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ABSTRACT

The purposes of this study are to investigate whether the Characterizing Alzheimer’s disease Risk Events (CARE)
index can accurately predict progression from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) on
an individual subject basis, and to investigate whether this model can be generalized to an independent cohort.
Using an event-based probabilistic model approach to integrate widely available biomarkers from behavioral
data and brain structural and functional imaging, we calculated the CARE index. We then applied the CARE
index to identify which MCI individuals from the ADNI dataset progressed to AD during a three-year follow-
up period. Subsequently, the CARE index was generalized to the prediction of MCI individuals from an
independent Nanjing Aging and Dementia Study (NADS) dataset during the same time period. The CARE index
achieved high prediction performance with 80.4% accuracy, 75% sensitivity, 82% specificity, and 0.809 area
under the receiver operating characteristic (ROC) curve (AUC) on MCI subjects from the ADNI dataset over
three years, and a highly validated prediction performance with 87.5% accuracy, 81% sensitivity, 90%
specificity, and 0.861 AUC on MCI subjects from the NADS dataset. In conclusion, the CARE index is highly
accurate, sufficiently robust, and generalized for predicting which MCI individuals will develop AD over a three-
year period. This suggests that the CARE index can be usefully applied to select individuals with MCI for clinical
trials and to identify which individuals will convert from MCI to AD for administration of early disease-
modifying treatment.
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INTRODUCTION

Mild cognitive impairment (MCI) has been conceptualized
as a transitional clinical state between normal and
Alzheimer’s disease (AD)-type dementia [1]. MCI has
been considered as a key prognostic and therapeutic target
in the management of AD. However, not all MCI subjects
convert to AD, and many individuals remain cognitively
stable or revert to normal status [2]. Early detection of
those progressive MCI individuals is of increasing clinical
importance in the enrichment of clinical trials of disease-
modifying therapies [3].

Building an effective and accurate prognostic model that
predicts the progression from MCI to AD is clinically
important. To this end, a large number of studies have
combined magnetic resonance imaging (MRI)-based
features with positron emission tomography (PET) [4];
cerebrospinal fluid (CSF) [5]; PET and CSF [4, 6];
assessment of cognitive function (CF) and CSF [7]; and
CF, PET, and CSF measures [8, 9].

Significant progress has been made using machine
learning tools. Most of the above-mentioned studies
have integrated CSF and PET measures. This approach
using multiple technologies (CF, CSF, PET, and MRI)
is often not available in clinical practice. In particular,
while the prediction performance of these models has
been validated extensively in a nested cross-validation
loop [10] and the traditional leave-one-out approach
[11], they have not been validated in an independent
population. This will most likely lead to biased results
and over-optimistic accuracies [12]. Although there
exist some methods using the outer cross-validation
loop to evaluate generalizability [13], these have limited
predictability in differentiating individuals with MCI
who convert to AD from non-converters. However, an
effective, accurate, and clinically useful prognostic
model should be robust and generalized for both the
routine clinical setting and drug trials.

Recent work has begun to address this limitation. Using
cortical thickness regions and subcortical volumes,
Westman and colleagues combine Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data with the
AddNeuroMed dataset [14] to predict progression of MCI
to AD [15]. However, they report a low robustness with
accuracies of 58% in ADNI data and 70% in
AddNeuroMed data. Using MRI, PET, and CSF bio-
markers, Prestia and colleagues combined ADNI data with
the Translational Outpatient Memory Clinic (TOMC)
dataset to predict MCI progression to AD [6]. They also
obtained low accuracies with ranges of 49-63% and 51—
75% in ADNI and TOMC, respectively. Thus, for the early
detection of AD progression, the accuracy of predicting
progression from MCI to AD needs to be improved using

sensitive, generalizable, widely available, cost-effective,
and minimally invasive tools.

