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ABSTRACT

It is well known that the incidence of postoperative cognitive dysfunction (POCD) is high in elderly patients. The
pathogenesis and therapeutic mechanisms of POCD, however, have not yet been completely elucidated. The
effects of gut microbiota, particularly in terms of regulating brain function, have gradually attracted increasing
attention. In this study, we investigated the potential role of gut microbiota in POCD in aged male mice and
attempted to determine whether alterations in gut microbiota would be helpful in the diagnosis of POCD. POCD
and non-POCD mice were classified by hierarchical cluster analysis of behavioral results. Additionally, a- and B-
diversity of gut microbiota showed a differential profile between the groups. In total, 24 gut bacteria were
significantly altered in POCD mice compared with those in non-POCD mice, in which 13 gut bacteria were
significantly correlated with escape latency in the Morris water maze test (MWMT). Remarkably, receiver
operating characteristic curves revealed that the Dehalobacteriaceae family and Dehalobacterium genus are
potentially important bacteria for the diagnosis of POCD. These findings indicate that alterations in the
composition of gut microbiota are probably involved in the pathogenesis of POCD in aged mice. Novel therapeutic
strategies regulating specific gut bacteria may be helpful for the prevention and treatment of POCD.

INTRODUCTION

cerebral vascular circulation, inhibition of micro-
embolism formation, and regulation of activated

Cognitive dysfunction after anesthesia and surgery has
gradually attracted increasing attention. With an
incidence of 23% in elderly patients postoperatively, it
places a heavy burden on the patients’ families and
society [1-4]. Several lines of evidence show that the
high incidence of postoperative cognitive dysfunction
(POCD) in elderly patients may be associated with an
imbalanced inflammatory response, microcirculation
disorder, microembolism formation, and abnormally
activated microglia [5-8]. However, therapeutic strate-
gies targeting anti-inflammation, improvements in intra-

microglia have not led to satisfactory clinical results [9,
10]. Thus, exploring the exact mechanisms of POCD
and developing effective treatments are of great
importance.

The gut microbiota refers to the large number of micro-
organisms in the digestive tract [11-14]; approximately
100 trillion bacteria live in the gut of the human body
[15]. Various bacteria are capable of synthesizing
vitamins necessary for human growth and development,
and these bacteria also have the physiological potential to
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synthesize amino acids, participate in sugar and protein
metabolism, and promote the absorption of mineral
elements [16-18]. An increasing number of studies are
concerned with the gut microbiota remotely regulating
the functions of the central nervous system (CNS)
through the vagus nerve or glucagon-like peptide-1
signaling pathway [19-21]. An abnormal composition of
the gut microbiota has been observed to be greatly asso-
ciated with the onset of autism, depression, schizophre-
nia, and Alzheimer's disease [11, 22-25]. Consequently,
these results suggest that the gut microbiota, at least
partially, is associated with the pathogenesis of CNS
diseases; thus, regulating its composition and improving
its physiological functions would be beneficial for the
prevention and treatment of brain diseases.

To date, the role of gut microbiota in POCD has not yet
been clearly determined. Here, we employed 16S rRNA
sequencing to observe and compare gut microbiota com-
position in mice with POCD and non-POCD phenotypes,
and we attempted to elucidate whether the gut microbiota
plays a critical role in the pathogenesis of POCD.

RESULTS

Open field test and Morris water maze test results
between the non-POCD and POCD groups

