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ABSTRACT

Phenotypic biomarkers (e.g. cholesterol, weight, and glucose) are important to diagnose and treat diseases
associated with aging. However, while many biomarkers are co-dependent (e.g. glycohemoglobin and glucose),
it is generally unknown how age influences their co-dependence. In the following, we analyzed 50 biomarkers
in 27,508 National Health and Nutrition Examination Survey (NHANES) participants (age range: 20 to 80, mean
age: 46.3 years old, sexes: 48.9% males, 51.1% females, ethnicities: 46.0% Whites, 27.8% Hispanics, 20.0% non-
Hispanic Blacks, 6.1% others) to investigate how the co-dependency structure of common biomarkers evolves
with age and whether differences exist between sexes and ethnicities. First, we associated the change in
correlations between biomarkers with chronological age. We identified six trends and replicated our top
finding (height vs. systolic blood pressure) in participants of the UK Biobank (N=470,895). We found that, on
average, correlations tend to decrease with age. Secondly, we examined how biomarkers predict other
biomarkers in participants of different age groups. We found 17 (34%) biomarkers whose predictability
decreases with age and 5 (10%) biomarkers whose predictability increases with age. A limitation of this study is
that it cannot distinguish between biological changes related to aging and generational effects. Our results can
be interactively explored here: http://apps.chiragjpgroup.org/Aging_Biomarkers_Co-Dependencies/.

INTRODUCTION

Human biomarkers such as blood biomarkers (e.g.
glucose, LDL-cholesterol, HDL-cholesterol, albumin)
and anthropomorphic measures (e.g. blood pressure,
BMI (body mass index), arm circumference) are of
paramount importance for medicine and biomedical
research, as they are used to diagnose disease, evaluate
treatment, predict a clinical outcome, and even serve as
proxy for clinical endpoints [1]. These biomarkers
change markedly with age [2-6]. Further still, it is
hypothesized that these biomarkers can predict age [6—
9]. However, it is less understood how, in fact, the inter-
dependencies of biomarkers themselves change with
age.

Investigation of the co-dependency of biomarkers may
shine light on shared etiology between diseases and
biomarkers of disease. For example, in human genetics,
investigators have been elucidating the shared “genetic
architecture” between complex biomarkers, such as
gene expression [10] and clinical biomarkers and
disease [11]. Alongside genetics, age may play an
influential role in the co-dependency of biomarkers.
However, there has been to our knowledge no invest-
tigation to characterize the global correlation architec-
ture of biomarkers, and how this architecture is affected
by age.

Here, we leverage an unhospitalized and US represent-
tative survey, called the National Health and Nutrition
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Examination Survey (NHANES), to investigate the
correlation architecture between 50 biomarkers (a total
of 1,225 pairwise correlations) in 27,508 participants
(ages 20-80). Specifically, we investigated the co-
dependency architecture of biomarkers using three
different approaches. First, we hypothesized that the
correlation structure of biomarkers changes with age.
To address this primary hypothesis, we implemented a
computational approach to test how correlations
between biomarkers fluctuate between each age year
between 20 through 80 (Figure 1). Second, we
hypothesized that the biomarkers’ predictability -- or
the variance explained between biomarkers -- also
changes with age. To address this hypothesis, we
estimated the predictability of each biomarker at each
age year by building a regularized linear model to
predict its value using all the other biomarkers as
predictors. In this paper, we refer to “predictabilities”
when discussing the prediction accuracies (R2 values)
obtained on the 50 biomarkers. Third, we hypothesized
that the predictor biomarkers selected by the models
when predicting each target biomarker change with age.
To test this hypothesis, we tracked changes of the
regression coefficients of the elastic nets. For the three
aforementioned hypotheses, we also tested for
differences between both sexes and ethnicities. In
summary, we found that age, along with sex and
ethnicity, plays a major role in influencing biomarker
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co-dependency architecture. Understanding the age-
dependent architecture will be important for future
investigations in aging and age prediction [12].

A limitation of this paper is that NHANES is a cross-
sectional survey. Accordingly, our findings do not
distinguish between biological changes driven by aging
at the individual level, and generational effects at the
population level. When we use the terms “age
trajectories” and “rates” in this paper, we are describing
differences between the values computed on samples of
different ages without implying that those differences

are driven by aging.
RESULTS

National Health and Nutrition Examination Survey
(NHANES) participants’ biomarkers are
significantly correlated with age

We analyzed 50 clinical biomarkers on 27,508 par-
ticipant samples from the National Health and Nutrition
Examination Survey (NHANES), a dataset constituted
of non-institutionalized individuals [13] aged between
20 years old and up to 80 years old (excluded), with a
mean age of 46.3 years old (Tables 1 and 2). The
distribution of the ages can be found in Figure SI
(quantiles: 0%:20, 25%:32, 50%:45, 75%:60, 100%:

60 1225 linear regressions,
correlation one for each pair of biomarkers
matrices

CORRELATION

D E

Figure 1. Flowchart to analyze the age trajectories of the correlations.

Table 1. Demographics of the dataset: sample sizes.

non-Hispanic

non-Hispanic

All Whites Hispanics Blacks Others
12665
All 27508 (100.0%) (46.0%) 7649 (27.8%) 5509 (20.0%) 1685 (6.1%)

Males

13443 (48.9%)

6273 (22.8%) 3649 (13.3%)

2692 (9.8%)

829 (3.0%)

Females

14065 (51.1%)

6392 (23.2%) 4000 (14.5%)

2817 (10.2%)

856 (3.1%)

WwWw.aging-us.com

1405

AGING



79). We found that that 92% of biomarkers are
significantly associated (Bonferroni-corrected p-value <
0.05) with age (Figure 2 and Table 3).

Age-dependent correlations between biomarkers
reveal structure changes with age

Next, we estimated the overall correlation structure of
the biomarkers (Figure 3AB). The mean of the absolute
values of the correlations is modest (0.028; SE: 0.11).

We found that 419 out of the 1,225 (33.2%) pairwise
correlations show significant (Bonferroni-corrected p-
value < 0.05) change with age after correcting for
multiple testing (Figure 4). We classified these correla-
tions with 6 different and general trends, as illustrated in
Figures 4 and 5. 316 (25.8%) correlations significantly
decreased with age (Figure 5A-C). They (1) start
positive among young individuals and end negative
among old individuals (189 findings [15.4%], such as
standing height vs. systolic blood pressure, Figure 5A).
Second, they (2) start positive and remain positive (123
findings [10.0%], such as hematocrit vs. total calcium,

Table 2. Demographics of the dataset: sample sizes.

Figure 5B), Third, they (3) start negative and remain
negative (four findings [0.3%], such as percentage of
segmented neutrophils vs. number of lymphocytes,
Figure 5C).

