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ABSTRACT

Aging is the main risk factor for most chronic diseases. Epigenetic mechanisms, such as DNA methylation
(DNAm) plays a pivotal role in the regulation of physiological responses that can vary along lifespan. The aim of
this research was to analyze the association between leukocyte DNAm in genes involved in longevity and the
occurrence of obesity and related metabolic alterations in an adult population. Subjects from the MENA cohort
(n=474) were categorized according to age (<45 vs 45>) and the presence of metabolic alterations: increased
waist circumference, hypercholesterolemia, insulin resistance, and metabolic syndrome. The methylation levels
of 58 CpG sites located at genes involved in longevity-regulating pathways were strongly correlated (FDR-
adjusted< 0.0001) with BMI. Fifteen of them were differentially methylated (p<0.05) between younger and
older subjects that exhibited at least one metabolic alteration. Six of these CpG sites, located at MTOR
(cg08862778), ULK1 (cg07199894), ADCY6 (cg11658986), IGFIR (cg01284192), CREB5 (cg11301281), and RELA
(cg08128650), were common to the metabolic traits, and CREB5, RELA, and ULK1 were statistically associated
with age. In summary, leukocyte DNAm levels of several CpG sites located at genes involved in longevity-
regulating pathways were associated with obesity and metabolic syndrome traits, suggesting a role of DNAm in
aging-related metabolic alterations.

INTRODUCTION pectancy and Healthy Life Expectancy, WHO (2014)).

However, this extended lifespan is associated with an
Improvements in health care and nutrition, more increase in the prevalence of age-related diseases [1].
efficient infrastructure and access to basic supplies have On the other hand, obesity and its comorbidities have
been increasing life expectancy worldwide, leading to a been reported to decrease longevity and accelerate
shift towards older populations (Methods for Life Ex- aging. For example, a recent report has associated
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obesity with shorter longevity [2]; where normal-weight
men lived on average about six years more than morbidly
obese men, whereas morbidly obese women tended to
live two years less than normal-weight women. Similarly,
there is a relationship between obesity-related diseases
and mortality or years of life lost (YLL). It has been
estimated that obesity-related diseases increase lessened
life years by 0.2 to 11.7 years depending on age BMI,
gender and ethnic background [3].

Aging is an unavoidable physiological process,
characterized by a progressive decline of functions in
tissues and organs and is a risk factor for several
pathological conditions including metabolic and cardio-
vascular diseases, neurodegenerative disorders and
cancer [4, 5]. In this context, aging is considered a
major factor contributor to abdominal obesity, insulin
resistance, type 2 diabetes and metabolic syndrome [6].
Interestingly, cases of extreme longevity exhibit a
healthier phenotype associated to a lower prevalence of
overweight and obesity, and lower blood pressure [7].
Mechanisms involved in the aging process are diverse
and include genomic instability, telomere shortening,
deregulated nutrient sensing, mitochondrial dysfunction,
cellular senescence, stem cell exhaustion, altered
cellular senescence, loss of proteostasis, and epigenetic
changes [8, 9]. Longevity regulating pathways encom-
pass several genes and associated signaling pathways
that can modulate processes such as autophagy, protein
synthesis, nutrient sensing, mitochondrial function,
oxidative stress, among others [10]. Some of the sig-
naling pathways more intrinsically associated with
longevity are those of the Insulin/Insulin Like Growth
Factor (IGF-1) system, mammalian target of rapamycin
(mTOR) and Sirtuin 1 (SIRT1). In invertebrate species,
it has been demonstrated that a reduced signaling in
insulin/IGF-1 can increase lifespan [11, 12]. On the
other hand, mTOR is a sensor that integrates environ-
mental and intracellular signals. It has been shown that,
the inhibition of mTORC1 with rapamycin increases
lifespan in several animal models, which opens the door
to new therapeutic approaches focused on aging [13].
Moreover, sirtuins also play a key role in longevity,
where brain-specific Sirtl-overexpressing transgenic
mice show significant life span extension, and aged
mice exhibit phenotypes consistent with a delay in
aging. SIRT1 can be modulated by caloric restriction,
which extends lifespan in several organisms, and is the
target of resveratrol, which has the ability to extend the
lifespan of yeast, worms, and flies [14-16].

Altered epigenetic landscapes have been described in
relation to aging. One of the most studied epigenetic
mechanisms is DNA methylation, a dynamic process
that controls genomic integrity and transcriptional
activity. DNA methylation consists in the addition of a

methyl group at the carbon 5 position of cytosine ring to
obtain 5-methylcitosine [17], occurs at specific sites and
can vary along cycles of life [18]. Changes in DNA
methylation affects crucial processes such as chromatin
states, gene expression, and cell renewal, among others
[19]. In general terms, CpG methylation within pro-
moters can lead to transcriptional repression and
promoter regions from highly expressed genes are
hypomethylated [20]. However, gene expression could
be also affected by changes in DNA methylation in
regions such as 5° UTR, 3" UTR or gene body, although
the mechanism is less understood [20]. During aging,
mammalian cells undergo global DNA hypomethyla-
tion, especially at repetitive transposable sequences,
which mostly occurs in a stochastic manner, as well as
local DNA hypermethylation [21]. Therefore, DNA
hypomethylation appears to be a key factor associated
to aging and longevity processes. Our group has
previously reported that the methylation levels of 55
CpG sites in white blood cells were significantly
associated with age [22]. In older subjects, global DNA
methylation patterns have been correlated with frailty,
which is related with the relaxation of the epigenetic
control impacting in functional decline [23]. In contrast
to germ-line inherited genetic mutations, DNA methy-
lation is theoretically reversible due to the action
environmental factors [24,25], which opens the door to
modulate aging-related epigenetic marks through
specific lifestyle and dietary interventions.

The use of epigenetic techniques and algorithms could
predict the risk of a disease considering inter-individual
epigenetic variability and be useful to prevent disease
progression. The aim of this study is to analyze DNA
methylation patterns of genes involved in longevity-
regulating pathways in young and old subjects that
exhibit metabolic alterations in order to understand the
implication of these epigenetic DNA signatures in the
development of aging-related metabolic complications.

RESULTS

Demographic, anthropometric and metabolic
characteristics

Demographic, anthropometric and metabolic charac-
teristics of the whole population ordered by median age
are shown (Table 1). Population was divided according to
median age (45 years) and as expected, older subjects (>
45 years) presented increased body mass index (BMI),
waist circumference (WC), systolic and diastolic blood
pressure (HT), insulin resistance (IR), and circulating
cholesterol and triglyceride levels when compared to
younger individuals. Differences in cholesterol levels
were associated mainly to an increase in low-density
lipoprotein cholesterol (LDL-c) and no significant
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differences were detected in high-density lipoprotein
cholesterol (HDL-c).

DNA methylation in genes of longevity-regulating
pathways in relation to BMI

Longevity and lifespan are influenced by genetics, the
environment, and lifestyle. As phenotypes can vary
substantially among individuals, we analyzed if DNA
methylation of genes involved in longevity-regulating
pathways is deregulated in presence of metabolic
alterations. These genes were identified by using KEGG
database (“Longevity-regulating pathway”). A first
analysis was performed by correlating all DNA
methylation sites across the 450K array with BMI.
Among the 13,268 CpGs significantly associated with
BMI (p<0.05), we focused on the 58 methylation sites
that located in genes participating in the longevity-
regulating pathway (FDR-adjusted p-value <0.0001)
(Supplementary Figures 1-2, Supplementary Table 1).
Hereafter, 25 of these CpG sites were statistically
significant (p<0.05) between younger (<45 y) and older
subjects (>45 y), and genomic and statistical data of
these 25 CpG sites are shown (Tables 2-3). In a second

step, we decided to perform a search of this 25 CpG sites
in public repositories such as Gene Expression Omnibus
(GEO) databases with metabolic phenotypes related to
our study population (Supplementary Table 2). This
analysis was conducted in four tissues such as PBMC
(peripheral blood mononuclear cells), liver biopsies,
subcutaneous and visceral fat to evaluate the methylation
state in selected CpG sites (Table 4). GSE76399 com-
pared insulin resistant and insulin sensitive individuals in
PBMC, whereas GSE65057 compared obese and non-
obese individuals in liver samples. In liver tissue from
obese subjects, 13 CpG sites were hypomethylated
showing a similar pattern in comparison to our results
(blue lines in Table 4). In adipose tissue, we found only a
hypermethylation for cg07199894 in ULKI gene in
omental fat and hypo-methylation for cg11322849 (INS),
cgl4844401 (ADCYS) and cgl4323456 (RHEB) in
subcutaneous fat, but it is important to note that sample
size, gender and BMI were very different among
studies. It is noteworthy that we found more
coincidence between our results (that were based on the
CpGs that were differential according to BMI) and the
study comparing the methylation patterns between
obese and non-obese subjects in liver, than to the study

Table 1. Demographic, anthropometric and metabolic characteristics of the whole population and

stratified by median age.