Here, we will address this challenge with our newly
developed framework, termed the characterizing AD risk
events (CARE) index [16]. The CARE index estimates the
probabilities of occurrence and nonoccurrence of a series
of biomarkers by using an event-based probabilistic model
[16]. In our previously published study, the CARE index
was proven to accurately stage each individual across the
whole AD spectrum [16]. It is of crucial importance to
note that predicting the conversion over a short future time
is an easier problem than over a longer one and less cli-
nically useful (Eskildsen et al., 2013; Young et al., 2013),
and means a smaller proportion of MCI subjects will likely
convert to AD at a later time, which reduces the positive
predictive value of the classification result (Young et al.,
2013). Therefore, we have chosen a three-year follow-up
period. In this study, we applied the CARE index to the
ADNI dataset to distinguish those individuals with MCI
who progressed to AD from those who did not, during a
three-year follow-up period. Subsequently, we generalized
the CARE index to predict which MCI from the
independent Nanjing Aging and Dementia Study (NADS)
dataset would convert to AD during the same time period
(Figure 1). Based on the previous literature [16], We
hypothesized that the CARE index score accurately
predicted MCI-to-AD progression with high sensitivity
and specificity at the individual patient level over 3 years
in the ADNI dataset. We further hypothesized that the
excellent prediction performance of the CARE index could
be validated in the independent NADS dataset and achieve
good between-cohort generalization during the same time-
period.

RESULTS

Baseline demographic and neuropsychological
characteristics

The demographic and neuropsychological charac-
teristics of the included groups are listed in Table 1. As
expected, in the ADNI dataset, N-MCI and P-MCI
showed no significant differences in age, gender,
education, and MMSE scores (p > 0.05). In the NADS
dataset, P-MCI showed no significant differences in
gender and education (p > 0.05), but higher age and
lower MMSE scores than N-MCI (p < 0.05). Compared
with N-MCI, P-MCI showed significant deficits in
performance in multiple domains of cognitive functions,
including episodic memory, information processing
speed, and executive function (all p < 0.05).
Furthermore, there was no difference in the conversion
rates of different MCI state transitions between the
ADNI and NADS datasets (y2 = 0.078, p = 0.78, see
Supplementary Table 1).
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Discriminating N-MCI/P-MCI

Both ADNI and NADS datasets showed that the CARE
index differentiated P-MCI subjects from N-MCI subjects
at baseline (see Figure 2). The comparative results on
individual biomarker indices between N-MCI and P-MCI
subjects are provided in Supplementary Figure 1.

As shown in Figure 2, the CARE index discriminated
MCI progression to AD with an area under curve
(AUC) of 0.81. The optimal CARE index threshold
for discrimination between P-MCI and N-MCI sub-
jects was found at a CARE index score of 6.54, with
a sensitivity of 75.0%, specificity of 82.4%, odds ratio
(OR) of 14.0, and relative risk (RR) of 6.20.
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Figure 1. Schematic diagram of the proposed classification, independent validation, and prediction framework. First, we
calculated each individual CARE index score for MCl subjects in the ADNI and NADS datasets. Second, we utilized a CARE index score (A score
on the CARE index is equivalent to the subject’s disease stage.) to classify N-MCl and P-MCI subjects in the ADNI dataset. Third, we applied
the ‘CARE index stage “classifier” determined from the ADNI dataset to predict the conversion of MCI subjects in the NADS dataset. The ROC
curve was used to assess the performance of the CARE index stage classifier and the CARE index stage prediction classifier, respectively. In
addition, we assessed the performance differences of CARE index stage classification and prediction and original indices (AVLT, MMSE, GM,
and FC indices) by comparing these ROCs across datasets. Abbreviations: MCI, mild cognitive impairment; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; NADS, Nanjing Aging and Dementia Study; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; AVLT,
Rey Auditory Verbal Learning Test; MRI, magnetic resonance imaging; AAL, automated anatomical labeling; GM, grey matter; BOLD, blood
oxygenation level dependent; FC, functional connectivity; CARE, characterizing AD risk event; ROC, receiver operating characteristic; P-MCI,
progressive MCI, including MCI subjects who progressed to AD-type dementia at the three-year follow-up; N-MCI, no-progressive MCI,
including MCI subjects who had not progressed to dementia at the three-year follow-up.
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Table 1. Demographics and clinical measures of N-MCl and P-MCI subjects at baseline.