Inversely, we found 103 correlations (8.4%) that
increase with age (Figure 5D-F). They (1) start negative
and end up positive (65 findings [5.3%], such as
percentage of segmented neutrophils vs. creatinine,
Figure 5D), (2) start negative and remain negative (22
findings [1.8%], such as hematocrit vs. chloride, Figure
SE), or (3) start positive and remain positive (16
findings [1.3%], such as chloride vs. sodium, Figure
5F). A summary table of the different age trajectories
can be found in Table 4.

We successfully replicated our top finding (standing
height vs. systolic blood pressure) using 470,895
samples from the UK Biobank cohort [14] (Figure 5B).
The correlation decreases by 0.011 unit/year in the
NHANES participants (0.39 at age 20, -0.28 at age 80),
and by 0.009 unit/year on the UK Biobank dataset (0.23
at age 40, -0.06 at age 71).

non-Hispanic non-Hispanic
All Whites Hispanics Blacks Others
All 46.3 (32-60) 47.9 (34-62) 44.7 (31-59) 46.0 (32-60) 43.4 (30-55)
Males 47.0 (33-61) 48.6 (35-62) 45.1 (31-60) 46.6 (33-61) 43.7 (30-56)
Females 45.7 (31-60) 47.1 (33-61) 44.3 (30-59) 45.5 (31-59) 43.1 (30-55)

The first number is the mean age of the demographic subgroup, the two number between parentheses are the
25th and 75th percentile of the age distribution.
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Figure 2. Changes in biomarkers with age. (A) Systolic blood pressure. Example of a biomarker that increases with
age. (B) Upper leg length. Example of a biomarker that significantly decreases with age. (See discussion for explanation
about the generational effect). (C) Volcano plot of the significance of the changes associated with age for the 50
biomarkers. The black horizontal line corresponds to the 0.05 significant threshold, after Bonferroni correction.
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Table 3. Biomarkers list: significance of the changes in biomarkers with age.

Biomarkers Coefficients (sd/sd year) | neg-log-corrected-p-values | Pearson correlations
Upper Leg Length -3.70 308 -0.245
Albumin -2.60 175.9 -0.170
Lymphocyte number -2.10 119.8 -0.141
Red blood cell count -1.90 98.0 -0.128
60 sec. pulse -1.90 95.5 -0.126
Total protein -1.90 94.9 -0.126
Standing Height -1.50 55.5 -0.097
Platelet count -1.40 50.9 -0.093
Phosphorus -1.10 30.8 -0.072
Lymphocyte percent -1.00 27.9 -0.069
Chloride -9.30x10"" 223 -0.062
Segmented neutrophils number -9.00x10™" 20.8 -0.060
Mean platelet volume -6.60x10"" 10.7 -0.044
Hematocrit -6.20x10"" 9.4 -0.041
MCHC -4.10x10" 3.6 -0.027
Iron, refrigerated -3.60x10"" 24 -0.024
Total calcium -2.50x10™ -1.6 -0.002
Monocyte number 3.60x107 -1.5 0.002
Segmented neutrophils percent 2.70x10™" 0.8 0.018
Total bilirubin 2.90x10™" 1.2 0.019
Basophils number 3.30x10™" 1.8 0.022
Alanine aminotransferase ALT 3.60x10™" 23 0.024
Albumin, urine 3.70x10™" 2.7 0.025
Eosinophils number 5.60x10™" 73 0.037
Basophils percent 6.60x10™" 10.7 0.044
Upper Arm Length 7.10x10™" 12.5 0.047
Arm Circumference 8.00x10"" 16.1 0.053
Sodium 9.70x10™" 24.0 0.064
Weight 1.00 25.7 0.066
Eosinophils percent 1.30 44.3 0.086
Monocyte percent 1.40 49.5 0.091
Aspartate aminotransferase AST 1.40 52.2 0.094
Alkaline phosphotase 1.60 63.3 0.103
Diastolic Blood pres 1.90 90.5 0.123
Potassium 1.90 97.5 0.127
Mean cell hemoglobin 2.00 100.6 0.129
Body Mass Index 2.00 106.2 0.133
Gamma glutamyl transferase 2.10 116.4 0.139
Creatinine 2.40 152.1 0.159
Bicarbonate 2.60 174.7 0.170
Triglycerides 2.70 187.9 0.176
Red cell distribution width 2.70 195.4 0.179
Lactate dehydrogenase LDH 3.00 248.0 0.202
Cholesterol 3.30 288.8 0.217
Osmolality 3.70 308 0.244
Waist Circumference 3.70 308 0.246
Glucose, serum 4.30 308 0.287
Blood urea nitrogen 4.90 308 0.325
Glycohemoglobin 5.30 308 0.353
Systolic Blood pres 6.40 308 0.423

The “Coefficients” column reports the coefficient obtained by performing a weighted regression on the biomarker
against age. The “neg-log-corrected-p-values” column reports the corresponding p-values, Bonferroni corrected for
the 50 tests. The “Pearson correlations” column reports the weighted correlation between age and the biomarker.
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Figure 3. Baseline correlation structure of the biomarkers. (A) Correlation matrix of the biomarkers. The biomarkers are ordered
based on their clustering. Red is associated with a positive correlation, blue with a negative correlation. (B) Hierarchical clustering of the
biomarkers. For each cluster, the number in green is the bootstrap probability (BP)--the percentage of bootstraps in which the cluster
was present. The number in red is called the approximated-unbiased p-value (AU). AU is a better estimation of the unbiased p-value than
BP, and the red boxes circle the significant clusters, based on this criterion, with alpha=0.95 (a cluster is marked as significant if its AU is
greater than 95). The number in grey is the rank of the cluster, low numbers means the clustering happened early in the process. The
height is the measure of the proximity between the two clusters being merged. The height is one minus the mean correlation between
the two clusters, so two perfectly correlated biomarkers/clusters cluster at height zero, and two perfectly uncorrelated

biomarkers/clusters cluster at height one.

Figure 4. Volcano plot of correlations changes with age. The black horizontal
line corresponds to the Bonferroni-corrected significance threshold (0.05). The
green dots are correlations that decrease with age but remain positive. The blue
dots are correlations that decrease with age, starting positive and ending negative.
The purple dots are correlations that decrease with age and remain negative. The
yellow plots are correlations that increase with age but remain negative. The red
dots are correlations that increase with age, starting negative and ending positive.
The orange dots are correlations that increase with age and remain positive.
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Figure 5. Examples of different trajectories for changes in correlations with age. (A) Hematocrit vs. total calcium. Example of a
correlation that decreases with age but remains positive. (B) Standing height vs. systolic blood pressure. Example of a correlation that
decreases with age, starts positive and ends negative. In red, we replicated the analysis on the UK Biobank cohort. (C) Percentage of
segmented neutrophils vs. number of lymphocytes. Example of a correlation that decreases with age and remains negative. (D)
Hematocrit vs. chloride. Example of a correlation that increases with age but remains negative. (E) Percentage of segmented neutrophils
vs. creatinine. Example of a correlation that increases with age, starts negative and ends positive. (F) Chloride vs. sodium. Example of a
correlation that increases with age and remains positive.