Variable All (n=474) <45 years (n=224) >45 years (n=250)
Age (years) 47.2+14.1 34.5+7.6 58.3+8.3
Men/women 171/303 60/164 111/139
Body weight (kg) 81.6+19.1 80.2+20.0 83.0+18.2
BMI (kg/m?) 30.1+5.6 29.0+6.0 30.9+5.2"
WC (cm) 95.7+16.1 91.4+17.6 99.7+13.4"
SBP (mm Hg) 12128 101+35 124+42"
DBP (mm Hg) 89+25 75432 90+32"
Glucose (mg/dl) 102+30 90+19 113+33"
Insulin (mIU/L) 9.6+7.0 9.0+6.4 10.7+7.8"
HOMA-IR index 2.44+2.28 2.13+£1.98 2.96+2.64"
Total cholesterol (mg/dl) 205+40 191+37 216+39°
HDL-c (mg/dl) 53=+13 54+14 54+13
LDL-c (mg/dl) 127437 117+36 137+35"
Triglycerides (mg/dl) 120 £72 105+70 132+73°

Categorical variables are presented as number of cases and continuous variables as means * standard
deviations. BMI: body mass index; WC: waist circumference; SBP: systolic blood pressure; DBP: diastolic blood
pressure; HOMA-IR index: homeostatic model assessment-insulin resistance index; HDL-c: high-density
lipoprotein cholesterol; LDL-c: low-density lipoprotein cholesterol. "<45 years vs 245 years, p<0.05.
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performed in PBMC (similar to our cells) but which that the population studied in GSE76285 was com-

compared insulin resistant versus insulin sensitive posed by subjects with extreme obesity (BMI >35),
individuals. Another important difference between our which makes difficult to find the same CpGs in both
study and the GSE76285 performed also in PBMC is studies.
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Figure 1. Methylation levels (beta values mean + SEM) of CpGs located at genes of the longevity-regulating pathway in relation
to waist circumference categories after age and sex adjustments. Normal waist circumference vs High waist circumference levels,
p<0.01**; p<0.001***; p<0.0001****, Cut-off value between both groups was 102 cm for men and 88 cm for women.
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Figure 2. Methylation levels (beta values mean + SEM) of CPGs located at genes of the longevity-regulating pathway in
relation to total cholesterol categories after age and sex adjustments. Normal cholesterol vs High cholesterol levels, p<0.05%;
p<0.01**; p<0.001***; p<0.0001****, Cut-off value between both groups was 200 mg/dI of total cholesterol in plasma.
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Table 2. Genomic data of the CpG sites located at longevity-regulating pathway genes that were statistically
associated with BMI.

INlumina_ID Gene name Gene Chromosomal  Genomic p-value FDR Limma
symbol (CHR) region adjusted B
position p-value
1 cg08862778  Mechanistic target of MTOR 1:11322643 TSS200 1.8E-13 3.3E-10 18.8
rapamycin kinase
2 cgl1322849  Insulin, transcript variant 1 INS 11:2182783 TSS1500  1.5E-10 5.1E-08 12.2
3 cg07199894  Unc-51 like autophagy ULK] 12:132379104  TSS200 1.3E-08 1.4E-06 7.83
activating kinase 1
4 cgl11658986 Adenylate cyclase 6 ADCY6 12:49177605 IstExon 1.5E-08 1.5E-06 7.7
5 cg14862787 cAMP responsive element CREBS 7:28507879 S'UTR 4.1E-08 3.1E-06 6.7
binding protein 5
6 ¢g05792022  Forkhead box O1 FOXO01 13:41239732 1stExon 4.7E-08 3.5E-06 6.6
7 cg04149773  Adenylate cyclase 6 ADCY6 17:78518437 TSS200 1.4E-07 7.8E-06 5.5
8 cgl4113970 Calcium/calmodulin CAMK4 5:110789928 Body 2.1E-07 1.0E-05 5.1
dependent protein kinase IV,
transcript variant 1
9 cg14844401 Adenylate cyclase 5, ADCYS 3:123133741 Body 2.3E-07 1.1E-05 5.0
transcript variant 1
10 cgl4267811 TSC complex subunit 1, TSC1 9:135819425 5'UTR 3.2E-07 1.4E-05 4.7
transcript variant 4
11 cg01284192  Insulin like growth factor 1 IGFIR 15:99500473 Body 4.1E-07 1.6E-05 4.5
receptor, transcript variant 1
12 cg24061580 Protein kinase AMP- PRKAG2  7:151573966 S'UTR 4.7E-07 1.8E-05 4.4
activated non-catalytic sub-
unit gamma 2, transcript
variant a,
13 cg06223834 Adenylate cyclase 9 ADCYY9 16:4103161 Body 6.2E-07 2.2E-05 4.1
14 cg19503731 AKT serine/threonine kinase ~ AKT3 1:244007303 TSS1500 1.3E-06 3.8E-05 34
3, transcript variant 2
15 cgl13154908  Phosphatidylinositol-4,5- PIK3CA 3:178869001 5'UTR 1.5E-06 4.3E-05 32
bisphosphate 3-kinase
catalytic subunit alpha
16 cgl18237616  Ras homolog, mTORCI RHEB 7:151191667 Body 2.0E-06 5.2E-05 3.0
binding
17 cgl14323456 Ras homolog, mTORC1 RHEB 7:151205434 Body 2.0E-06 5.3E-05 2.9
binding
18 cg01781374  Calcium/calmodulin CAMK4 5:110777659 Body 2.1E-06 5.4E-05 2.9
dependent protein kinase IV,
transcript variant 1
19 cgl1301281 cAMP responsive element CREBS 7:28513286 S'UTR 2.4E-06 6.0E-05 2.8
binding protein 5, transcript
variant 2
20 ¢g02823066 Insulin like growth factor 1,  IGFI 12:102819748  Body 2.5E-06 6.1E-05 2.7
transcript variant 3
21 ¢g20300093 Adenylate cyclase 5, ADCY5 3:123138250 Body 2.7E-06 6.6E-05 2.6
transcript variant 1
WWwWw.aging-us.com 1878 AGING



22 cgl4077232 Euchromatic histone lysine EHMTI 9:140656200 2.7E-06 6.6E-05 2.6

methyltransferase 1,
transcript variant 1

RELA proto-oncogene, NF-kB
subunit, transcript variant 1

Body

23 cg08128650 RELA 11:65426704 Body 3.3E-06 7.6E-05 2.5

24 cgl9418273 cAMP responsive element CREB3L2 17:137562440 3'UTR 3.8E-06 8.3E-05 23

binding protein 3 like 2,
transcript variant 1
Ribosomal protein S6 kinase
B, transcript variant 1

25 cgl14072989 RPS6KBI  17:57974225 Body 4.5E-06 9.3E-05 2.2

Data are sorted by FDR values. 'CpG identifier, °CpG locations were mapped using GRCh37 version of the genome from Ensembl

platform. BMI: body mass index; CHR: chromosome; FDR: False Discovery rate; B: LIMMA B-statistic from LIMMA.

Table 3. Methylation levels of CpG sites located at genes of the longevity-regulating pathways and
differences between both age groups.