Item NIIZ/ZI&SI P;}ZIICZ:I t value (32) p value
ADNI data
Age (years) 70.24 (7.20) 73.90(5.41) -1.605 0.116
Gender (male/female) 17/17 6/6 0.000 1.000
Education level (years) 15.76(2.73) 15.75(2.45) 0.016 0.987
MMSE 27.71(1.77) 27.42(1.38) 0.513 0.610
ADAS-Cog 8.62(3.23) 13.08(4.21) -3.800 0.000%*
AVLT 37.47(10.20) 29.25(5.85) 3.382 0.002*
Item Nli/:ﬁl Pl;ll/ll(él t value (32) p value
NADS data
Age (years) 66.73(7.05) 72.93(5.79) -3.123 0.003*
Gender (male/female) 23/17 9/7 0.007 0.932
Education level (years) 11.93(3.48) 11.38(2.94) 0.557 0.580
MMSE 27.53(1.60) 24.56(2.63) 5.154 0.000%*
Composite Z scores of each cognitive domain
Episodic memory 0.33(0.57) -0.82(0.73) 6.338 0.000%*
Information processing speed 0.17(0.73) -0.42(0.71) 2.780 0.007*
Executive function 0.22(0.52) -0.56(0.49) 5.132 0.000*
Visuospatial function 0.05(0.52) -0.13(0.52) 1.148 0.255

Notes: Values are expressed as the mean (standard deviation, SD). * Significant differences are found between P-MCl and N-
MCI subjects. P values are obtained by t test except for gender (chi-square test). The performances of MMSE are presented as
raw scores. The level of each cognitive domain is denoted by the composite Z scores.

Abbreviations: MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; ADNI, Alzheimer’s Disease
Neuroimaging Initiative; NADS, Nanjing Aging and Dementia Study; P-MCI, progressive MClI, including MCI subjects who have
progressed to AD-type dementia at the three-year follow-up; N-MCI, nonprogressive MCI, including MCl subjects who have
not progressed to dementia at the three-year follow-up. ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive

Subscale; AVLT, Rey Auditory Verbal Learning Test

Independent validation in different cohorts

As shown in Figure 3, the CARE index had significant
power to discriminate P-MCI subjects from N-MCI
subjects, with an AUC of 0.86. At the CARE index of
6.87, the prediction has high sensitivity (81.3%),
specificity (90.0%), and OR (39.0). When combining
both the ADNI and NADS datasets on MCI subjects as
a single cohort, supplemental analysis also showed
that the CARE index discriminated P-MCI subjects
from N-MCI subjects on an individual subject basis,
with 83.3% accuracy, 82.0% balanced accuracy, 79%
sensitivity, 85% specificity, AUC of 0.84 in receiver
operating characteristic (ROC) curves on MCI sub-
jects. (See Supplementary Figure 2, Supplementary
Table 2.)

Generalization in different cohorts

To validate the generalizability of the CARE index to
discriminate P-MCI subjects from N-MCI subjects, we
applied the optimal the CARE index threshold (6.54) to
discriminate between the P-MCI and N-MCI subjects in

the ADNI dataset and the MCI subjects in the NADS
dataset. We found that, of the 56 MCI subjects, 48
(85.7%) were predicted correctly. MCI subjects with a
CARE index score above the threshold have a high
diagnostic odds ratio (OR = 33.33, 95% CI = 6.33—
145.30) and relative risk (RR = 9.15, 95% CI = 2.98—
28.13) in MCI progression relative to non-progression
to AD. (See Table 2.)