Non-POCD and POCD mice were categorized by
hierarchical cluster analysis of escape latency, platform
crossing, and time spent in a target quadrant (Figure 1B).
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Figure 1. Comparisons of OFT and MWMT between the non-POCD and POCD groups. (A) The schedule of the present study.
Seven days after acclimation, A + S was performed. OFT was performed on day 8 after 6 days of recovery. On days 9-14, mice were
scheduled for the MWMT, and the probe trial was performed on day 14. On day 15, fecal samples were collected for 16S rRNA gene
sequencing. (B) Dendrogram of hierarchical clustering analysis. A total of 20 mice were categorized into non-POCD and POCD groups based
on MWMT results of the hierarchical clustering analysis. (C) Representative trace graphs of non-POCD and POCD mice in the MWMT. (D)
Body weight (t = 0.7618, P >.05). (E) Total distance in OFT (t = 0.5285, P >.05). (F) Escape latency (t = 6.227, P <.001). (G) Platform crossing (t
=3.612, P <.05). (H) Time spent in target quadrant (t = 3.897, P <.01). A + S: anesthesia and surgery; MWMT: Morris water maze test; NP:
non-POCD; N.S.: not significant; OFT: open field test; P: POCD. Data are shown as mean + S.E.M. (n = 7). *P <.05, **P <.01 or ***P <.001.
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Locomotor activity was assessed by the total distance
traveled in the open field chamber for 5 min of
exploration. The results showed no changes in body
weight between the groups (Figure 1D). Additionally,
no significant difference was found in total distance
traveled between the groups (Figure 1E), indicating that
locomotor activity was similar between both groups.
The Morris water maze test (MWMT) was used to
evaluate cognitive behavior in the two groups. POCD
mice exhibited significantly increased escape latency
(Figure 1F). In the probe trial, platform crossing times
and time spent in a target quadrant were both
significantly decreased in POCD mice compared with
those in non-POCD mice (Figure1G and 1H).
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a-diversity and B-diversity of the gut microbiota in
non-POCD and POCD mice

a-diversity refers to the diversity of species and bacteria
within a community or habitat, whereas B-diversity
represents the differentiation among habitats [11, 26].
Shannon and Simpson indices are commonly used to
evaluate the a-diversity of gut microbiota. There was a
significant decrease in the Shannon index but a
significant increase in the Simpson index in POCD mice
compared with non-POCD mice (Figure 2B and 2C).
Furthermore, a partial least squares discrimination
analysis (PLS-DA) and principal coordinates analysis
(PCoA) revealed that the dots of the non-POCD group
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Figure 2. Differential profiles of the gut microbiota between the non-POCD and POCD groups. (A) Bray—Curtis diversity
distance. (B) Shannon index (t = 3.454, P <.01). (C) Simpson index (t = 2.195, P <.05). (D) PLS-DA analysis of gut bacteria data. (E) PCoA
analysis of 7 gut bacteria data (PC3 vs. PC2). a-diversity data are shown as mean + SEM (n = 7). PCoA: principal coordinate analysis; PLS-

DA: partial least squares discrimination analysis. *P <.05, **P <.01.
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were clearly separated from that of the POCD group
(Figure 2D and 2E). Therefore, it is likely that the
composition of the gut microbiota is significantly
different between the two groups.

Abundance of the composition of gut microbiota at
phylum, class, order, family, genus, and species
levels in the non-POCD and POCD mice

Heat maps of the gut microbiota composition at the
phylum, class, order, family, genus, and species levels
in the non-POCD and POCD groups are shown (Figure
3A-3F).

Alterations in the gut microbiota composition
between the POCD and non-POCD mice

16S rRNA gene sequencing was used to determine the
differences in the composition of gut microbiota
between the POCD and non-POCD mice. The results
revealed that a total of 24 gut bacteria at six phy-
logenetic levels (phylum, class, order, family, genus,
and species) were significantly altered in fecal samples
of mice between the groups (Figure 4A—4X). The
relative abundance of 10 bacteria was significantly
increased in the POCD group compared with the non-
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POCD group (Figure 4A, 4C, 4E, 4H, 4K, 4L, 4P, 45,
4U, and 4X). In contrast, the relative abundance of 14
bacteria was significantly decreased in the POCD
group compared with the non-POCD group (Figure 4B,
4D, 4F, 4G, 41, 4], 4M, 40, 4Q, 4R, 4T, 4V and 4W).

Correlation analysis between escape latency and gut
bacteria levels

Escape latency in the probe trial was selected to
represent MWMT behavior, a reflection of spatial
memory [11]. Correlations between the escape latency
of a total of 14 mice and the relative abundance of 24
bacteria were analyzed (FigureSA—5X). The results
revealed that 12 gut bacteria were negatively correlated
with escape latency (Figure5B, 5D, SF, 5G, 51, 5], 5SM—
50, 5R, 5T, and 5W). In contrast, the relative
abundance of Escherichia coli (E. coli) was positively
correlated with escape latency (Figure 5X).