CpG Gene <45 years > 45 years p-value
1 cg08862778 MTOR 0.111 +£0.001 0.106 +0.001 0.0422
2 cgl1322849 INS 0.576 £ 0.003 0.565+0.003 0.0115
3 cg07199894 ULK1 0.227 £ 0.004 0.243 +£0.003 0.0068
4 cg11658986 ADCY6 0.721 +£0.002 0.709 £+ 0,002 0.0016
5 cgl4862787 CREBS 0.833 +0.001 0.822 +0.001 <0.0001
6 cg05792022 FOX01 0.213 +0.002 0.201 + 0.002 0.0002
7 cg04149773 ADCY6 0.741 £ 0.002 0.732 £ 0.002 0.0019
8 cgl4113970 CAMKA4 0.774 £ 0.003 0.759 £ 0.004 0.0198
9 cg14844401 ADCYS5 0.649 + 0.002 0.641 £ 0.002 0.0343
10 cgl4267811 TSC1 0.190 + 0.003 0.177 +£0.003 0.0049
11 cg01284192 IGFIR 0.801 £ 0.002 0.792 + 0.002 0.0051
12 cg24061580 PRKAG?2 0.217 £ 0.002 0.209 + 0.001 0.0067
13 cg06223834 ADCY9 0.773 £ 0.003 0.758 £ 0.003 0.0009
14 cgl19503731 AKT3 0.865 +0.001 0.860 + 0.001 0.0401
15 cg13154908 PIK3CA 0.798 £ 0.003 0.788 = 0.003 0.0497
16 cgl8237616 RHEB 0.840 £ 0.002 0.830 +0.002 0.0039
17 cgl4323456 RHEB 0.821 +£0.003 0.810 £+ 0.004 0.0456
18 cg01781374 CAMKA4 0.831 +£0.002 0.822 £ 0.002 0.0099
19 cgl1301281 CREBS5 0.763 £ 0.001 0.752 +£0.001 <0.0001
20 cg02823066 IGF1 0.658 +0.002 0.647 +0.002 0.0028
21 ¢g20300093 ADCYS5 0.618 £ 0.002 0.609 £ 0.002 0.0032
22 cgl4077232 EHMTI 0.823 £ 0.002 0.812 £ 0.002 0.0026
23 cg08128650 RELA 0.777 £ 0.001 0.766 + 0.002 0.0001
24 cgl19418273 CREB3L2 0.844 + 0.002 0.835 +0.003 0.0316
25 cg14072989 RPS6KBI 0.825 +0.002 0.814 £ 0.003 0.0308

CpG beta values are grouped by age and p values are shown. Data are expressed as beta values mean + SEM.
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Table 4. Methylation levels of 25 CpG sites located at genes of the longevity-regulating pathways that were differentially
methylated between younger (<45 y) and older subjects (245 y) in GEO datasets. GSE76399 compared insulin resistant and
insulin sensitive individuals in PBMC, whereas GSE65057 compared obese and non-obese individuals in liver samples.

PMBC (GSE76399) Liver tissue (GSE65057)

CpG Gene Ins- Sens (n=40) Ins- Resist (n=40) P value Non-Obese (n=7) Obese (n=8) P value
cg08862778 MTOR 0.022 £ 0.001 0.024 £ 0.001 0.145 0.069 = 0.004 0.079 £ 0.009 0.357
cgl1322849 INS 0.692 +0.006 0.668 £ 0.016 0.154 0.676 = 0.008 0.626 +0.017 0.025
cg07199894 ULKI 0.199 + 0.006 0.206 = 0.007 0.447 0.319£0.011 0.311+£0.014 0.661
cgl1658986  ADCY6 0.675 +0.008 0.677 +£0.007 0.893 0.621 £0.010 0.566 £ 0.010 0.003
cgl4862787  CREBS 0.875 £ 0.003 0.856+0.016 0.255 0.719+£0.011 0.720 £ 0.020 0.968
cg05792022  FOXO! 0.209 + 0.004 0.204 + 0.005 0.470 0.261 = 0.007 0.237+0.014 0.170
cg04149773  ADCY6 0.724 £0.018 0.726 £ 0.019 0.959 0.797 = 0.006 0.748 £ 0.019 0.035
cgld113970 CAMK4 0.881 +0.027 0.827 +£0.037 0.236 0.850 = 0.008 0.795 £ 0.026 0.078
cgl4844401  ADCYS5 0.698 £ 0.010 0.658 £0.028 0.186 0.657£0.011 0.631£0.016 0.202
cgl4267811 TSC1 0.209 £+ 0.005 0.211 £ 0.005 0.775 0.219 £ 0.006 0.212+£0.012 0.605
cg01284192 IGFIR 0.842 £+ 0.005 0.837 +0.005 0.471 0.815+0.009 0.774 £ 0.009 0.008
cg24061580 PRKAG?2 0.199 +0.004 0.186 = 0.005 0.060 0.247 £ 0.004 0.244 £ 0.008 0.760
cg06223834  ADCY9 0.867 £ 0.006 0.821 £0.030 0.143 0.838 £0.010 0.795 £0.015 0.042
cgl19503731 AKT3 0.953 +0.003 0.946 = 0.003 0.086 0.902 £+ 0.006 0.895+0.010 0.578
cgl3154908 PIK3CA 0.955 +£0.003 0.949 £+ 0.003 0.087 0.927 £ 0.004 0.909 + 0.006 0.029
cgl8237616 RHEB 0.919 £ 0.018 0.914+0.018 0.860 0.712+0.017 0.717 £0.015 0.819
cgl4323456 RHEB 0.956 +0.004 0.956 = 0.003 0.958 0.929+0.010 0.886 £0.015 0.039
cg01781374  CAMKH4 0.926 £0.016 0.878 £ 0.023 0.097 0.839+0.012 0.852+0.012 0.457
cgl1301281 CREBS 0.768 £0.019 0.733 £ 0.024 0.256 0.636 £ 0.011 0.584+0.016 0.024
cg02823066 IGF1 0.649 +0.021 0.619+0.037 0.481 0.319+0.015 0.323 £0.013 0.830
cg20300093  ADCYS5 0.639 +£0.017 0.594 £ 0.028 0.172 0.708 = 0.009 0.647 £0.027 0.068
cgl4077232  EHMTI 0.954 +0.002 0.956 = 0.002 0.479 0.905 £ 0.005 0.901 £0.013 0.806
cg08128650 RELA 0.799 £ 0.011 0.768 = 0.017 0.138 0.698 + 0.006 0.666 £0.015 0.077
cgl9418273 CREB3L2 0.964 +0.003 0.960 = 0.004 0.527 0.940 £+ 0.005 0.907 £ 0.007 0.003
cgl4072989 RPS6KBI 0.948 £ 0.006 0.947 £ 0.006 0.994 0.904 £0.013 0.839 £0.023 0.033

Ins- Sens: Insulin sensitive; Ins-Resist: Insulin Resistant. PBMC: Peripheral Blood Mononuclear Cells. Blue boxes represent significant

changes in DNAm (p<0.05).

Methylation levels in longevity-regulating pathways
and metabolic alterations

From those 25 CpG sites that were differentially
methylated among age categories, a second filter was
applied. Subjects were categorized according the
presence of metabolic alterations and the new selection
was made based in those CpGs that were either hypo- or
hypermethylated according to age and metabolic traits,

cgl1322849 (INS), cg07199894 (ULKI), cgl4844401
(4DCY5), ¢g20300093 (ADCYS), cgl1658986 (ADCY0),
cg04149773  (ADCY6),  cgld862787  (CREBY),
cgl1301281  (CREBS),  ¢g05792022  (FOXOI),
cgl4267811 (TSCI), cg02823066 (IGF1), cg01284192
(IGFIR), cg08128650 (RELA), cg24061580 (PRKAG?2)
(Figure 1). Of these 15 CpG sites, cg07199894 (ULKI)
was the only hypermethylated.

in the same direction: those CpGs that were hypome- Thirteen CpG were positively associated with
thylated in the disease must be also hypomethylated hypercholesterolemia: cg08862778 (MTOR),
with age, and vice versa. To perform this analysis, bi- cg07199894 (ULK1), cgl1658986 (ADCYo0),
nary categories were created (absence or presence of the cg04149773  (ADCY6), cg06223834  (ADCY9),
condition) as previously described: Abdominal obesity, cgl8237616  (RHEB), ¢g05792022  (FOXOI),
hypercholesterolemia, insulin resistance and metabolic cg01781374  (CAMK4), cgll1301281  (CREBS),

syndrome. Fifteen CpG sites were positively asso-
ciated with abdominal obesity: cg08862778 (MTOR),

cgl4267811 (TSCI), cg08128650 (RELA), cg01284192
(IGFIR), cg24061580 (PRKAG?2) (Figure 2).
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Figure 3. Methylation levels (beta values mean £ SEM) of CPGs located at genes of the longevity-regulating pathway in relation to
HOMA-index categories after age and sex adjustments. Normal HOMA-index vs High HOMA-index levels, p<0.05*; p<0.01**; p<0.001***;
p<0.0001****_ Cut-off value between both groups was a 2.4 HOMA-IR index, higher levels was considered insulin resistant.