Robustness and powerfulness of the CARE index
compared to a single biomarker

As shown in Figure 4 and Table 3, in the ADNI
dataset, the CARE index performed better than each of
the seven selected biomarker indices in discriminating
P-MCI subjects from N-MCI subjects. (See Figure 4
and Table 3). In the NADS dataset, although the best
single biomarker index was an AVLT score with an
AUC of 0.876, the CARE index power in discri-
minating P-MCI subjects from N-MCI subjects
showed high generalization and stability across data-
sets, whereas other individual biomarkers did not. (See
Table 3)
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Behavioral significance of the changes in CARE index with changes in mini-mental state examination (MMSE)

measured at baseline and the three-year follow-up scores, and the composite Z scores of episodic memory,
information processing speed, and visuospatial function
The changes in CARE index score measured at baseline in MCI (p < 0.05). (See Figure 5 and Supplementary
and the three-year follow-up were negatively correlated Table 3).
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Figure 2. Classification of N-MCI and P-MCI in the ADNI dataset by the CARE index. (A) Number of patients in each diagnostic
category at each CARE index stage at baseline; data from the ADNI dataset. N-MCI subjects are represented in blue and P-MCI subjects in red.
Each CARE index stage on the x-axis corresponds to the occurrence of a new biomarker transition event. Stage 0 corresponds to no events
having occurred and stage 10 to all events having occurred. The optimal temporal sequence, S°ptima', of the 10 AD Biomarkers was used to
calculate the CARE index. The S™"™ was estimated by the event-based probabilistic model. The S°™"™ biomarker sequence is 1) increased HIP
FCl, 2) decreased PCC FCl, 3) decreased AP concentration, 4) increased p-tau concentration, 5) decreased MMSE score, 6) increased ADAS
score, 7) decreased HIP GMI, 8) decreased AVLT score, 9) decreased FG GMI, and 10) increased FG FCl. The details of the calculation of the
o3l piomarker sequence and CARE index score can be found in our previously published studies [16] and are also provided in S| Methods. (B)
Boxplot representing the distribution comparison of N-MCI and P-MCI subjects. For each boxplot, the band represents the median value, the
box represents the interquartile range, and whiskers show the range of data without outliers (an outlier being defined as any value that lies
more than one-and-a-half times the interquartile range from either end of the box). Differences were assessed between the two groups using
Mann-Whitney tests; ***p < 0.001. (C) The power of receiver operating characteristic (ROC) curve of the CARE index “classifier” in classifying
the diagnosis of P-MCIl versus N-MCI at baseline in the ADNI dataset. Note: Numbers next to the ROC curve indicate the CARE index threshold.
The values of sensitivity, specificity, and odds ratio in lower right of the figure present the optimum values under the optimum CARE index
threshold (red piont). Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; AD, Alzheimer’s disease; P-MCI, progressive MClI,
including MCI subjects who progressed to AD-type dementia at the three-year follow-up; N-MCI, nonprogressive MCI, including MCI subjects
who had not progressed to dementia at the three-year follow-up; MCI, mild cognitive impairment; CARE, characterizing AD risk event; ROC,
receiver operating characteristic; AUC, area under curve; Opt, optimum; HIP, hippocampus; PCC, posterior cingulate cortex; FG, fusiform gyrus;
FCl, functional connectivity indices; GMI, gray matter indices; AP, P-amyloid; p-tau, phosphorylated tau; MMSE, Mini-Mental State
Examination; ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; AVLT, Rey Auditory Verbal Learning Test.
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DISCUSSION This study showed no differences in the conversion
rates in individuals with MCI after a 3-year follow-up

The most novel result of this study is that the CARE between ADNI (26.1%) and NADS (28.6%), which
index allows us to accurately predict MCI-to-AD prog- agrees with these findings based on ADNI that showed
ression on an individual subject basis across different the conversion rates of 26 to 48% after a 3-year follow-
cohorts. up (Devanand DP et al. 2008; Okello A et al. 2009).