Evaluation of gut bacteria for the diagnosis of POCD
using receiver operating characteristic curve
analysis

Receiver operating characteristic (ROC) curves were

constructed to indicate the diagnostic ability of the gut
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Figure 3. Heatmaps of the composition of gut bacterium at phylum, class, order, family, genus, and species levels between
the non-POCD and POCD groups. (A) Heatmap (phylum level). (B) Heatmap (class level). (C) Heatmap (order level). (D) Heatmap (family

level). (E) Heatmap (genus level). (F) Heatmap (species level).
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bacteria in POCD (Figure 6). The best cutoff values, anesthesia- and surgery-induced POCD are summarized
sensitivity, specificity, positive and negative predictive in Table 1.
values, and accuracy of gut bacteria for the diagnosis of
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Figure 4. Differential levels of the gut bacterium between the non-POCD and POCD groups. (A) Relative abundance of Phylum
Chlamydiae (t = 2.258, P <.05). (B) Relative abundance of Phylum Tenericutes (t = 2.186, P <.05). (C) Relative abundance of Phylum TM7 (t
=2.591, P <.05). (D) Relative abundance of Class Betaproteobacteria (t = 2.255, P < 0.05). (E) Relative abundance of Class Chlamydiae (t =
2.258, P <.05). (F) Relative abundance of Class Erysipelotrichia (t = 2.359, P <.05). (G) Relative abundance of Class Mollicutes (t = 2.186, P
<.05). (H) Relative abundance of Class TM7-3 (t = 2.591, P <.05). (I) Relative abundance of Order Anaeroplasmatales (t = 2.208, P <.05). (J)
Relative abundance of Order Burkholderiales (t = 2.255, P <.05). (K) Relative abundance of Order Chlamydiales (t = 2.258, P <.05). (L)
Relative abundance of Order CW040 (t = 2.591, P <.05). (M) Relative abundance of Order Erysipelotrichales (t = 2.359, P <.05). (N) Family
Alcaligenaceae (t = 2.255, P <.05). (0) Relative abundance of Family Anaeroplasmataceae (t = 2.208, P <.05). (P) Relative abundance of
Family Chlamydiaceae (t = 2.258, P <.05). (Q) Relative abundance of Family Dehalobacteriaceae (t = 3.118, P <.01). (R) Relative abundance
of Family Erysipelotrichaceae (t = 2.359, P <.05). (S) Relative abundance of Family F16 (t = 2.591, P <.05). (T) Relative abundance of Genus
Anaeroplasma (t = 2.208, P <.05). (U) Relative abundance of Genus Chlamydia (t = 2.258, P <.05). (V) Relative abundance of Genus
Dehalobacterium (t = 3.118, P <.01). (W) Relative abundance of Genus Sutterella (t = 2.255, P <.05). (X) Relative abundance of Species
Escherichia coli (t = 2.263, P <.05).
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Figure 5. Correlations between escape latency and the composition of gut bacterium (N=14). (A) Phylum Chlamydiae (r =
0.49, P>.05). (B) Phylum Tenericutes (r = -0.66, P<.05). (C) Phylum TM7 (r = 0.10, P>.05). (D) Class Betaproteobacteria (r = -0.68, P<.01).
(E) Class Chlamydiae (r = 0.49, P>.05). (F) Class Erysipelotrichia (r = -0.64, P<.05). (G) Class Mollicutes (r = -0.66, P<.05). (H) Class TM7 3 (r
= 0.10, P>.05). (l) Order Anaeroplasmatales (r = -0.62, P<.05). (J) Order Burkholderiales (r = -0.68, P<.01). (K) Order Chlamydiales (r =
0.49, P>.05). (L) Order CW040 (r = 0.10, P>.05). (M) Order Erysipelotrichales (r = -0.64, P<.05). (N) Family Alcaligenaceae (r = -0.68,
P<.01). (O) Family Anaeroplasmataceae (r = -0.62, P<.05). (P) Family Chlamydiaceae (r = 0.49, P>.05). (Q) Family Dehalobacteriaceae (r =
-0.48, P>.05). (R) Family Erysipelotrichaceae (r = -0.64, P<.05). (S) Family F16 (r = 0.10, P>.05). (T) Genus Anaeroplasma (r = -0.66, P<.05).
(U) Genus Chlamydia (r = 0.49, P>.05). (V) Genus Dehalobacterium (r = -0.48, P>.05). (W) Genus Sutterella (r = -0.68, P<.01). (X) Species
Escherichia coli (r =0.71, P<.01).