Twelve CpG sites were associated with HOMA index:
cg08862778 (MTOR), cgl1322849 (INS), cg07199894
(ULKI), cgl11658986-cg04149773 (ADCY6), cgl14862
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Figure 4. Methylation levels (beta values mean + SEM) of CPGs located at genes of the longevity-regulating pathway in
relation to Metabolic Syndrome categories after age and sex adjustments. Non-Metabolic syndrome vs Metabolic
syndrome, p<0.05%; p<0.01**; p<0.001***; p<0.0001****, Metabolic syndrome was defined as the presence of three of
five criteria: large waist circumference reduced HDL-c, hypertriglyceridemia, hypertension and fasting hyperglycemia.
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Table 5. Methylation levels of CpG sites associated with BMI in the whole population and located at genes of
the longevity-regulating pathways, according to metabolic phenotype in the older sub-population (2 45 years).

CpG site Gene Normoglycemia (n=112) Hyperglycemia (n=127) P value
cg20406576 PRKAG?2 0.802 + 0.003 0.789 + 0.003 0.005
200210002 EHMT?2 0.150 + 0.004 0.136 + 0.004 0.009

CpG site Gene HOMA-IR < 2.5 (n=75) HOMA-IR >= 2.5 (n=53) P value
cg21511036 1RSI 0.129 + 0.002 0.119 + 0.003 0.014
cg20406576 PRKAG? 0.791 + 0.003 0.776 + 0.005 0.023
cg01749142 AKTI 0.140 + 0.004 0.158 + 0.005 0.005
cg15283498 FOX03 0.799 + 0.006 0.825 + 0.004 0.003
cg17848496 IRS1 0.818 = 0.004 0.832 + 0.003 0.037
cg03813033 AKTISI 0.111+0.003 0.093 + 0.002 0.000
cg07012178 PRKAG2 0.755 = 0.003 0.737 +0.003 0.001
cg18028483 SESNI 0.751 + 0.006 0.772 £ 0.006 0.033
cg12566890 ADCY? 0.715 + 0.003 0.702 + 0.003 0.005
cgl3574337 ADCY9 0.665 + 0.006 0.638 + 0.005 0.003
cg13796676 SIRTI 0.813 +0.006 0.834 + 0.005 0.012
cg06772578  PPARGCIA 0.783 £ 0.006 0.805 + 0.005 0.015
cg10421188 CREBS 0.637 + 0.004 0.614 + 0.004 0.001
cg24937356 PRKAA2 0.792 + 0.006 0.814 + 0.004 0.013
cg04932465 CAMKK?2 0.666 = 0.004 0.647 + 0.005 0.006
cg08315825 IGFIR 0.795 + 0.007 0.819 + 0.006 0.018
¢g00210002 EHMT2 0.136 = 0.004 0.114 + 0.004 0.001
cg11322849 INS 0.557 +0.005 0.539 + 0.006 0.044
cg07199894 ULK1 0.254 +0.007 0.284 + 0.006 0.006
cg14862787 CREBS 0.819 + 0.002 0.810 + 0.003 0.042
cg14844401 ADCY5 0.631 +0.005 0.614 + 0.005 0.025
cg01091261 ADCY9 0.799 + 0.003 0.788 + 0.004 0.048
cg06223834 ADCY9 0.770 £ 0.004 0.786 + 0.005 0.018
cg08128650 RELA 0.762 + 0.003 0.751 + 0.003 0.042

CpG site Gene Non-Hypertriglyceridemia Hypertriglyceridemia P value
(n=177) (n=55)

cg21511036 IRS1 0.138 £ 0.001 0.130 + 0.003 0.030

cg20406576 PRKAG2 0.798 + 0.002 0.786 + 0.004 0.025

cg01749142 AKTI 0.127 +0.002 0.139 + 0.004 0.014

cg15283498 FOXO03 0.783 + 0.004 0.805 + 0.006 0.013

cg03813033 AKTISI 0.122 + 0.002 0.110 + 0.004 0.027

cg12566890 ADCY2 0.721 + 0.002 0.710 + 0.004 0.019

cgl3613346 EHMT? 0.865 + 0.004 0.881 + 0.003 0.032

¢g00210002 EHMT?2 0.149 + 0.003 0.127 + 0.004 0.000

cg11322849 INS 0.568 + 0.003 0.550 + 0.006 0.010

cg04149773 ADCY6 0.734 + 0.002 0.725 + 0.003 0.044
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Finally, eleven CpG sites were associated with
metabolic syndrome: cg08862778 (MTOR),
cg11322849 (INS), cg07199894 (ULKI), cgl1658986-
cg04149773 (ADCY0), cg14862787-11301281 (CREB)Y),
cg14844401-cg20300093 (4ADCY5), cg01284192
(IGFIR) and cg08128650 (RELA) (Figure 4).

In an attempt to define age-specific CpG sites, we
decided to perform a characterization in the older sub-
jects according to their metabolic phenotype. Starting
from the 58 CpG sites associated with BMI residing in
longevity regulating genes in the whole population
(FDR<0.0001), and using the same criteria to split the
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.“‘
Waist Circumference \"-\
(CpGs=15)
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" CREBS (cg11301281)
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ADCYG (cg11658986)
IGFIR (cg01284192

(CpGs=

12)

HOMA-Index
(CpGs=12)

/
/ Body Mass Index
(CpGs=15)

Figure 5. Venn diagram showing the common CpG sites differentially methylated between the different metabolic disturbances.

Table 6. Pathway enrichment analysis results ('q-value (FDR: BH-method) less than 0.05').

N° Pathway  Pathway Name P value Category Genes r
CpG  Source Adj
15 KEGG Longevity regulating ~ 2.27E-26 All ADCYS5, ADCY6, ADCY9, CAMK4, CREBS, 0
pathway FOXOl, IGF1, IGFIR, INS, MTOR, PRKAG?2,
RELA, RHEB, TSCI, ULK1
12 KEGG Longevity regulating  3.23E-21 Cholesterol ADCY6, ADCYY9, CAMK4, CREBS, FOXOI, 0.072
pathway IGFIR, MTOR, PRKAG2, RELA, RHEB,
7SCI1, ULKI
10 KEGG Longevity regulating ~ 8.67E-18 HOMA-Index ADCYS, ADCY6, CREBS, FOXOI, IGF1, 0.153
pathway IGFIR, INS, MTOR, RELA,ULK1
12 KEGG Longevity regulating ~ 3.23E-21 Waist ADCYS5, ADCY6, CREBS, FOXOI, IGF1, 0.341
pathway Circumference IGFIR, INS, MTOR, PRKAG2, RELA, TSCI,
ULK1
8 KEGG Longevity regulating  2.30E-14 Metabolic ADCYS5, ADCY6, CREBS, IGFIR, INS, MTOR, 0.092
pathway Syndrome RELA, ULK]

KEGG: Kyoto Encyclopedia of Genes and Genomes. HOMA: homeostatic model assessment BMI: Body mass index.
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population based on metabolic parameters as previously
described, we observed that new CpG sites (blue lines
in Table 5) appear differentially methylated in
hyperglycemia, insulin resistance and hypertriglyceri-
demia but not in hypercholesterolemia. Interestingly, 8
CpGs  (cgl1322849, cg07199894, cgl4862787,
cgegl4844401, cg01091261, cg06223834, cg08128650,
cg04149773 in gray lines, Table 5) coincide when the
whole population and the old sub-population are
analyzed, which suggests that these genes could have a
greater impact in metabolic regulation (Table 5).
Moreover, PRKAG2 (cg20406576) and EHMT?2
(cg00210002) are hypomethylated in subjects with
hyperglycemia, HOMA-IR >2.5 and hypertrigly-
ceridemia. In the case of /RS (cg21511036), AKTISI
(cg03813033), ADCY2 (cgl2566890 and EHMT?
(cg00210002) are hypomethylated, whereas AKTI
(cg01749142), FOXO3 (15283498), are hypermethyl-
ated in subjects with insulin resistance and hyper-
triglyceridemia.