Table 4. Distribution of the different types of trajectories for the changes in correlations

with age.

Increases Decreases Total
Switches sign 65 (5.3%) 189 (15.4%) 254 (20.7%)
Remains positive 16 (1.3%) 123 (10.0%) 139 (11.3%)
Remains negative 22 (1.8%) 4 (0.3%) 26 (2.1%)
Total 103 (8.4%) 316 (25.8%) 419 (33.2%)

We then tested for a global change in correlation
amongst all 1,225 correlations. We tested for a change
in the mean of the absolute values of the correlations
with age (Figure 6). We confirmed a significant
decrease in the means of the correlations with age, both

when considering all the biomarkers (coefficient=-
4.4x10™ unit/year, p-value=2.4x10°, Figure 6A), and
those correlations that significantly changed with age
only (coefficient=-1.5x10" unit/year, p-value=2.6x10~°,

Figure 6B). Interestingly, we observed a non-linear
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trend. The mean absolute value of the correlations females). We first established a baseline by comparing
seems to decrease until the age of 50 and remain the correlation structure of the different demographics
relatively stable after age 50. This suggests a non- on the full age range (Figure 7).
linearity in the rate of aging.

296 (24.2%) correlations are significantly different

We executed our pipeline on different sexes and between males and females. 190 (64% of 296) are
ethnicities to compare the age-dependent correlation higher for females than males. For example, the correla-
architecture between these groups (e.g., males versus tion between alkaline phosphatase and waist circum-
A B
All correlations Correlations which significantly change with age
0.225-
I Coef = -4.4e-04 Coef = —1.5e-03
wo 14 I p-value = 1.0e-02 02001 p-value = 2.5e-06
& I ﬂ @
Q I
EO I GE)ovs-
5 @
®o S
) T 0.150-
5 ®
O, 8
0.125-
0.10-
20 40 60 80 20 40 60 80
Age Age

Figure 6. Correlations: Change of the means of the absolute values of the correlations with age. (A) Change of the mean of
the absolute value of all the correlations with age. (B) Change of the mean of the absolute value of the correlations with age, limiting the
analysis to correlations which significantly change with age.

Table 5. Distribution of the age trajectories of the correlations, the predictabilities and the regression coefficients
in different demographics.

Trajectory All Males Females Whites Hispanics Blacks Control 1 | Control 2
Decrease 123 28 30 101 47 34 85 74
+ (10.0%) | (2.29%) | (2.45%) | (8.24%) | (3.84%) | (2.78%) | (6.94%) | (6.04%)
C Jati Decrease - 189 57 72 157 143 104 147 139
(0‘1’:2 faf;;ss) + (15.4%) | (4.65%) | (5.88%) | (12.8%) | (11.7%) | (8.49%) | (12.0%) | (11.3%)
Pecrease T 4(0.33%) | 3(0.24%) | 3(0.24%) | 1(0.08%) | 2(0.16%) | 1(0.08%) | 4(0.33%) | 4 (0.33%)
22 o, 1 1 0, 0 0 o, 0
Increase -+ | ;g0 | 9 (0.73%) 0.90%) 6 (0.49%) | 3(0.24%) | 5(0.41%) | 5(0.41%) | 5 (0.41%)
Increase - 65 19 45 56 17 35 51 45
+ (5.31%) | (1.55%) | (3.67%) | (4.57%) | (1.39%) | (2.86%) | (4.16%) | (3.67%)
Increase 16 15 13 14 o o 14 o
—+ (131%) | (1.22%) | (1.06%) | (1.14%) | 7(©0-37%) | SO041%) | 1400 | 7(0.57%)

Predictabilities | Decrease | 17 (34%) | 13 (26%) | 8(16%) | 6(12%) | 9(18%) | 2(4%) 12%) | 5(10%)

(out of 30) Increase 5(10%) | 3(6%) | 4(8%) 3 (6%) 2 (4%) 2(4%) | 3(6%) | 3(6%)
Decrease 13 12 13 N 15 12 12 o
Koo +- 053%) | (049%) | 053%) | 2O | 06100 | (049%) | 049%) | 80337
egression B
coefficients P COTEASE = 1 3(0.12%) | 1(0.04%) | 2 (0.08%) | 2 (0.08%) | 4 (0.16%) | 1(0.04%) | 2 (0.08%) | 1 (0.04%)
(out of 2450) Decroase
o 4(0.16%) | 2 (0.08%) | 4 (0.16%) | 2 (0.08%) | 0(0.00%) | 1(0.04%) | 3 (0.12%) | 2 (0.08%)
Ifcrease T | 7(0.29%) | 6(0.24%) | 8(0.33%) | 3 (0.12%) (0.411?% ) | 7029%) | 8(0.33%) | 8(033%)
Increase —- | 2 (0.08%) | 3 (0.12%) | 3 (0.12%) | 0(0.00%) | 1(0.04%) | 1(0.04%) | 0(0.00%) | 0 (0.00%)
In 11 12
e 045%) | (0400 | ©(0:24%) | 8(0.33%) | 3(0.12%) | 5(0.20%) | 8(033) | 5(0.20%)
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ference is 0.32 for females versus 0.04 for males (p-
value= 1.6x107°), and the correlation between mean
cell hemoglobin and red blood cell count is -0.40 for
females and -0.54 for males (p-value=2.5x10"7). In
contrast, 106 correlations (36% of 296) are higher for
males than females. For example, the correlation
between mean cell hemoglobin and red cell distribution
width is -0.26 for males and -0.55 for females (p-
value=5.0x10""), and the correlation between standing
height and wei%ht is 0.44 for males and 0.28 females (p-
value=4.0x10"")

We also detected differences between ethnicities (non-

Hispanic Whites versus Hispanics: 58 findings, 25
larger for Hispanics, 33 larger for non-Hispanic Whites,

Males vs Females

Whites vs Hispanics

n
_,% [ [ e
)
I
1.0: 1.0+
correlation =0.916 correlation = 0.963
g 0.5+
2
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[} 2
= T
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- \\Jj
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Figure 7 columns 2. non-Hispanic Whites versus non-
Hispanic Blacks: 113 findings, 26 larger for non-
Hispanic Blacks, 87 larger for non-Hispanic Whites,
Figure 7 column 3.). Those differences were stronger
than the differences between the controls (2 spurious
findings, Figure 7 column 4), which further confirms
their significance.