This suggests our results are unbiased and convincing.
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Figure 3. Independent validation with NADS dataset for prediction of N-MCI and P-MCI subjects using the CARE index. (A)
Number of patients in each diagnostic category at each individual CARE index stage at baseline from the NADS dataset. N-MCI subjects are
represented in blue and P-MCI subjects in red. (B) Boxplot representing the distribution comparison of N-MCI and P-MCI subjects. For each
boxplot, the band represents the median value, the box represents the interquartile range, and whiskers show the range of data without
outliers (an outlier being defined as any value that lies more than one and a half times the interquartile range from either end of the box).
Differences were assessed between the two groups using Mann-Whitney tests; ***p < 0.001. (C) The power of the ROC curve of the CARE
index “classifier” in predicting P-MCI versus N-MCI at baseline in the NADS dataset. Note: Numbers next to ROC curve indicate CARE index
threshold. The values of sensitivity, specificity, and odds ratio in lower right of the figure present the optimum values under the optimum
CARE index threshold (red piont). Abbreviations: NADS, Nanjing Aging and Dementia Study; AD, Alzheimer’s disease; P-MCI, progressive MClI,
including MCl subjects who progressed to AD-type dementia at the three-year follow up; N-MCI, nonprogressive MCl, including MCl subjects
who had not progressed to dementia at the three-year follow up; MCI, mild cognitive impairment; CARE, characterizing AD risk event; ROC,
receiver operating characteristic; AUC, area under curve.
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Table 2. Estimated risk of the 3-year conversion to probable AD in MCI patients in NADS dataset using the optimal

cutoff value of CARE index from ADNI dataset.

Dataset CARE index Total MCI
cutoff
P- N-MCI OR 95%CIfor RR 95% CIfor ACC Sensitivity Specificity
MCI OR RR
ADNI
Converters 15 9 6
(>=06.54)
Nonconverters 31 3 28 14.00 2.89-67.72 6.20 1.96-19.62 80.43% 75.0% 82.4%
(<6.54)
NADS
Converters 18 13 5
(>=6.54)
Nonconverters 38 3 35 30.33 6.33-145.30 9.15 2.98-28.13 85.71% 81.3% 87.5%
(<6.54)

Note: 6.54 is the optimal cutoff value found using the ROC analysis to predict with optimal sensitivity and specificity those
MCI patients from the ADNI dataset who did or do not convert to AD within three years.

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; NADS, Nanjing Aging and Dementia Study; CARE,
characterizing AD risk event; P-MCI, progressive MCI, including MCI subjects who progressed to AD-type dementia at the
three-year follow-up; N-MCI, nonprogressive MCl, including MCI subjects who had not progressed to dementia at the three-
year follow-up; MCI, mild cognitive impairment; AD, Alzheimer’s Disease; OR, odds ratio; RR, relative risk; Cl, confidence

interval; ACC, accuracy.

Recently, an excellent study by Young and colleagues
used an EBP model to develop a biomarker prognostic
model that predicts the MCI-to-AD conversion over three
years [17]. They obtained the relatively high balanced
accuracy of 77%, sensitivity of 86%, and specificity of
69%. On the basis of their study, we have made
significant improvements from a practical perspective, as
follow: First, the CARE index only integrates widely
available, cost-effective, and noninvasive markers (i.e.,
behavioral, structural, and functional MRI markers). In
particular, we added brain functional connectivity, which
improved the prediction performance with regard to
MCI-to-AD progression. It is well established that the
measures of brain connectivity at rest are sensitive to AD
progression [18] and the incorporation of brain
connectivity measures with other biomarkers can add
further predictive information to the prognostic model
[19, 20]. Second, the CARE index can be applied to
predict MCI-to-AD progression in an independent
population with a very high prediction performance.