In a second step, PathDIP was used to perform a
pathway enrichment analysis and address the impact of
these epigenetic marks on longevity-related molecular
processes. This analysis showed that those CpG sites
associated with the occurrence of metabolic alterations
contributed significantly to the regulation of longevity-
regulating pathways (Table 6). Moreover, multiple
linear regressions adjusted by LARS (least-angle
regression) were performed to determine which CpG
sites contributed in a significant way to the metabolic
traits. The resulting models show that the identified
CpG sites have an important impact in abdominal
obesity measured as waist circumference (adjusted
1:0.341), and also in insulin resistance expressed as
HOMA-index (adjusted r*:0.153) (Table 6).

As mentioned before, a total of 15 CpG sites are hypo-
or hypermethylated in older subjects, but only six of
these CpG sites are common for all the metabolic
alterations previously described (Figure 5). In a second
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Figure 6. Correlations between DNA methylation levels (beta values) at CpGs located at genes of the longevity-regulating pathway and
age, after sex adjustment. In (A) cg08128650, RELA, (B) cg11301281, CREBS5, and (C) cg07199894, ULK1 (n=474 subjects).

WWWw.aging-us.com

1884

AGING



approach, correlations between methylation levels and
age were made for the six CpG sites located at the genes
MTOR, ULK1, ADCY6, IGFR1, CREBS and RELA. In
the case of cg08128650 (RELA) and cgl11301281
(CREBS), methylation levels negative correlated with
age, while cg07199984 (ULKI1) showed a significant
positive correlation (Figure 6). Considering that a small
number of common CpG sites are significant associated
with age and r* adjusted values are small, we decided to
create a z-score that includes those 25 CpG sites
differentially methylated according to age previously
described (Table 3) and a linear regression was per-
formed analyzing this z-score with age, adjusted by BMI
(Figure 7). This analysis showed a statistically significant
association with age (r%:0.098, p<0.0001), where older
subjects presented hypomethylation in CpG sites related
to genes involved in longevity-regulating pathways.
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Figure 7. Relation between Z-scores of methylation levels and
age. Values reflect the significant change in Z-scores from CpG
methylation (25 CpG sites, n=474) according age, after BMI
adjustment.

Analysis of DNA methylation in the older
subpopulation (>45 y)

DNA methylation patterns were analyzed using the
whole population to define CpG sites related to BMI,
but it is plausible to think that using a mixed population
could mask a specific pattern related to age and whether
BMI-associated CpGs differ significantly in young and
older individuals. To address this, starting from
normalized beta values, a new analysis was performed
to identify CpG sites associated with BMI in young and
old subjects, separately. Using the same criteria as
described above (p-value <0.05), a total of 470 CpG
sites were identified in <45 y subjects (n=220) while in
>45 y subjects, (n=250) a total of 52,991 CpG sites. In a
second step, we selected CpGs residing in longevity
genes with a FDR value (p<0.0001) and this only could

be possible in the older group where a total of 14 CpG
sites were identified (Table 7). When the old sub-
population is compared with the whole population, 6
CpGs (FDR<0.0001) are coincident in these two groups
(cgl4113970, cgl13551841, cg15283498, cg21511036,
cg06772578, cg07012178, in gray lines, Table 7).

Four of these CpGs that were found in the older
population (blue and green lines) had not appeared
before  (cg04566392, cg08779982, cg24773542,
cg13804196) but two of them belong to the genes
EHMT2 and PRKACG, previously described in the
whole population. Finally, four of these CpGs found in
the older population also became significant
(cg08048831, cg03310087, cg07340599, cg21184115,
in purple lines, Table 7). These four CpGs in the whole
population did not reach statistical significance, maybe
because we are mixing both young and older
populations, and when the older sub-population is
analyzed alone, this effect disappears.

In a similar manner to that performed in the whole
population, in the pursuit to obtain CpGs associated to
metabolic disturbances in the sub-old population, we
decided to split the old population (>45 y) according to
their metabolic phenotype and analyze these CpGs. In
the old sub-population, from the 14 CpG sites that were
associated with BMI in Table 7, we observed that three
CpG sites were hypomethylated in hyperglycemia
(cgl3551841, cg08779982, cg21511036), two CpG
sites were hypomethylated (cgl3551841 and
cg21511036) and one CpG residing in ADIPORI
(cg04566392) was hypermethylated in insulin resis-
tance, and the CpG residing in /RS7 (cg21511036) was
hypomethylated in subjects with hypertriglyceridemia
(Table 8). In this analysis, cg21511036 (IRSI) was
hypomethylated in subjects with hyperglycemia, insulin
resistance and hypertriglyceridemia. Those CpG sites
were not previously described (blue lines). It is note-
worthy that ¢g21511036 (/RS1) appears as a conserved
hypomethylated CpG in the whole population and also,
in the old sub-population (Tables 5 and 8), which
suggests an important role in lipid and glucose
disturbances.

We were not able to validate these results with other
techniques due to the lack of DNA, but in an attempt to
contrast these results, we decided to search these
identified CpGs in GEO database. We did not find
significant differences in CpG sites in selected datasets
(Supplementary table 2) in tissues as blood or visceral
fat. In liver biopsies, two CpG sites (cgl5283498-
FOXO03; cg07012178-PRKAG2) were hypomethylated,
whereas in subcutaneous adipose tissue from subjects
with or without metabolic syndrome, cg07340599
(CREBS) and cg08779982 (TSC2) were hypomethylated.
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Table 7. CpG sites residing in longevity genes identified in older subjects (FDR_2
45 y) in comparison to the whole population (FDR_Total).

ID Gene FDR _>45 FDR_Total
cg04566392 ADIPORI 1.89E-05 NA
cg08779982 7SC2 4.31E-05 NA
cg24773542 EHMT? 3.43E-05 NA
cg13804196 PRKACG 1.91E-05 NA
cg08048831 IGFIR 2.93E-05 1.00E-04
cg03310087 IGFIR 9.18E-05 5.00E-04
cg07340599 CREBS 8.48E-05 1.00E-04
cg21184115 FOXO03 1.29E-05 2.00E-04
cg14113970 CAMK4 8.66E-05 1.00E-05
cg13551841 EHMTI 4.79E-05 5.12E-07
cg15283498 FOX03 2.76E-05 2.01E-06
cg21511036 IRS1 2.72E-06 5.01E-11
cg06772578 PPARGCIA 3.35E-05 3.83E-05
cg07012178 PRKAG?2 1.35E-05 6.28E-05

FDR: False Discovery Rate

Table 8. DNA methylation of CpG sites associated with BMI (FDR<0.0001) and residing in
longevity regulating pathways according to metabolic phenotypein 245y.

CpG site Gene Normoglycemia Hyperglycemia P value
(n=112) (n=127)
cgl3551841 EHMTI 0.708 £ 0.004 0.695 + 0.004 0.023
cg08779982 ISC2 0.856 + 0.002 0.848 + 0.002 0.013
cg21511036 IRS1 0.137 £0.002 0.129 + 0.002 0.013
CpG site Gene HOMA-IR <2.5 HOMA-IR >=2.5 P value
(n=75) (n=53)
cg04566392 ADIPORI 0.067 = 0.002 0.076 + 0.002 0.003
cgl3551841 EHMTI 0.717 £ 0.004 0.690 = 0.006 0.000
cg21511036 IRS1 0.146 = 0.002 0.135 +0.003 0.002
CpG site Gene Non-Hypertriglyceridemia Hypertriglyceridemia P value
(n=177) (n=55)
cg21511036 IRS1 0.135 + 0.002 0.124 + 0.003 0.004
DISCUSSION other aging 1is an unavoidable

Longevity is considered the survival up to advanced
ages[26]. Long-lived people are those who exceeds >90
years and in some cases, are individuals who have
stabilized or avoided age-related diseases [27]. On the

characterized by a progressive decline of functions in
tissues and organs and is associated to mortality [28].
Up to date, several GWAS and linkage and candidate
gene association studies have identified genetic
variants, such as those for apoliprotein E (APOE) and
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forkhead box O3 (FOXO3A4), that have been consis-
tently associated with longevity [29]. In the case of
APOE, APOE g2 isoform decrease the risk of cardio-
vascular disease and APOE &4 isoform limits longevity
[30] and FOXO3 is linked to insulin/insulin-like growth
factor 1 (IGF1) signaling [31]. Another classic genetic
model of increased lifespan in mammals is the growth
hormone receptor (GHR) knock-out mouse, as well as
its corresponding genetic defect in humans (Laron
syndrome), which is characterized by extreme insulin
sensitivity and protection to cancer [32,33]. These
studies suggest that genetic variants are important
contributors to the variability in longevity, but it is
important to find other regulators of the longevity
process. In this context, epigenetic modifications seem
to be crucial in aging and longevity processes since they
can integrate genetic and environmental factors