We analyzed which correlations trend significantly
differently with age in different demographics (Figure
8). We detected 36 significant sex differences in the age
trajectories of correlations (Figure 8B column 1). 20 of
them show an increase with age (1.6%). For example,
cholesterol vs. albumin has a difference in correlation
trajectory (p—Value=4.0x10'13). In females it increases

Control 1 vs Control 2
A4

Whites vs Blacks
A3

Conelat
="

correlation = 0.994

o °

, Control group 2

o

-10

C4

05

-i0 -0.5

C3

30«

00 -05 00 05
Whites Control group 1

N
<

neg:log—p—value

1

-0.03 000 0.03
Correlation difference

.2 0. X o
Correlation difference

Figure 7. Correlations: Baseline differences between demographics. (A) Heatmap visualization of correlation structure. The
upper left triangle shows the correlation structure for the first group of the comparison (e.g. males) while the lower right triangle of the
matrix shows the difference between the second group and the first group of the comparison (e.g. difference between females and
males). (B) Correlation between the 1,225 correlations of the first group (e.g. males) and the 1,225 correlations of the second group (e.g.
females). The diagonal black line represents a perfect correlation. The further away from this line the points lie, the bigger the difference
between the two groups, and the lower the correlation coefficient. (C) Volcano plots of the 1,225 differences in correlations between the
groups. The horizontal black lines represent the threshold of significance of 0.05 for the Bonferroni corrected p-values. The vertical axis is not
shared between the plots. The first column compares males and females, the second column compares non-Hispanic Whites and Hispanics,
the third column compares non-Hispanic Whites and non-Hispanic Blacks, and the fourth column compares the two control groups.
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from -0.22 at age 20 to 0.31 at age 80; in contrast, males
exhibit no significant change in correlation (0.12 on
average). 16 of the correlations’ differences showed a de-
crease with age (1.3%). For example, blood urea nitro-

Males vs Females
1

0.005-

Correlation = 0.926 Correlation = 0.959

Whites vs Hispanics

0.010-

gen vs. albumin has a difference in correlation trajectory
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Figure 8. Correlations: Differences in age trajectories between demographics. (A) Correlations between the rates at which the
correlations are changing in the two compared groups, only taking into account the correlations for which significant changes were
detected in both compared groups (e.g. males and females). (B) Volcano plots showing differences in the rates of change of correlations
with age between different demographic groups. The horizontal black lines represent the threshold of significance of 0.05 for the
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Figure 9. Predictabilities: Baseline predictabilities for the 50 biomarkers and significance of their
changes with age. (A) Histogram of the predictabilities. Histogram of the predictabilities (R?) obtained on the
50 biomarkers using the full 27,508 samples. (B) Volcano plot of the changes in predictabilities with age. The
horizontal black lines represent the threshold of significance of 0.05 for the Bonferroni corrected p-values.
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We detected few differences in age trajectories of
correlations between ethnicities. Specifically, we
detected three differences in correlations’ trajectories
between non-Hispanic Whites and Hispanics (Figure 8
columns 2) and eight differences between non-
Hispanic Whites and non-Hispanic Blacks (Figure 8
columns 3).

The comparison between the two control groups, on the
other hand, did not exhibit any differences. This sug-
gests that the findings for the comparisons between the
sexes and the ethnic groups are not spurious. A sum-
mary table of the trajectories of the correlations in
different demographic groups can be found in Table 5.

Finally, we detected a difference between sexes in the
rate at which the mean of the absolute values of the cor-
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relations that significantly change with age decreases. It
decreases 37% faster for males (from 0.214 at age 20 to
0.165 at age 80) than for females (from 0.198 at age 20
to 0.162 at age 80).

Predictability of biomarkers is
dependent

strongly age

Next, we sought to estimate how predictions of
biomarkers change with age. We hypothesized that first,
biomarkers are predictive of other biomarkers, and
second, that these predictions significantly change with
age. We established baseline results using the full co-
hort (Figure 9A) by predicting each of the biomarkers
using all the other biomarkers. The mean R’ was 0.618,
the standard deviation 0.294, the minimum 0.120 and
the maximum 0.999.

Glucose, serum
Coef = 9.3e-03
p-value = 5.0e-12

20 40 60 80
Age

I
-~ ,l| I ||| \
pret it I
I,II\ ittt "':'!,Ilnh:i T
I Il|||lurl-""
I il Il
ill!
Coef = -1.2e-03
p-value = 0.04
20 40 60 80
age

Figure 10. Changes of the predictabilities (R?) with age. (A) Predictabilities: Examples of different age
trajectories. (A1) Albumin. Example of a biomarker whose predictability decreases with age. (A2) Glucose, serum.
Example of a biomarker whose predictability increases with age. (B) Change of the means of the predictabilities
with age. (B1) Change of the mean of all the predictabilities with age. (B2) Change of the mean of the
predictabilities with age, limiting the analysis to biomarkers whose predictability significantly change with age.
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Then, we tested for changes with age and found that the
prediction accuracy of 22 (44%) of the biomarkers
significantly change with age (Figure 9B). For example,
we found that 55% of the variance of albumin can be
explained by other biomarkers in people at age 20,
whereas 0.00% of the variance can be explained when
people are 80 (Figure 10A1). Inversely, we found that
only 11% of the variance of serum glucose levels can be
explained by other biomarkers at age 20, whereas 67%
of it can be explained at age 80 (Figure 10A2). We
found that the average predictability decreases by
8.7x10™ unit/year over all the biomarkers year over year
(p-value=0.03) (Figure 10B1).
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We investigated the difference in predictabilities
between sexes and ethnicities by running our pipeline
on different demographic groups. First, we established
baseline differences, looking at the full age range
(Figure 11A and 11B). We detected 15 differences
between sexes. 8 biomarkers show higher predictability
in males versus females, such as alanine amino-trans-
ferase ALT (R*=0.70 for males, R’=0.62 for females, p-
value=1.5x10°). In contrast, 7 biomarkers are better
predicted in females than males, such as red cell
distribution width (R’=0.25 for males, R*=0.41 for
females, p-value=7.2x107).
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Figure 11. Predictabilities: Differences between demographics. (A) Correlation between the predictabilities of the 50
biomarkers in the first group and the predictabilities of the 50 biomarkers in the second group. The diagonal black line represents a
perfect correlation. The further away from this line the points lie, the bigger the difference between the two groups, and the lower
the correlation. (B) Volcano plots reporting the significance and the size of the baseline (calculated on the full age range 20-80)
differences between the groups. The horizontal black lines represent the threshold of significance of 0.05 for the Bonferroni
corrected p-values. (C) Volcano plots showing which predictabilities are changing at significantly different rates with age in different
demographic groups. The horizontal black lines represent the threshold of significance of 0.05 for the Bonferroni corrected p-values.
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Figure 12. Regression coefficients: Baseline regression coefficients for the prediction of the 50 biomarkers and
significance of their changes with age. (A) Heatmap of the regression coefficients on the full cohort. Each column corresponds to the
49 coefficients used to predict the values for one of the 50 biomarkers. (B) Volcano plot of the changes of the regression coefficients with
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The purple dots are coefficients that decrease with age and remain negative. The yellow plots are coefficients that increase with age but
remain negative. The red dots are coefficients that increase with age, starting negative and ending positive. The orange dots are

coefficients that increase with age and remain positive.