A strength of this work is that the overall predictive
performance of the CARE index was not only high but
also has a fairly balanced sensitivity/specificity, which
has significantly outperformed other existing work
thus far. Several studies have developed models based
on various combinations of CF, MRI, PET, and CSF

biomarkers. They have applied these models to
distinguish MCI converters from MCI non-converters
over a three-year follow-up period, only attaining
accuracies in the range of 0.49—0.75 and AUCs in the
range of 0.64-0.76 [4-6, 10, 21]. The high prediction
performance for the CARE index may be the reason
why all selected markers are well-studied and well-
established AD markers. These markers are
significantly associated with conversion from MCI to
AD [22, 23]. The structural and functional impairment
of the hippocampus, hallmarks of AD, is consistently
considered as a valuable predictor of progression from
MCI to AD [24]. The default mode network (PCC as a
core hub) abnormalities are associated with episodic
memory impairment early in AD [25, 26], representing
AD disease progression [27]. Furthermore, the CARE
index is a staging system for disease monitoring,
which can reveal a detailed evaluation of patient state.
Using a baseline MRI marker, Wee et al. can predict
the MCI-to-AD conversion with relatively high
accuracy (AUC = 0.84) [13], although they report
limited sensitivity (75.1%) and low specificity
(63.5%). Furthermore, there are two studies that report
results comparable to those in our study. Using CSF
and plasma markers, Lehallier et al. report a good
ability to predict the MCI-to-AD conversion within
three years with relatively high accuracy (80%),
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sensitivity (88%), specificity (70%), and balanced
accuracy (79%) [28]. However, they evaluate the
predictive performance using a form of internal valida-
tion in the same dataset. This method may lead to
overfitting in the predictive model [12, 29]. Using CF
and MRI biomarkers, a recent study also achieved a
relatively high accuracy (79.9%), sensitivity (83.4%),
specificity (76.4%), AUC of 0.87, and balanced
accuracy (79.9%) [30]. However, they use a nested
stratified cross-validation procedure to evaluate the
predictive performance in the same dataset [12, 29].
Using MRI and plasma biomarkers, Liu and colleagues

achieved a high accuracy (96%), AUC of 0.82, and
sensitivity (95%), but at the cost of a very low
specificity (65%) [31]. Using MRI and functional MRI
(functional connectivity) biomarkers, Serra and
colleagues can predict MCI-to-AD progression with
high accuracy (89.7%), sensitivity (84.6%), and
specificity (93.8%) [19]. However, they performed a
simple discriminant analysis with no form of internal
or external validation. This may especially lead to
overfitting in the predictive model. Furthermore, they
used a relatively small sample size (a total of 31 MCI
subjects) and a relatively short-term, two-year follow-
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Figure 4. Comparisons of the power of ROC curve of the CARE index with behavioral, gray matter, and functional indices in
predicting the P-MCI versus N-MCI subjects in the ADNI and NADS datasets. (A-C) represent comparisons of the power of ROC
curve of the CARE index and individual behavioral, gray matter, and functional indices in the ADNI dataset, respectively. (D—F) represent
comparisons of the power of ROC curve of the CARE index and individual behavioral, gray matter, and functional indices in the NADS dataset,
respectively. Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; AD, Alzheimer’s disease; P-MCI, progressive MCI, including
MCI subjects who progressed to AD-type dementia at the three-year follow up; N-MCI, nonprogressive MClI, including MCI subjects who had
not progressed to dementia at the three-year follow up; MCI, mild cognitive impairment; CARE, characterizing AD risk event; ROC, receiver
operating characteristic; AUC, area under curve; HIP, hippocampus; PCC, posterior cingulate cortex; FG, fusiform gyrus; FCl, functional
connectivity indices; GMI, gray matter indices; AP, B-amyloid; p-tau, phosphorylated tau; MMSE, Mini-Mental State Examination; ADAS-Cog,
Alzheimer’s Disease Assessment Scale-Cognitive Subscale; AVLT, Rey Auditory Verbal Learning Test.
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Table 3. Sensitivity for P-MCI, specificity for N-MCI, AUC, and accuracy of CARE index and each of seven selected

biomarker indices when applying the optimal threshold from the ADNI dataset to the NADS dataset.