The present study has identified fifteen CpG sites that
whose methylation levels showed statistical differences
between younger and older subjects that exhibited at
least one metabolic alteration and were significantly
associated with longevity-regulating pathways. As
expected, in our population study, older subjects were
more prone to develop metabolic alterations, where no
gender differences were found. According to the
enrichment pathway analysis and linear regression
models, a total of six CpG sites (located at the genes
MTOR, ADCY6, IGFRI, ULKI, CREB5 and RELA)
were common to individuals that exhibited at least one
metabolic alteration related to aging. One of these CpG
sites (cg08862778) is located at MTOR gene, which
codifies the mammalian target of rapamycin (mTOR), a
serine/threonine protein kinase that can form two
complexes: mTORC1 and mTORC?2 [34]. This protein
can regulate protein translation, protein homeostasis and
cellular growth due to its capacity as energy sensor [34].
mTOR can be negatively regulated by rapamycin and
caloric restriction, and inhibition of mTORCI1 activity is
known to increase lifespan in yeast, nematodes, flies
and mice [35]. In humans, no associations have been
found in SNPs for mTOR complex components in cases
of extreme longevity [36], however, mTOR has been
shown to be deregulated in several aging-related
pathologies such as obesity, diabetes, cardiovascular
disease and cancer [34]. Higher levels of mTOR and a
chronic activation of mTORCI in tissues from obese
mice and humans appears to play a key role in the
development of insulin resistance and type 2 diabetes,
which is supported by the results of treatments with
metformin, which is known to negatively regulate the
action of mTOR [37]. Our results show that
cg08862778 (MTOR) is hypomethylated in older sub-
jects and also, in those subjects who exhibit abdominal
obesity, hypercholesterolemia, insulin-resistance and/or
metabolic syndrome. This CpG site is located in a

genomic region known as “Transcription start sites”
(TSS200) that belong to the promoter region [38], and
could be associated with an upregulation of MTOR, but
this need to be demonstrated since there is evidence for
cases where hypomethylation is associated with gene
upregulation in autoimmune diseases [39,40] and early
stages of tumorigenesis.

A second CpG site hypomethylated in older subjects
(cg11658986) is located in the first exon of ADCY6
gene. ADCY6 encodes adenylyl cyclase 6, a key
protein in the synthesis of cyclic AMP from ATP [41].
ADCY family encodes at least 9 closely related iso-
forms (1-9) and shares a large sequence homology [42]
with functions on learning and memory, olfaction and
cardiac contractility [43], but up to date, there is no
evidence in metabolism. Nevertheless, genome-wide
association studies have shown that ADCY3 poly-
morphisms (rs2033655 and rs1968482) are associated
with obesity [44] and other SNPs are involved in
proximal gene regulation through changes in DNA
methylation [45] .

Another CpG hypomethylated site corresponds to
cg01284192, located in the body of /IGFIR gene. This
gene encodes a receptor that binds insulin-like growth
factor with high affinity and plays a key role in cell
growth and survival control. It is overexpressed in
several types of cancer and has been implicated in the
transformation into malignant cells and cell survival
promotion [46]. Although it should be necessary to
measure IGF1R expression levels, IGFIR gene has been
reported to be hypomethylated in placentas exposed to
maternal impaired glucose tolerance, which suggests its
potential implication in fetal programming [47].
Additionally, heterozygous loss-of-function mutations
in the /GF IR were found to be enriched in the cohort of
Ashkenazi Jewish centenarians compared to controls
[48]. All these sets of evidences suggest IGFIR as a
possible candidate gene in aging-related processes [48].

Our results show that three of six CpG sites
differentially methylated (in RELA, CREBS5 and ULK]I
genes) also correlated with age. Methylation levels for
cg08128650, located in the body of the RELA gene, are
associated negatively with age. RELA encodes a
transcription factor known as p65, a subunit of NF-xB
[49]. This complex is involved in cellular response
against several stimuli such as stress, cytokines, UV
radiation, oxidized LDL and some bacterial or viral
antigens [50]. Methylation at RelA subunit can
modulate DNA binding and transcriptional activity, and
a deregulation of NFkB, mainly a constitutively
activation, is associated with inflammatory and tumori-
genesis development [51,52]. The hypomethylation of
RELA that we have found supports its role; never-
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theless, DNA methylation within the gene body is less
understood and requires further analysis.

A second differentially methylated site is cgl11301281,
which exhibits a negative association with age and is
located in the 5” UTR of CREBS5 gene. CREBS5 encodes
cyclic AMP-responsive element binding protein 5, a key
factor in cell growth, proliferation, differentiation and
cell cycle control [53]. Up-regulation of CREBS5 is
associated with metastatic process [54], inflammatory
response genes and modulation of immune responses
[55-57]. It is well known that aging is associated with
an inflammatory state that contributes to the patho-
genesis of several diseases. Transcriptomic and
epigenetic analyses in nonagenarian men revealed that
CREB5 methylation was related to inflammatory
response genes in a gender-specific manner [58]. In
comparison with our results, we did not find gender
differences, but our age spectrum is wider and cannot be
compared with a nonagenarian population. A third CpG
(cg07199984, located in the TSS200 region of ULKI
gene) was hypermethylated in older individuals. ULK/
encodes Unc-51 Like Autophagy Activating Kinase 1
(ULK1), a serine/threonine-protein kinase involved in
autophagy in response to starvation [59]. Autophagy is
a cellular degradation and recycling process that is
highly conserved in all eukaryotes [55] and is associated
with an extension in lifespan [60]. Under conditions of
amino acid starvation or mTOR inhibition, ULKI1
phosphorylates Beclin-1 to let a complete induction of
autophagy [61, 62]. Autophagy has a key role in lipid
homeostasis after lipid mobilization lowering their
potential toxicity [63, 64] and it is well stablished that
autophagy dysfunction is linked to aging-related
pathologies such as Alzheimer’'s disease and type 2
diabetes [65]. Our results show a hypermethylation that
could disrupt transcription factor binding to the gene,
suggesting a potential silencing of ULK]/ transcription
and inhibition of autophagy [66]. This result is related
also to the hypomethylation reported for cg08862778 at
MTOR gene, which suggests mTOR activation which
can promote lower levels of autophagy [67,68].

In an attempt to evaluate age-specific CpGs, we
perform a similar analysis taking into account only old
subjects, but we did not identify the same results in
CpGs associated with BMI. We thought that differences
between analyzing the whole population and subjects
divided by age, are due to different exposures along the
lifetime and due to this is not a follow-up study. How-
ever, in the young population we can identify a few
CpGs in comparison with old subjects, which suggests
that aging is driving methylation changes. When older
subjects are analyzed as a separate group, we identified
two genes that are differentially methylated in
metabolic disturbances, and also are associated with

BMI in the whole population, suggesting a potential
role in metabolic disturbances. /RS belongs to the
Insulin receptor substrate 1, and DNA promotor
methylation and expression in human adipose tissue are
related to fat distribution and metabolic traits [69].
EHMTI gene codifies a histone methyltransferase to
promote transcriptional repression; a key process in
gene regulation associated to aging, and also is
associated to the control of brown adipose cell fate and
thermogenesis [70,71].