We detected differences in predictabilities between
ethnicities, as well. 3 show higher predictability in non-
Hispanic Whites versus Hispanics, such as blood urea
nitrogen (R2=0.76 for non-Hispanic Whites, R?=0.65 for
Hispanics, p-value=3.2x10"), and 9 are better predicted
for Hispanics, such as glycohemoglobin (R*=0.49 for
non-Hispanic Whites, R*=0.65 for Hispanics, p-value
1.6x10™%). 6 were better predicted for non-Hispanic
Whites than for non-Hispanic Blacks, such as Blood
urea nitrogen (R?=0.76 for non-Hispanic Whites,
R?=0.68 for non-Hispanic Blacks, p-value=0.01), and
10 were better predicted for non-Hispanic Blacks, such
as red cell distribution width (R*=0.25 for non-Hispanic
Whites, R’=0.41 for non-Hispanic Blacks, p-
value=2.0x10™"?). There were no significant findings
detected when comparing the controls, confirming the
signal of findings above.

Next, we tested for significant differences between
demographic groups in the trajectories of predictabi-
lities with age (Figure 11C). We detected different age
trajectories of the predictabilities between males versus

females. Four of them (10%) showed an increase of the
signed difference between the R’s values with age, such
as alanine aminotransferase. For males, the R? value
decreases from 0.65 to 0.45 whereas for females, there
was no significant change in R” value (0.47 on average).
In contrast, in females, albumin has an R? value of 0.55
at age 20 and 0.05 at age 80; however, in males, the R?
value does not significantly change (0.22 on average).
We detected fewer differences between ethnicities
(three differences between non-Hispanic Whites and
Hispanics, and one difference between non-Hispanic
Whites and non-Hispanic Blacks).

Features that drive prediction of biomarkers change
with age

Finally, we investigated what exact biomarker variables
influence the predictions for every age. We first
estimated these coefficients on the whole cohort (Figure
12A), then examined what coefficients change with age
(Figures 12B, 13). We found that only 40 out of the
2,450 (1.6%) coefficients significantly change with age.
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Figure 13. Examples of different trajectories for changes in regression coefficients with age. (A) Target: Blood urea nitrogen.
Predictor: Osmolality. Example of a coefficient that decreases with age but remains positive. (B) Target: Sodium. Predictor: Creatinine.
Example of a coefficient that decreases with age, starts positive and ends negative. (C) Target: Sodium. Predictor: Blood urea nitrogen.
Example of a coefficient that decreases with age and remains negative. (D) Target: Blood urea nitrogen. Predictor: Sodium. Example of a
coefficient that increases with age but remains negative. (E) Target: Albumin, urine. Predictor: Creatinine. Example of a coefficient that
increases with age, starts negative and ends positive. (F) Target: Osmolality. Predictor: Blood urea nitrogen. Example of a coefficient that

increases with age and remains positive.

20 (0.8%) increase and 20 (0.8%) decrease. For example,
osmolality and sodium become weaker predictors of
blood urea nitrogen with age (Figures 13A and 13D),
while blood urea nitrogen becomes a stronger predictor
of both osmolality and sodium with age (Figure 13C and
13F). We also observed that predictor selection is
affected by age. For example, sodium and urine albumin
are not selected as predictors of create-nine for young
people but become good enough predictors to be selected
at older age (Figures 13B and 13E).

We found 70 (2.9%) significant baseline differences
between males and females, 16 (0.65%) between non-
Hispanic Whites and Hispanics, 29 (1.18%) between
non-Hispanic Whites and non-Hispanic Blacks) and 1

(0.04%) false discovery between the two controls. We
found even fewer differences for the age trajectories: 10
(0.4%) differences between sexes, 2 (0.08%) differences
between non-Hispanic Whites and Hispanics, 3
(0.012%) differences between non-Hispanic Whites and
non-Hispanic Blacks and 0 (0.00%) differences the
controls (Figure 14).

Summary

Table 6 summarizes which percentage of correlations,
predictabilities and regression coefficients are sig-
nificantly different from zero at baseline. It also reports
which percentage of correlations, predictabilities and
regression coefficients significantly change with age.
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Finally, it recapitulates the percentage of correlations,
predictabilities and regression coefficients that are
different between sexes and between ethnicities, both at
baseline and in term of changes with age.
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We also share our results on an interactive Shiny app:

http://apps.chiragjpgroup.org/Aging Biomarkers_Co-
Dependencies/.
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Figure 14. Regression coefficients: Differences between demographics. (A) Heatmaps displaying the baseline differences in the
regression coefficients between demographic groups. (B) Correlation between the 2,450 regression coefficients in the first group and the
2,450 regression coefficients in the second group. The diagonal black line represents a perfect correlation. The further away from this line
the points lie, the bigger the difference between the two groups is, and the lower the correlation coefficient is. (C) Volcano plots
reporting the baseline (calculated on the full age range 20-80) differences in regression coefficients between the groups. The horizontal
black lines represent the threshold of significance of 0.05 for the Bonferroni corrected p-values. (D) Volcano plots showing which
regression coefficients are changing at significantly different rates with age in different demographic groups. The horizontal black lines
represent the threshold of significance of 0.05 for the Bonferroni corrected p-values.
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Table 6. Summary results: number and percentage of findings in terms of correlations, predictabilities
and regression coefficients in the different demographic groups.

Analysis All Males vs Whites vs Whites vs Control 1 vs
Females Hispanics Blacks Control 2
Correlations | Baseline 883 (72.1%) 296 (24.2%) 18 (1.47%) 94 (7.67%) 0 (0.00%)
(out of 1225) | Trajectories 419 (34.2%) 36 (2.94%) 3 (0.24%) 6 (0.49%) 0 (0.00%)
Prediction Baseline 50 (100.0%) 15 (30.0%) 12 (24.0%) 16 (32.0%) 0 (0.0%)
?(flft“ff‘g‘o")s Trajectories 22 (44.0%) 5 (10.0%) 3 (6.0%) 1 (2.0%) 0 (0.0%)
Regression Baseline 625 (25.5%) 70 (2.86%) 16 (0.65%) 29 (1.18%) 1 (0.04%)
coefficients . . o o o o o
(out of 2450) Trajectories 40 (1.63%) 10 (0.41%) 2 (0.08%) 3 (0.12%) 0 (0.00%)

The “all” column reports the number and percentage of findings that were significantly (Bonferroni corrected p-value
< 0.05) different from zero during the analysis of the whole dataset, demographically wise. For example, 883 (72.1%) is
the number of baseline correlations that are significantly different from zero, including the samples of all sexes and
ethnicities in the analysis. The remaining columns are the number and percentage of significant differences detected
between the two groups mentioned in the column name. For example, 296 (24.2%) is the number of correlations
which are significantly different between males and females, when including the samples from the full age range (20-
80 years). The “baseline” rows report the number and percentage of positive findings (values significantly different
from 0) calculated on the full age range. The “trajectories” rows report the number and percentage of positive

findings (value significantly different from 0) for the rates of changes with age.