DISCUSSION POCD mice showed abnormal behavioral performance in
escape latency, platform crossing, and time spent in a
The MWMT has been widely employed to assess the target quadrant compared with non-POCD mice 1 week
symptoms of POCD in rodents [1, 11, 27]. In the present after anesthesia and surgery. At present, although several
study, we categorized the mice into POCD and non- lines of evidence observed a significant increase in
POCD groups by hierarchical cluster analysis of beha- POCD symptoms approximately 3 days after anesthesia
vioral results of the MWMT using the protocol we pre- and surgery [28], we selected 1 week considering that
viously reported [1, 11, 27]. Remarkably, we found that POCD generally develops 1 week postoperatively.
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Phylum Chlamydiae (AUC, 0.837). (B) Phylum Tenericutes (AUC, 0.755). (C) Phylum TM7 (AUC, 0.612). (D) Class Betaproteobacteria
(AUC, 0.857). (E) Class Chlamydiae (AUC, 0.837). (F) Class Erysipelotrichia (AUC, 0.857). (G) Class Mollicutes (AUC, 0.755). (H) Class-
TM7-3 (AUC, 0.612). (1) Order Anaeroplasmatales (AUC, 0.816). (J) Order Burkholderiales (AUC, 0.857). (K) Order Chlamydiales
(AUC, 0.837). (L) Order CW040 (AUC, 0.612). (M) Order Erysipelotrichales (AUC, 0.857). (N) Family Alcaligenaceae (AUC, 0.857). (O)
Family Anaeroplasmataceae (AUC, 0.816). (P) Family Chlamydiaceae (AUC, 0.837). (Q) Family Dehalobacteriaceae (AUC, 1.0). (R)
Family Erysipelotrichaceae (AUC, 0.857). (S) Family-F16 (AUC, 0.612). (T) Genus Anaeroplasma (AUC, 0.816). (U) Genus Chlamydia
(AUC, 0.837). (V) Genus Dehalobacterium (AUC, 1.0). (W) Genus Sutterella (AUC, 0.857). (X) Species Escherichia coli (AUC, 0.857). A
+S: anesthesia and surgery; AUC: area under curve; ROC: receiver operating characteristic.

a- and B-diversity are effective and practical indicators
for the overall composition of gut microbiota [11, 26].
The Shannon index was significantly decreased in
POCD mice, whereas the Simpson index was markedly
increased. This result indicates that the species and
number of gut bacteria were significantly lesser in
POCD mice than in non-POCD mice. [B-diversity,
including PLS-DA and PCoA, demonstrated that the
dots of the non-POCD group were clearly separated
from those of the POCD group. Recently, Yang et al.
[29] reported that POCD could be alleviated using
prebiotic galacto-oligosaccharide to target the gut—brain
axis. These findings indicated that there was a sig-
nificant dissimilarity in the composition of gut micro-
biota between the POCD and non-POCD phenotypes.

16S rRNA sequencing provides direct evidence on the
role of specific bacteria in disease and treatment
processes [30]. In this study, a total of 24 specific gut
bacteria were significantly altered in the POCD versus
the non-POCD phenotypes. Furthermore, 10 bacteria,
including those from the Chlamydiae and TM7 phyla,
were increased in POCD mice than in non-POCD mice.