Sensitivity Specificity Accuracy Balanced
AUC Accuracy
Predictors Rank P-MCI 95% CI p Rank P- Rank N- Rank % Rank % Opt.
+N- MCI MCI Threshold
MCI
CARE 1 0.809 0.68-0.94 0.02 2 0.75 1 0.82 1 804 1 787 654
index
ADNI
MMSE 6 0.578 0.42-072 0.42 2 0.75 8 044 2 761 8 596 285
AVLT 3 0.761 0.61-0.87 0.08 6 069 2 079 8 522 3 730 285
HIPF! 8 0.515 0.36-0.67 0.88 8 050 4 071 5 652 7 603 066
pccH 5  0.635 0.48-0.77 0.17 1 0.83 6 050 6 587 5 667 228
FGF! 4 0.659 0.51-0.79 0.10 7 0.67 4 0.71 4 69.6 4 686 10.57
HIPM! 2 0.762 0.61-0.88 0.01 2 0.75 3 074 3 73.9 2 743 040
FGM 6 0.578 0.42-0.72 0.42 2 0.75 6 0.50 7 565 6 625  0.55
AUC Sensitivity Specificity Accuracy Balanced
Accuracy
Rank P-MCI 95% CI p Rank P- Rank N- Rank % Rank % Opt.
+N- MCI MCI Threshold
MCI
CARE 2 0.861 0.74-0.94 0.00 2 0.81 3 0.88 1 857 1 844 654
index
NADS  \ivsE 3 0837 071092 000 1 094 8 032 8 500 4 631 285
AVLT 1 0876 0.74-0.95 0.00 3 0.75 2 090 1 857 2 825 285
HIPF! 6 0.588 0.45-0.72 0.31 4 069 7 053 7 571 5 606 066
pccH 7 0.567 0.43-0.70 0.44 8 0.31 5 070 6 589 8 506 228
FGF! 8 0.563 0.42-0.70 0.47 6 038 5 070 5 60.7 7 538 10.57
HIPM! 4 0.811 0.68-0.90 0.00 6 0.38 1 0.95 3 786 3 663 040
FGM 5  0.634 0.50-0.76 0.12 5 044 4 078 4 679 5 606 0.55

Abbreviations: ADNI, Alzheimer’s

Disease Neuroimaging Initiative; NADS, Nanjing Aging and Dementia Study; CARE,

characterizing AD risk event; P-MCI, progressive MCI, including MCI subjects who progressed to AD-type dementia at the
three-year follow-up; N-MCI, nonprogressive MClI, including MCI subjects who had not progressed to dementia at the three-
year follow-up; MCI, mild cognitive impairment; AD, Alzheimer’s Disease; AVLT, Rey Auditory Verbal Learning Test; MMSE,
Mini-Mental State Examination; HIP, hippocampus; PCC, posterior cingulate cortex; FUS, fusiform gyrus; GM, gray matter;
GMI, gray matter indices; FCI, functional connectivity indices; Opt, optima.

up with a high conversion rate of 45.2% (14 converters
from a total of 31 MCI subjects). This conversion rate
after a two-year follow-up is considerably higher than
the 35% and 37.5% reported by other studies [32, 33],
respectively. A previous study indicated disease prog-
ression may present more dynamic features within two
years and demonstrated relatively stable performance
over two years [34]. It is of crucial importance to note
that predicting the conversion over a short timespan
means a proportion of the MCI subjects will likely

convert to AD at a later time, which reduces the positive
predictive value of the classification result [35]. Most
importantly, the prediction performance of the models
in all of the above-mentioned studies has not been
validated in an independent cohort.