DISCUSSION

In summary, we have shown that the co-dependency
structure of biomarkers changes as humans age. Further,
we have evidence to support that the structure is
different in males and females and between ethnicities.
In general, differences between sexes are stronger than
differences between ethnicities, and more differences
were found between non-Hispanic Whites and non-
Hispanic Blacks than between non-Hispanic Whites and
Hispanics.

We found that 92% of the biomarkers, 33% of the
pairwise correlations, 44% of the predictabilities and
1.6% of the regression coefficients show significant
change with age.

Demographics played an influential role. First, we
found significant differences between sexes at baseline
(44% of the correlations, 30% of the predictabilities and
2.9% of the regression coefficients). In term of age
trajectories, we found that sex influences 2.7% of the
correlations, 10% of the predictabilities and 0.4% of the
regression coefficients. Last, we found fewer baseline
and trajectories differences between non-Hispanic
Whites and non-Hispanic Blacks, and even fewer
differences between non-Hispanic ~Whites and
Hispanics (Table 6).

Some of our results may be prone to misinterpretation
due to generational bias. For example, the physiological

indicator that was the most negatively correlated with

age was upper leg length. This can be explained by the
fact that people who are currently old are shorter than
they would have been if they had had access to
contemporary diets and quality of life of later
generations. People who are old in 2018 have shorter
upper leg length than young people in 2018, but they do
not have shorter upper leg than in their youth. Using a
longitudinal cohort, we would therefore not observe this
generational bias.

Our strongest finding regarding changes in correlations
with age was the correlation between height and systolic
blood pressure. Others have reported similar findings.
First, Bourgeois et al. [15] reported a negative
association between height and blood pressure using a
using representative cohort from the 1999-2006
NHANES, but the apparent trend reversed in young
people. Fujita et al. [16] found a positive correlation
between height and blood pressure for Japanese
children. Lu et al. [17] found that the ratio between
modified blood pressure and height decreases with age
in Han children. Interestingly, the correlation
decreases from 0.39 for young people to -0.28 for old
people, but it only decreases from 0.09 to -0.13 in
males, and from 0.07 to -0.20 in females. A potential
explanation is that on average males remain taller than
their female counterparts in every age group; however,
young males have on average higher blood pressure
than young females, whereas older males have on
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average lower blood pressure than their female
counterparts [18].

A generational bias could explain the slight shift
observed when replicating our top correlation finding
(height vs. systolic blood pressure), since the UK
Biobank participants were recruited after the NHANES
participants. Another potential explanation may be a
geographical or trans-continental UK/USA environ-
mental effect.

We hypothesize that the shrinkage of the relationship
between biomarkers may be indicative of the aging
process. Specifically, we found that, overall, the
correlation between biomarkers and their predictability
significantly decreases with age. These findings could
be explained by a progressive loss of the homeostasis,
or by the accumulation of the effects of the environment
as we age. Both those effects have the potential to
decorrelate initially correlated variables. For example,
we found that albumin levels could not be predicted in
old people; however, 55% of its variance can be ex-
plained in young people. Albumin levels are affected by
both the diet and several common diseases, such as liver
failure, heart failure, kidney damage or enteropathy
[19]. Potentially cumulative effects with time influence
the liver more than other organ systems as humans
age.

A limitation that we faced in this study was the limited
number of samples available to dissect the relationship
between ethnicity and sex in some age ranges. To
compare different demographic groups and different age
bins, we used the minimum of those different sample
sizes over the different age groups and demographics to
train the models before generating the predictabilities.
This decreased our power to detect changes with age in
predictabilities. NHANES also is limited in the infor-
mation regarding ethnicity beyond the groups studied in
this investigating, which is seen in the absence of data
from the Asian population. Last, the lack of repeated
measures to estimate inter-person correlation was a
limitation as well; and therefore, providing a personal
level correlation was not possible. Because correlations
are a group measure, we can follow the trends in groups
but not in individuals.

It is striking that a large number of significant changes
for the correlations translates into such a small number
of changes in regression coefficients. One possible
explanation is that the “regularization” analytic pro-
cedure that we used to select biomarker predictors
constrained most of the small coefficients to zero.
Another plausible explanation is that the values of the
coefficients are, in fact, changing, but because there is a

large confidence interval on the wvalues of those
coefficients, we are underpowered to detect significant
changes (changes that are statistically non-zero).

Another limitation of our study is that the biomarkers
selected are not typical chronological age biomarkers,
such as telomere length or the emerging DNA methyl-
tion clock [7]. Rather, this project aimed to understand
how the correlation structure of 50 human clinical
biomarkers changes with age. Therefore, in the future,
we would like to investigate the correlation structure of
chronological age biomarkers, such as the ones
presented in the MARK-AGE study [20] or the 44
biomarkers associated with frailty by Cardoso et al. [21]
(e.g. telomeres length, DNA methylation, inflammatory
miRNAs, interleukin 6, C-X-C motif chemokine ligand
10, C-X3-C motif chemokine ligand 1). Aside from
aging biomarkers, it would be valuable to study the
correlation structure of biomarkers focused on different
organ systems. Our current panel is focused on blood
biomarkers and anthropometrics.

The findings in this paper are relevant when building
prediction algorithms, specifically those that utilize
regularization, such as LASSO [22-28]. The biomarker
variable selection process depends on the correlations
between the predictors. If two predictors are heavily
correlated, one of them will get discarded by the model.
Because models often do not take into account time-
dependency of biomarkers and are usually built on the
entire cohort, the regularization process will only take
into account the average correlation on the full age
range covered by the data set. Based on the numerous
positive findings in this paper with respect to changes
with age, we advise to first investigate if the correla-
tions between the biomarkers used change with age. If
they do, a solution is to add interaction terms between
age and the biomarkers to the model. This is not always
done (e.g. [29]) as it increases the number of predictors
and the computational cost. Our work suggests that this
addition might improve the performance of the model.
We offer a R/Shiny web application to interactively dis-
play and explore our results to help researchers navigate
subsets of biomarkers in depth before building models.