Mycoplasma is a type of minimal prokaryotic cell that
has no cell wall, is highly pleomorphic, and can be
cultured in an artificial medium [31]. In this study, we
found that the Chlamydiae phylum and Chlamydiae
class were increased at five levels in the fecal samples
of POCD mice. Interestingly, neurological symptoms
occurred in approximately 25% of hospitalized pediatric
patients with Mycoplasma pneumoniae infection [32].
More importantly, Mycoplasma infection preoperatively
exacerbated the symptoms of POCD in 18-month-old
rats [33], which is consistent with our results. It is
therefore likely that Mycoplasma infection is highly
associated with the onset and symptom severity of
POCD. Treatment strategies such as macrolides
antibiotics, which inhibit Mycoplasma infection, may
favor recovery from POCD. Further detailed studies on
the role of Mycoplasma in the pathogenesis and thera-
peutic mechanisms of POCD are clearly warranted.

E. coli is agram-negative, facultative anaerobic, rod-
shaped, coliform bacterium that is commonly present in
the lower intestine of warm-blooded organisms [34]. In
this study, we found that the abundance of E. coli was
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significantly increased in the feces of POCD mice.
Although no study has reported on the role of E. coli in
POCD, Barrientos et al. [35] found that E. coli has the
pathological capacity to cause deficits in memory
function in 24-month-old rats. Considering that [-
lactam antibiotics are recommended to prevent and treat
E. coli infection [36], it is implied that B-lactam
antibiotics could be adopted to improve POCD. Large-
scale clinical studies are required to validate this
possibility in humans.

The increase in conditional bacteria can promote
POCD, and the loss of several gut bacteria can also
result in POCD. In this study, we demonstrated that the
Erysipelotrichia class, Erysipelotrichales order, and
Erysipelotrichaceae family, which belong to the
Firmicutes phylum, were significantly decreased in the
feces of POCD mice compared with that of non-POCD
phenotype. Additionally, the Anaeroplasmatales order,
Anaeroplasmataceae family, and Anaeroplasma genus,
which belong to the Tenericutes phylum, were decreas-

Table 1. Evaluation of the gut bacterium for the diagnosis of anesthesia- and surgery-induced POCD.

Cut-off Positive Negative
Evaluation index value Sensitivity Specificity predictive predictive Accuracy
value value

Phylum-Chlamydiae, (n) 0.1554 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Phylum-Tenericutes, (n) 0.2099 | 42.9% (3/7) | 100% (7/7) 100% (3/3) 63.6% (7/11) | 71.4% (10/14)
Phylum-7TM7, (n) 0.0678 | 100% (7/7) 28.6% (2/7) | 58.3% (7/12) | 100% (2/2) 64.3% (9/14)
Class-Betaproteobacteria, (n) 03174 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Class-Chlamydiia, (n) 0.1554 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Class-Erysipelotrichia, (n) 0.6544 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Class-Mollicutes, (n) 0.2099 | 42.9% (3/7) | 100% (7/7) 100% (3/3) 63.6% (7/11) | 71.4% (10/14)
Class-TM?7-3, (n) 0.0678 | 100% (7/7) 28.6% (2/7) | 58.3% (7/12) | 100% (2/2) 64.3% (9/14)
Order-Anaeroplasmatales, (n) 1.1459 | 100% (7/7) 71.4% (5/7) | 77.8% (7/9) | 100% (5/5) 85.7% (12/14)
Order-Burkholderiales, (n) 0.3174 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Order-Chlamydiales, (n) 0.1554 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Order-CW040, (n) 0.0678 | 100% (7/7) 28.6% (2/7) | 58.3% (7/12) | 100% (2/2) 64.3% (9/14)
Order-Erysipelotrichales, (n) 0.6544 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Family-Alcaligenaceae, (n) 03174 | 71.4% (5/7) | 100% (7/7) | 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Family-Anaeroplasmataceae, (n) | 1.1459 | 100% (7/7) 71.4% (5/7) | 77.8% (7/9) | 100% (5/5) 85.7% (12/14)
Family-Chlamydiaceae, (n) 0.1554 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Family-Dehalobacteriaceae, (n) | 0.0436 | 100% (7/7) 100% (7/7) 100% (7/7) 100% (7/7) 100% (14/14)
Family-Erysipelotrichaceae, (n) | 0.6544 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Family-F16, (n) 0.0678 | 100% (7/7) 28.6% (2/7) | 58.3% (7/12) | 100% (2/2) 64.3% (9/14)
Genus-Anaeroplasma, (n) 1.1459 | 100% (7/7) 71.4% (5/7) | 77.8% (7/9) | 100% (5/5) 85.7% (12/14)
Genus-Chlamydia, (n) 0.1554 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Genus-Dehalobacterium, (n) 0.0436 | 100% (7/7) 100% (7/7) 100% (7/7) 100% (7/7) 100% (14/14)
Genus-Sutterella, (n) 03174 | 71.4% (5/7) | 100% (7/7) 100% (5/5) 77.8% (7/9) 85.7% (12/14)
Species-Escherichia coli, (n) 0.0456 | 85.7% (6/7) | 85.7% (6/7) | 85.7% (6/7) | 85.7% (6/7) 85.7% (12/14)
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ed in POCD mice. Collectively, these findings suggest
that exogenous supplementation with Firmicutes and/or
Tenericutes may be beneficial for the prevention and
treatment of POCD.