The epigenome, including DNA methylation signatures,
undergoes a notable changes during the lifetime and
undoubtedly can influence the aging process [19]. For
this reason, epigenetic clocks are promising biomarkers
of aging [72]. Recently, it has been developed a DNAmM
age estimator based on 391 CpG sites [73]. This
epigenetic clock allows to track the dynamic aging of
cells and can be used as a quantitative biomarker of
chronological age[73]. In our work, we designed a z-
score including individual z-scores from 25 CpG sites,
showing that older subjects presented hypomethylated
in CpG sites associated with longevity-regulating
pathways, which supports the genomic hypomethylation
hypothesis, but age-related changes in DNA
methylation occurs in specific regions or at specific
sites in the genome [74]. Z-scores can be useful
predictors because they normalize variables and
eliminate a number of the sources of variance in raw
values [75]. These results could be related to epigenetic
clocks that allow to calculate the acceleration of aging
and predict the risk of age-related diseases, cognitive
and physical decline, among others [76, 77]. One of the
remaining challenges in DNA methylation is identify
causal pathways that contribute to functional changes
and unravel potential mechanisms, but it is important to
address the limitations of this type of research. DNA
methylation microarrays were performed in buffy coat,
which is a mixture of circulating white cells. To
circumvent this problem, the results have been corrected
using the Houseman procedure [78]. On the other hand,
gene expression (mRNA) levels should be determined
in order to properly evaluate the impact of the
epigenetic changes. To elucidate the mechanisms, it is
key to contextualize gene expression with its impact in
disease development [79] and taking into consideration
other mechanisms (non-coding RNAs, chromatin
reorganization, histone modifications) that can also
modulate the aging process. Microarrays have the
limitation of including only a small amount of the CpGs
present in each gene, but it is an affordable technique
that can detect individual CpGs in 99% of known genes
including 5'UTR, 3'UTR, coding regions and island
shores, moreover, Infinium Human Methylation 450K
(Illumina) platforms results has a good correlate when
has been analyzed by pyrosequencing [80—83]. For this
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reason, it could be interesting to analyze the
methylation status of the whole sequence of the specific
genes of interest through specific techniques such as
PCR and sequencing, bead array, pyrosequencing,
methylation specific PCR [84]) to confirm the differen-
tial patterns. In an attempt to compare our results with
those from existing databases available in GEO, a
public repository of databases, we identified some
common patterns in metabolic tissues, particularly in
the liver of obese and non-obese individuals, which in
turn reinforces our findings and suggests that the CpGs
identified in the present study could be used as potential
biomarkers.

In the case of aging-longevity methylation studies, it is
important evaluate lifestyle and dietary factors, such as
methyl donor intake, and study folate metabolism in
these subjects to obtain accurate conclusions [85].
Nevertheless, if DNA methylation assays are robust in
blood samples, it is feasible the development of epi-
genetic biomarkers as a method for diagnosis and
personalized treatments through a noninvasive approach
[86], especially considering the fact that during aging
the genome shift towards to a global hypomethylation
and hypermethylation in specific sites. In brief, this
study has identified several CpG sites that are
differentially methylated between younger and older
adults and are associated with metabolic dysfunctions.
In summary, our data support that differentially methy-
lated sites could be involved in the promotion of a pro-
aging phenotype in those subjects older than 45 years
old and in those who exhibit metabolic disturbances.
Beyond the limitations of this research and after further
validation, these CpG sites could be used as markers of
premature aging, especially in the context of obesity
and related metabolic diseases. This set of
methylation-based biomarkers could be useful in the
implementation of new personalized preventing strate-
gies and in the measurement of outcomes to demons-
trate the effectiveness of treatments targeting longevity
pathways.

MATERIALS AND METHODS
Subjects

DNA methylation profiles were analyzed in samples
from the Methyl Epigenome Network Association
(MENA) project. MENA project comprises 474 adults
from previous cohorts analyzed as previously described
[87]. Investigation has been conducted in accordance
with the ethical standards and according to the
Declaration of Helsinki and according to national and
international guidelines and has been approved by the
authors' institutional review board.

Participant characteristics

All subjects were categorized according to data
obtained from previous cohort databases, including
anthropometric measures, blood pressure and metabolic
profiles. Body mass index (BMI) was calculated as
weight in kilograms divided by the square of height in
meters (kg/m?®) and divided in three categories: normal
weight (BMI 18.5-24.9 kg/mz), overweight (BMI 25.0-
29.9 kg/m®) and obesity (BMI > 30 kg/m®). Total fat
mass was measured by dual-energy X-ray absorptio-
metry (DXA). Hypercholesterolemia was considered
with 200 mg/dl. Homeostatic model assessment-insulin
resistance (HOMA-IR) index was calculated as fasting
insulin (WU/ml) x fasting glucose (mmol/ml)/22.5. An
HOMA-IR index <2.5 was considered normal and index
>2.5 was considered insulin resistant (IR). Subjects
were considered to have metabolic syndrome (MetS)
when having three of the following five listed criteria:
large waist circumference (WC) (>102 c¢cm for men, >88
cm for women), reduced high-density lipoprotein
(HDL) cholesterol (<40 mg/dl for men, <50 mg/dl for
women), high triglyceride level (<150 mg/dl), increased
blood pressure (HT) (systolic pressure >90 mmHg,
diastolic pressure > 140 mmHg) and elevated fasting
glucose (= 100 mg/dl) [88].

DNA methylation analyses

Blood samples were collected after 8-12 hours fasting
on EDTA-containing tubes. White blood cells were
isolated from whole blood through differential
centrifugation (3500 rpm, 4 °C, 15 min) and frozen at -
80°C. Genomic DNA was extracted from leukocytes
with the Master Pure kit (Epicenter, Madison, WI).
DNA integrity was further assessed with the Pico Green
dsDNA Quantitation Reagent (Invitrogen, Carlsbad,
CA). To convert cytosine into uracil, high quality DNA
samples (500 ng) were treated with bisulfite using EZ-
96 DNA Methylation kit (Zymo Research, Irvine, CA)
following manufacturer’s instructions.

Subsequently, DNA methylation was analyzed through
microarrays assays using the Infinium Human
Methylation 450 K bead chip technology (Illumina, San
Diego, CA). Probes intensities data were obtained from
450 k Chip Analysis Methylation Pipeline package [89]
for R software (version 1.11.0). Afterwards, probes
were filtered according these criteria: p-values >0.01 in
at least one sample, beadcounts < 3 in minimum 5% of
samples, presence of single nucleotide polymorphisms,
alignment to multiple locations or located on X and Y
chromosomes. Subset-quantile Within Array Nor-
malization method (SWAN) was used to improves the
results obtained from Illumina platform reducing
technical variation within and between arrays [90] and
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ComBat method was applied to adjust for batch effects
and eliminate technical variation [91]. Furthermore,
DNA Methylation was corrected by cell composition
(granulocytes, monocytes, B cells, CD8+ cytotoxic
cells, CD4+ helper T cells and natural killer cells) using
the Houseman algorithm[78]. DNA methylation for
each CpG site was represented by beta values ranging
from 0 to 1, corresponding to fully unmethylated and
fully methylated, respectively.

GEO database analysis

In an attempt to validate our results, we decided to
perform a search of identified CpG sites in Gene
Expression Omnibus (GEO), a public repository. To
obtain comparable results, GEO datasets were filtered
according these criteria: DNAm arrays performed in
Infinium Human Methylation 450K platform with
normalized beta values and the presence of metabolic
phenotype among groups. To avoid problems when
databases are mixed due to differential treatments or
experimental conditions, we evaluate specific CpG sites
in individual datasets to address hypo or hyper-
methylation using mean values (p<0.05) and then
compare with our results in terms of methylation
patterns. Datasets used for this analysis were:
GSE76285 (PBMC), GSE65057 (liver tissue),
GSE67024 (subcutaneous fat) and GSE54776 (visceral
fat) (Supplementary Table 2).

Pathway analyses

The Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database (https://www.genome.jp/
kegg/) was used to identify genes implicated in
“Longevity-regulating pathways” (map04211) which
includes insulin, adiponectin, SIRT1, PI3K-Akt, mTOR,
AMPK, autophagy, p53, NF-kB, CREB, PGC-1a and
FOXO signaling pathways. Additionally, the statistical
analysis of longevity-regulating pathways was
performed using the Pathway Data Integration Portal
(pathDIP), (http://ophid.utoronto.ca/pathDIP/) as pre-
viously described [92]. Extended pathway associations
with a confidence level for predicted associations of
0.99 were selected, and the p-value for KEGG pathway
source was reported.