If the generational effect component can be accounted
for, calculating the rates at which correlations,
predictabilities, or regression coefficients are changing
in different populations could also be used to monitor
and compare their aging rate. For example, we
hypothesize that populations in poor socioeconomic
conditions will show earlier and faster change in their
correlation structure than populations of high socio-
economic status. We also hypothesize that the age
trajectories differ according to smoking and dietary
status. Comparisons between sexes and ethnicities are a
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possibility as well, but they rely on the assumption that
the biology underlying aging is the same in the different
groups, and that differences can be imputed to different
aging rates. If one is willing to make this assumption,
our finding that the mean absolute value of the
correlations that significantly change with age is
decreasing 37% faster in males than females suggests
that males are aging faster than females, which could
explain their shorter longevity [30-33].

As future work, the assessment of changes in the
variance of the correlation could provide further insight
about the aging process. We hypothesize that with age,
the variance of the correlations will increase as people
get diagnosed with chronic and age-related disease. We
investigated preliminarily whether the variances of the
correlations/R*s/coefficients change with age and differ
between demographics; however, we were under-
powered to detect any robust findings.

We observed several non-linear age trajectories, such as
the decrease of the mean of the absolute values of the
correlations or the change in predictability of serum
glucose, which suggests non-linearities in the rate of
aging. Testing for non-linearity of the trajectories of
biomarkers, correlations, R’ and coefficients may also
be valuable to investigate potential non-linearities in the
rate of aging.

Finally, much work is being done to find reliable human
aging biomarkers and build biological age predictors.
Many predictors now combine several biomarkers [6,
8]. The findings of this paper call for a chronological
age-dependent definition of biological age.

MATERIALS AND METHODS
Dataset

We used the 1999-2014 cohorts of the National Health
and Nutrition Examination Survey (NHANES) dataset
(Figure 1A), a cross-sectional survey. We first selected
the biomarkers under the categories ‘“Laboratory”
(blood biomarkers) or “Examination” (anthropometric
biomarkers). We acknowledge the different definitions
of biomarkers. For the scope of this paper, we refer to
“biomarkers” when describing the variables selected,
including phenotypes such as height. When a biomarker
had its value recorded in both the American and the
international metric system, we excluded the latter. For
patients who had more than one measure for blood
pressure, we took the average. We excluded from the
analysis the individuals younger than 20 years old and
the individuals aged 80 or above because of the limited
sample size in those age ranges. We iteratively excluded
the samples and biomarkers with the most missing

values from the dataset until we were left with a
complete matrix of 27,508 samples and 54 biomarkers,
out of the initial 82,440 samples and 1,308 biomarkers
(Figure 1B). Out of the initial 1,308 biomarkers, some
correspond to repeated measures of a single biomarker,
such as blood pressure. Some of those 1,308 biomarkers
are measured in a large number of individuals, while
some others were only measured on a subset of the
cohort, hence the need to extract a complete matrix
from this scarce starting matrix.

We calculated the pairwise correlations between those
54 biomarkers and filtered out four other biomarkers,
which were more than 90% correlated with another
(total  cholesterol  correlated with  cholesterol,
hemoglobin correlated with hematocrit, white blood cell
count correlated with neutrophils number, mean cell
volume correlated with mean cell hemoglobin). We
performed logarithmic or exponential transformations
on the biomarkers to make their distributions look more
Gaussian then we centered and scaled the biomarkers
using the survey weights. A description of the
demographics can be found in Tables 1 and 2. We
tested for a change of the biomarkers with age using a
weighted linear regression (the significance threshold
was 0.05, after Bonferroni correction.)

We replicated our top finding in term of changes in
correlation with age using the UK Biobank dataset.
After preprocessing the 502,628 samples for missing
values, we obtained a sample size of 470,895. More
details about the demographics of this cohort can be
found in tables S1 and S2.

Calculation of the correlation structure of the
biomarkers

Hierarchical clustering of the biomarkers

We performed weighted hierarchical clustering using
the survey weights to group correlated biomarkers. We
corrected the clusters for age, sex and ethnicity using
partial correlations. We bootstrapped the clustering
1,000 times to estimate the significance of all the
different clusters with the R library “pvclust” [34]. We
used the default value of 0.95 for alpha to determine the
significance of each cluster. (The alpha parameter
controls how frequently the cluster must be present in
the bootstrapped trees to be considered significant.)

Calculation of the age trajectories of the correlations

First, we split the dataset by age (Figure 1C). For
individuals in each age (i.e. 20, 21, up to 79), we
computed a weighted Pearson moment correlation
between each of the 50 biomarkers in participants of the
same age, a total of 1,225 correlations (Figure 1D). We
bootstrapped the calculation of each correlation for each
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age 1,000 times to obtain a confidence interval for each
correlation at a given age. For each correlation, we per-
formed a “meta-regression” regressing the correlation
with age to test for significant change with age (Figure
1E). Because we tested for significant changes with age
in 1,225 pairwise correlations, we corrected the p-values
obtained from the meta-regressions for multiple testing
using the Bonferroni method (0.05 /1,225). If the p-value
was so low that it was recorded as zero on the computer,
we reported the negative log p-value to be superior to 308
(corresponding to the negative log p-value of the smallest
number that could be coded on the computer).

Calculation of the age trajectories of the mean of the
absolute values of the correlations

We tested for a trend in the evolution of the 1,225
correlations. At each age, we calculated the mean and
the standard deviation of the absolute values of the
1,225 correlations. We then performed a meta-analysis
to test if the mean of the absolute values of the
correlations was significantly changing with age.

We also performed a similar calculation, this time after
excluding from the analysis the 806 correlations that we
found do not significantly change with age.

Calculation of the baseline differences for the
correlations between sexes and ethnicities

For each correlation, we determined the baseline
difference between demographic groups. For each
demographic group, we computed the correlation using
the full age range (20-80) and bootstrapped this
calculation 1,000 times to obtain confidence intervals.
We then calculated the p-values using the mean and the
standard deviations of the two groups. Because we tested
1,225 pairs of biomarkers correlations, we Bonferroni
corrected the p-values obtained accordingly. We used a
threshold of 0.05 after correction for significance.

Calculation of the differences between demographic
groups in the age trajectories of the correlations

First, we split the data by demographic groups and by
age. For each group and for each age, we calculated the
1,225 correlations and their standard deviation (using
1,000 folds bootstrapping). For each age and for each
correlation, we then calculated the differences between
the groups, as well as the variance of the difference (the
sum of the variance in the two groups compared). For
each group comparison and for each correlation, we

performed a meta-regression using the values and the
standard deviation of the difference in correlation bet-
ween the two groups. We Bonferroni corrected the p-
value obtained and used a threshold of 0.05/1,225 for
significance.

Calculation of the predictability for each biomarker

To evaluate the predictability for each biomarker, we
first split the relevant cohort (in terms of demographics
and age range) into a training and a testing set (50/50).
We fit an elastic net with alpha=0.5 and we picked the
optimal lambda among 100 values suggested by the
glmnet R package using a 10 folds cross-validation on
the training set. We then generated predictions for the
testing set. Next, we switched the training and the
testing set and used the same procedure to generate
predictions on the other half of the dataset. We then
merged the prediction of both halves and compared the
predictions to the actual values over all the samples
using a non-corrected coefficient of determination (R-
squared) to report the predictability. We bootstrapped
the calculation of the R-squared 1,000 times to obtain
its standard error.

