamini-Hochberg adjusted p-value threshold (red horizontal line). 
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Figure S4. Age stratified by sex: Adjusted effects of a 10-year increase in age on the top 100 metabolites most strongly 
influenced by age in women. Positive values indicate the amount a metabolite increased over 10 years, whereas negative values 
indicate the amount a metabolite decreased over 10 years. Black vertical lines indicate standard errors. 
 

 

Figure S5. Age stratified by sex: Adjusted effects of a 10-year increase in age on the top 100 metabolites most strongly 
influenced by age in men. Positive values indicate that the metabolite increased with 10 years of age, whereas negative values 
indicate that the metabolite decreased with 10 years of age. Black vertical lines indicate standard errors. 
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Figure S6. Adjusted effects of a 10-year increase in age on the 68 metabolites with trajectories that significantly 
differ by sex. For each metabolite, the bar on the left represents the change in metabolite level over 10 years in women, whereas 
the bar on the right represents the change in metabolite level over 10 years in men. Black vertical lines indicate standard errors. 
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Figure S7. GWAS QC Flowchart. 
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SUPPLEMENTARY TABLES 
 
Please browse the links in Full Text version to see the 
data of Supplementary Tables: 
 
1. Table S1. Summary statistics of metabolomic 

associations with age and sex. 
2. Table S2. Comparison of metabolites associated 

with age in our results to those reported in Menni et 
al., 2013. 

3. Table S3. Comparison of metabolites associated 
with sex in our results to those reported in 
Krumsiek et al., 2015. 

4. Table S4. Genetic variants associated with 
significant aging metabolites, as reported in Shin et 
al., 2014. 

5. Table S5. Genetic variants associated with 
significant sex metabolites, as reported in Shin et 
al., 2014. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