Statistical analyses

Quantitative and qualitative variables were expressed as
means + standard deviations (SD) or standard error of
the mean (SEM). After pre-processing of the methy-
lation data, linear regression adjusted for potential
confounding factors (age, sex, study cohorts and DNA
methylation chips) was carried out with the LIMMA
package for R software (v. 3.3.2). A False Discovery

Rate (FDR) cut-off of 0.05 and LIMMA B-statistics
values above 0 in the outcome-related analyses were
used as statistically significant thresholds. The LIMMA
B-statistic is the log-odds of differential methylation,
where B-values > 0 implies that the CpG is more likely
to be differentially methylated than to not be
differentially methylated [90]. This cut-off wvalue
(B > 0) gives a feasible balance between false positives
and false negatives. FDR values (p< 0.0001) were used
to select those CpGs whose methylation levels strongly
correlated with BMI. The standard scores (z-score) were
calculated as the sum of individual z-score for each
CpG site (beta values) using this formula: z=x — p/ o,
where x (sample value), p (sample mean) and ¢ (sample
standard deviation). Moreover, adjusted linear
regression analyses were performed to evaluate cor-
relations between z-score and age, adjusted by BMI and
methylation levels at genes of the longevity-regulating
pathways and four metabolic traits: Waist circum-
ference, hypercholesterolemia, HOMA-index and
metabolic syndrome. Linear regressions results were
expressed as raw regression (r) and r-squared (rz)
coefficients. Data was considered significant at p values
<0.05. Statistical analyses were performed using IBM
SPSS software, version 20 (IBM Inc., Armonk, NY,
USA) and plots were created using GraphPad Prism®
software, version 6.0C (La Jolla, CA, USA). Accession
number in Gene Expression Omnibus [GEO] database:
GSE115278.
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SUPPLEMENTARY MATERIAL

Supplementary Figures

DNA methylation assay from white cells

Infinium Human Methylation 450 K bead chip (n=474)

l 5725 Hypermethylated
7543 Hypomethylated

Whole genome differentially methylated regions | oo
correlated with BMI (13,268 CpGs)

|

CpG sites with a FDR-adjusted involved in ¢
"Longevity-regulating pathway” p-value <0.0001

| |

CpG sites differentially methylated between young | g 25 CpGs
(<45 y) and older subjects (=45 y)

| 1 T 1

58 CpGs

CpG sites differentially methylated in older subjects 15 CpGs 12 CpGs 13 CpGs 11 CpGs
(=45 y) and/or in presence of metabolic disturbances Abdominal High Insulin Metabolic
Obesity Cholesterol Resistance Syndrome
Common CpG sites for metabolic traits MTOR (cg08862778)
ADCY6 (cg11658986)
IGF1R (cg01284192)
CREBS5 (cg11301281)
RELA (cg08128650)

ULK1 (cg07199984)

Supplementary Figure S1. Scheme of CpG selection process for the analyses.
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Supplementary Figure S2. Longevity Regulating Pathways genes. Red boxes correspond to those CpG sites differentially
methylated associated to older subjects and the presence of metabolic disturbances. Diagram modified from KEGG Database.
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Supplementary Tables

Supplementary Table 1. CpG sites associated with BMI residing in longevity genes (FDR<0.0001) in the whole

population.
CpG_ID P.Value adj.P.Val Gene CpG_ID P.Value adj.P.Val Gene
1| cg21511036 8,96E-15 5,01E-11 1RSI 30| cg06223834  6,22E-07 2,25E-05 ADCY9
2| cg08862778 1,83E-13 3,37E-10 MTOR 31| cgl8028483 6,40E-07 2,29E-05 SESNI
3| cgl1322849 1,57E-10 5,14E-08 INS 32| cgl2416929 7,54E-07 2,58E-05 FOX03
4| cg20406576 4,20E-10 1,07E-07  PRKAG2 33| cgl2566890 8,43E-07 2,80E-05 ADCY2
5| cgl3551841 3,44E-09 5,12E-07 EHMTI 34| cgl3574337 9,35E-07 3,01E-05 ADCY9
6| cgl0136773 1,07E-08 1,17E-06 SESN3 35| cg04832916 1,00E-06 3,18E-05 CAMKK?2
7| cg07199894 1,38E-08 1,42E-06 ULK]1 36| cgl3796676 1,12E-06 3,43E-05 SIRTI
8| cg01749142 1,49E-08 1,51E-06 AKTI 37| cg06772578 1,30E-06 3,83E-05 PPARGCIA
9| cgl1658986 1,58E-08 1,57E-06 ADCY6 38| cgl9503731 1,31E-06 3,85E-05 AKT3
10| cg21195984 1,91E-08 1,82E-06 EHMTI 39| cgl0421188 1,36E-06 3,95E-05 CREBS
11| cg15283498 2,18E-08 2,01E-06 FOX03 40| cgl3613346 1,49E-06 4,22E-05 EHMT?
12 | cgl4862787 4,15E-08 3,20E-06 CREBS 41| cgl8758433 1,52E-06 4,28E-05 RPTOR
13 | cg05792022 4,78E-08 3,55E-06 FOXx01 42 | cgl3154908 1,58E-06 4,39E-05 PIK3CA
14| cg15973818 5,65E-08 4,00E-06 RBICCI 43| ¢g24937356 1,96E-06 5,13E-05 PRKAA2
15| cg22048274 6,24E-08 4,28E-06 EHMT2 44 | cgl8237616  2,02E-06 5,25E-05 RHEB
16 | cgl3810766 6,83E-08 4,57E-06  PRKAG2 45| cgl4323456  2,06E-06 5,33E-05 RHEB
17| cg23709782 1,27E-07 7,22E-06 IGFIR 46| cg01781374  2,12E-06 5,44E-05 CAMKA4
18| cgl7848496 1,39E-07 7,72E-06 1RSI 47| ¢g19292222  227E-06 5,70E-05 RPTOR
19 | cg04149773  1,39E-07 7,72E-06 ADCY6 48| cgl1301281 2,48E-06 6,08E-05 CREBS
20 | cg02352203 1,42E-07 7,83E-06 RPTOR 49| cg02823066  2,54E-06 6,18E-05 IGF1
211 cgl4113970 2,16E-07 1,05E-05 CAMK4 50| cg20300093 2,80E-06 6,63E-05 ADCYS5
22 | cgl4129040 2,30E-07 1,10E-05 CREBI 51| cgl4077232  2,80E-06 6,63E-05 EHMTI
23| cgl4844401 231E-07 1,11E-05 ADCY5 52| cg04932465 3,35E-06 7,52E-05 CAMKK?2
24 | cg03813033 3,01E-07 1,33E-05 AKTISI 53| cg08128650  3,40E-06 7,61E-05 RELA
25| cg07012178 3,07E-07 1,35E-05 PRKAG?2 54| cg08315825 3,61E-06 7,96E-05 IGFIR
26| cgld4267811 3,24E-07 1,41E-05 TSCI 55| cgl9418273 3,89E-06 8,40E-05 CREB3L2
27| cg01284192 4,12E-07 1,68E-05 IGFIR 56| cgl7324121 3,93E-06 8,44E-05 IRS2
28 | cg24061580 4,71E-07 1,84E-05 PRKAG?2 57| cg00210002  4,12E-06 8,76E-05 EHMT?
29| cg01091261 5,50E-07 2,06E-05 ADCY9 58| cgl4072989  4,51E-06 9,33E-05 RPS6KBI1
CpG_ID: CpG loci identifier in Illumina platform
Adj. P. Val: Adjusted P value
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Supplementary Table S2. GEO datasets from metabolic studies using DNA methylation arrays with Infinium Human

Methylation 450K (lllumina platform).

Geo Sample Sample Gender Age (¥) BMI (kg/ny) Study Title
Accesslon Tissue Size
36.4+6.3 >35 ke/m? The epigenetic signature of systemic insulin
GSE76285 PBMC 80 Women (Insulin Sensitive) (with comorbidities) resistance in obese women.
35.7£5.7 or >40 kg/m? PMID: 27535281
(Insulin Resistant)
40.5+4.1 26.1 £ 2.0 kg/m? Altered DNA methylation of glycolytic and
GSE65057 Liver tissue 15 Men (Non Obese) (Non Obese) lipogenic genes in liver from obese and type 2
416+4.1 38\.9 +2.1 kg/'m? diabetic patients. PMID: 26977391
(Obese) (Obese)
4511 2522 2.5 kg/m? The epigenetic signature of subcutaneous fat cells is
GSE67024 | Subcutaneous 29 Women (Non Obese) {Non Obese) linked to altered expression of genes implicated in
fat 46 x11 41‘_3 +4.4 kg/m? lipid metabolism in obese women. PMID: 26351548
(Obese) (Obese)
33.6+5.8 50.7+3.5 Gene methylation profiles in visceral adipose tissue
GSE54776 Visceral 14 Men (Met Syndrome -) (Met Syn -) of obese mens with or without metabolic syndrome.
fat 42.4+109 558+84 PMID: 24495915
(Met Syndrome +) (Met Syn+)
BMI: Body Mass Index
PBMC: Peripheral Blood Mononuclear Cells
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