We observed that our models performed significantly
better when trained on 600 samples than when trained on
200 samples. Because different age bins have different
sample size, and that older age bins tend to have a
smaller sample size, we would have obtained biased
results that might have a decrease in the predictabilities
of the biomarkers with age. We corrected for this bias by
using the same number of samples for each age bin when
comparing predictabilities for different ages. Similarly,
we used the same number of samples to compare
between sexes and between ethnicities. Taking the
minimum of the sample sizes sometimes left us with too
few samples to reach significance so, as a consequence,
we used a larger age window for those analyses (Table
7). The windows did not overlap, and each age bin
analysis is independent from the other others.

We investigated the age trajectories of predictabilities in
two ways. First, as described above, we built a model
for each age bin, and used it to estimate the predict-
tability on this same age range. Secondly, we built a
single model on the full age range, and then evaluated
how this model performed to predict the values of the
biomarkers on different age bins. The advantage of the

Table 7. Sliding window sizes and sample sizes used for the different demographics for the calculation
of the changes in predictabilities with age.

Demographics Window Size (years) Sample size
All 1 180
Sexes 2 179
Ethnicities 5 164
www.aging-us.com 1421 AGING



first model using a sliding window is that each model is
specific to the age bin and can be analyzed in the
context of the correlations and regression coefficients of
the same age bin. The down-side is the small sample
size available to train the models. The advantage of the
second model is the larger training sample size. Its
downside is that it is not age bin specific and can
therefore not be analyzed in the context of the age bin
specific correlations and regression coefficients. To be
concise, we only present the results obtained using a
sliding window in this paper, but the results obtained
using a single model can be found on the website.

We examined the demographic differences and the age
dependence of predictabilities following the same
pipeline as we did when we examined the correlations
between biomarkers. We first established a baseline on
the full cohort and age range before performing the
analysis on the difference age bins and testing for a
significant change of the mean. Then we looked at
demographic differences both for the baseline and for
the age trajectories.

For some analyses, we obtained negative R” values.
While it is unusual, this occurs when the performance of
a model on the testing set is poorer than predicting the
mean target of the testing set for each sample.

Calculation of the regression coefficients for the
prediction of each biomarker

To calculate the regression coefficient, we built a model
using the same protocol described above to evaluate the
predictabilities, but without splitting the data into a
training and a testing set. To obtain the variance of the
coefficients, we used 100-fold parametric bootstrap-
ping. The pipeline we followed was identical to the one
used to explore age and demographics changes for
correlations and predictabilities.

We performed the pipeline on “control groups”

In order to have a negative control for our findings with
respect to sex and ethnicity differences, we built control
groups. We randomly split the samples into two groups
and performed the entire pipeline on those two groups
like we did on each sex and ethnicity. By comparing the
difference between those two groups, we estimated how
much of the differences between sexes and ethnicities
were due to random sampling, and how much were due
to biological differences.

Report of corrected p-values

P-values are probabilities and therefore take values
between zero and one, while the negative log p-values

have an upper limit of one. However, we chose to report
Bonferroni corrected p-values instead of p-values, so
each p-value is multiplied by the number of tests we ran
and can by bigger than one, and its corresponding nega-
tive log p-value is therefore not lower-bounded by zero.

Data availability

Our results can be found online in an interactive form:
http://apps.chiragjpgroup.org/Aging Biomarkers_Co-
Dependencies/.
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Figure S1. Age distribution in different demographic subgroups.
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Table S1. Demographics of the UK Biobank dataset: sample sizes.

All Males Females
All 502628 229168 273460
Prefer not to answer 1662 955 707
Do not know 217 110 107
White 571 327 244
Mixed 49 19 30
Asian or Asian British 43 20 23
Black or Black British 27 9 18
Chinese 1574 584 990
Other ethnic group 4560 1963 2597
British 442687 202371 240316
Irish 13213 6311 6902
Any other white background 16340 6293 10047
White and Black Caribbean 620 230 390
White and Black African 425 129 296
White and Asian 831 348 483
Any other mixed background 1033 379 654
Indian 5951 3012 2939
Pakistani 1837 1120 717
Bangladeshi 236 162 74
Any other Asian background 1815 980 835
Caribbean 4519 1647 2872
African 3396 1711 1685
Any other Black background 123 42 81

Table S2. Demographics of the UK Biobank dataset: age distribution.

All Males Females
All 56.5 (50-63) | 56.7 (50-64) 56.3 (50-63)
Prefer not to answer 56.7 (50-64) | 57.3 (51-64) 55.9 (50-63)
Do not know 55.0 (48-62) | 54.9 (47-62) 55.1 (48-62)
White 56.5 (50-63) | 56.0 (49-63) 57.3 (52-63)
Mixed 55.4 (48-63) | 55.6 (45-65) 55.2 (48-62)
Asian or Asian British 54.1 (45-62) | 51.0(42-55) 56.7 (52-64)
Black or Black British 53.6 (47-57) | 55.6 (50-65) 52.7 (47-56)
Chinese 52.5 (46-58) | 52.4(45-59) 52.5 (46-58)
Other ethnic group 52.5 (46-59) | 52.2 (45-59) 52.8 (46-59)
British 56.9 (51-63) | 57.1(51-64) 56.7 (50-63)
Irish 56.2 (50-63) | 56.1(49-63) 56.3 (50-63)
Any other white background 54.5 (47-61) | 54.4 (47-61) 54.6 (47-62)
White and Black Caribbean 50.3 (44-55) | 50.7 (44-57) 50.1 (44-54)
White and Black African 51.7 (45-58) | 51.4(45-57) 51.8 (45-58)
White and Asian 52.1 (44-59) | 51.5(44-58) 52.6 (45-60)
Any other mixed background 52.2 (45-59) | 53.1(45-61) 51.7 (45-58)
Indian 54.2 (47-61) | 54.6 (47-62) 53.7 (47-60)
Pakistani 51.4 (44-57) | 51.7 (44-57) 51.0 (44-57)
Bangladeshi 49.8 (42-55) | 49.0 (42-54) 51.6 (44-59)
Any other Asian background 53.0 (45-60) | 52.7 (45-60) 53.3 (46-60)
Caribbean 52.6 (46-59) | 53.0(46-59) 52.5 (46-58)
African 51.0 (44-57) | 50.6 (44-56) 51.4 (45-57)
Any other Black background 51.8 (44-59) | 51.7 (43-59) 51.9 (45-59)

The first number is the mean age of the demographic subgroup, the two numbers

between parentheses are the 25th and 75th percentile of the age distribution.
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