As previously mentioned, although evidence based on
peripheral blood biomarkers and CNS imaging have
been reported to help confirm the diagnosis of CNS
diseases [37, 38], no objective and accurate indicators
currently exist for the diagnosis of POCD, a condition
that primarily depends on subjective cognition
function scales. It is therefore likely that the objective
quantification of the gut microbiota could provide a
reference for the diagnosis and treatment of POCD.
We first analyzed the correlation between gut bacteria
levels and escape latency and found that a total of 13
gut bacteria were positively or negatively correlated
with behavior. Next, we constructed ROC curves and
found that the Dehalobacteriaceae family and Dehalo-
bacterium genus may be sensitive indicators for the
diagnosis of POCD, although their roles in POCD are
still not well understood. Collectively, these findings
suggest that the levels of gut bacteria could correlate
with alterations in behavioral performance.

In conclusion, POCD is significantly associated with an
abnormal composition of gut microbiota, and abnormali-
ties in specific gut bacteria may be involved in the
pathogenesis of POCD. The quantification of specific gut
bacteria could provide objective indicators and new ideas
for the diagnosis of POCD. Future clinical trials, however,
are clearly needed to validate the role of gut microbiota in
the pathogenesis and therapeutic mechanisms of POCD.

MATERIALS AND METHODS
Animals

A total of 20 eighteen-month-old male C57BL/6J mice
(28-32 g) were obtained from the Laboratory Animal
Center of Tongji Medical College, Huazhong University
of Science and Technology (Wuhan, China). The animals
were housed with a 12-h light/dark cycle and food and
water ad libitum. The laboratory conditions were
maintained at 22°C + 2°C and a relative humidity of 60%
+ 5%. All experimental protocols were performed in
strict accordance with the National Institutes of Health
guidelines and regulations. This study was approved by
the Experimental Animal Committee of Tongji Hospital,
Tongji Medical College, Huazhong University of Science
and Technology (Wuhan, China).

Anesthesia and surgery

As shown in Figure 1A, mice were acclimated to the
environment for 7 days before the experiments were

conducted. The intramedullary fixation for tibial
fracture surgery was performed as previously described
[39, 40]. Briefly, mice were anesthetized using 3%
isoflurane induction, followed by 2% isoflurane
maintenance with 100% oxygen. Under aseptic surgical
conditions, the left tibia was shaved and disinfected
using povidone iodine. Next, a 0.3-mm pin was inserted
into the tibial medullary cavity after the tibia was
exposed, thus achieving intramedullary fixation, and
osteotomy was performed. Finally, the incision was
sutured with 5-0 Vicryl thread after necessary debri-
dement, and compound lidocaine cream was applied to
the wound locally twice daily for 3 days postsurgery for
incision pain. The rectal temperature of the mice was
maintained at 37°C + 0.5°C during the surgery using a
heating blanket. After surgery, the mice were placed
back on the heated pads to recover and were then
returned to their own cages with food and water ad
libitum. The body weights of all mice were recorded.

Open field test

As described in our previous study [1], each mouse was
gently placed into the center of an open field chamber
(40 x 40 x 40 cm) under dim light and allowed to move
freely for 5 min. The movement parameters of all the
mice were automatically monitored and analyzed by a
video camera connected to the Any-Maze animal
tracking system (Wuhan Yihong Technology Co., Ltd.,
Wuhan, China). The total distance covered was used to
determine the locomotor activity of the mice under-
going anesthesia and surgery in this study.

Morris water maze test

Spatial learning and memory function were assessed
using the MWMT as reported in our previous study
[11]. Mice were subjected to four trials each day for 5
consecutive days in a circular pool containing a 10-cm-
diameter hidden platform, which was submerged 1 cm
below the water surface in the target quadrant. Each
mouse was permitted 60 s to find the submerged
platform. If the mice failed to locate the platform, they
were guided to the platform and remained there for 15 s
before being returned to their cages. The time spent to
reach the platform (escape latency) was measured. On
the sixth day, a 60-s probe trial was recorded to assess
reference memory, in which the platform was removed.
The number of times the mice crossed the platform area
(platform crossing) and time spent in the target quadrant
were recorded using a digital video camera.

16S rRNA analysis of fecal samples

The fecal samples were collected immediately after all
behavioral tests (Figure 1A). Samples were placed in
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1.5-ml tubes, snap-frozen on dry ice, and stored at
—80°C. The 16S rRNA analysis of fecal samples was
performed by the Beijing Genomics Institute (Shenzhen,
China). DNA extraction was performed using TIANamp
stool DNA kits (Tiangen Biotechnology Company,
Beijing, China). Genomic DNA was amplified in 50 pL
triplicate reactions with bacterial 16S rRNA gene (V3—
V4 region )-specific primers: 338F (5'-ACTCCTACGG
GAGGCAGC-3") and 806R (5-GG ACTACHVGGGT
WTCTAAT-3’). The reverse primer contained a sample
barcode, and both primers were connected with an
Ilumina sequencing adapter. Polymerase chain reaction
(PCR) products were purified, and the concentrations
were adjusted for sequencing on an Illumina Miseq
PE300 system. Original sequencing reads from the
sample were sorted by unique barcodes, followed by
removal of the barcode, linker, and PCR primer
sequences. The resultant sequences were screened for
quality, and =>70 base pairs were selected for
bioinformatics analysis. All sequences were classified
using the National Center for Biotechnology Information
BLAST and SILVA databases. Distance calculation,
operational taxonomic units cluster, rarefaction analysis,
and estimator calculation (a- and P-diversity) were
performed using MOTHUR program [11].

a-diversity analysis

a-diversity analysis, including Shannon and Simpson
indices, were determined using MOTHUR ver.1.31.2.
The Shannon and Simpson indices described the
probability that the number of individuals obtained from
the same two consecutive samples in a bacterium
community [11].

p-diversity analysis

B-diversity analysis was conducted as a heat map of
Bray—Curtis diversity (calculated by QIIME ver.1.80)
distance by using the heatmap function in the NMF
package of R ver. 3.1.1.

Partial least squares discrimination analysis

A PLS-DA analysis of the two principal components
with the highest contribution was conducted using the
mixOmics package of R ver. 3.1.1.

Principal coordinates analysis

A PCoA analysis of Bray—Curtis was conducted using a
random iterated algorithm in QIIME ver.1.80.

Heat map analysis

Heat map analysis clustering of the relative abundance
of six phylogenetic levels in all samples was conducted

using Euclidean and complete functions in the gplots
package of R ver. 3.1.1.

Receiver operating characteristic curve

ROC curves illustrate the diagnostic ability of a binary
classifier system with the true positive rate (sensitivity)
as the ordinate and the false positive rate (1-specificity)
as the abscissa. The ROC curves were used to detect the
recognition of the gut bacterium to POCD. The closer
the ROC curve is to the upper left corner, the higher is
the accuracy. The value of the AUC (area under curve)
represents the accuracy of the diagnosis.

Statistical analysis

Values presented are expressed as mean + standard
error of the mean. The statistical analyses were
performed using GraphPad Prism 7 (GraphPad
Software, San Diego, CA, USA). Student’s r-test was
used to measure the differences between the two
groups. A correlation analysis was conducted using
Pearson’s product-moment coefficient. The diagnostic
cutoff values, sensitivity, specificity, and accuracy were
determined by ROC curve analysis. P values <0.05
were considered statistically significant.
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