Another principal novelty of this study is that we were
able to replicate our results in an independent cohort,
which suggests that the CARE index is a robust and
accurate model with good generalizability. Recently, a
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few studies have begun to address the generalization
bottleneck; however, their prediction performance could
not be transferred from one cohort to other cohorts [6,
15]. And they obtained a low robustness across cohorts,
with low accuracies. The methodological differences
may account for the CARE index’s superior prediction
performance, robustness, and generalizability compared
to those of their models. First, unlike above-mentioned
models, the CARE index estimates the probabilities of
occurrence and nonoccurrence of each biomarker on an
individual basis by using the EBP model, rather than by
dichotomizing biomarker status based on the cutoff
point threshold or clinical diagnosis information [16].
The CARE index emphasizes the temporally dependent
process of diverse pathophysiological events underlying
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AD development and can accurately stage each
individual across the whole AD spectrum [16]. The
probabilities of occurrence and nonoccurrence of each
pathophysiological event are affected only by the
disease progression of the individual and not by the
whole nature of the different independent cohorts, such
as multicenter or single-center, or cohort heterogeneity.
Second, Prestia and colleagues’ models use high-
dimensional input in prediction, which are often related
to the so-called “curse of dimensionality” [36]. which
significantly hampers modeling generalization. The
explanation may be that many machine learning
methods may lose their ability to generalize to unseen
examples with the increase in the number of available
input features, due to the discordance between the
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Figure 5. The changes in the CARE index correlated with the changes in cognitive performance and other clinical variables
measured between baseline and the three-year follow up in MCI subjects from the NADS dataset. Notes: 1) In each of these
scatter diagrams, there is a significant correlation between changes in the CARE index and changes in the cognitive performance or clinical
measures (p < 0.05, FDR corrected). 2) In Figure 4, the total number of subjects selected at baseline is equivalent of those at the three-year
follow-up from the NADS dataset (MCI, 44 subjects). All subjects at the three-year follow-up had at least one resting-state functional
connectivity MRI scan with a corresponding anatomical scan and had scores on the MMSE and AVLT. Abbreviations: NADS, Nanjing Aging and
Dementia Study; MCI, mild cognitive impairment; CARE, characterizing AD risk event; EM, episodic memory; IPS, information processing
speed; VF, visuospatial function; MMSE, Mini-Mental State Examination. A statistical threshold was set at a p < 0.05 (false discovery rate

[FDR]-corrected]. A represents the changes.
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sample size and the increased dimensionality [4].
Therefore, the CARE index exhibits a remarkable
advantage in predicting the MCI-to-AD conversion
across different cohorts.

In the current study, our findings support the fact that
combining different biomarkers can predict the
conversion status and cognitive decline. The CARE
index associated with conversion likely reflects disease
severity, i.e., how close an individual is to a significant
clinical transition. The CARE index integrates bio-
markers derived from behavior, structural, and resting-
sate functional MRI modalities. It has important clinical
advantages such as cost-efficiency, non-invasiveness,
very high test-retest reliability, strong validity for AD
pathological process, and clinical popularity. Most
importantly, the excellent predictive performance of
CARE index in a multicenter study (ADNI) can be
applied in a clinical single-center study (NADS).
Therefore, the CARE index can be gene-ralized for use
in precisely selecting individuals with MCI for a clinical
trial. It can aid the development of new disease-
modifying drugs by assigning possible surrogate
markers of disease progression, and it can reduce the
number of subjects needed to detect a significant drug
effect [37]. Ultimately, it is reasonable to speculate that
it would be desirable for the CARE index to be
available to clinicians.

Some limitations of this study deserve comment. First,
sample sizes of P-MCI and N-MCI subjects in the
separate ADNI and NADS cohorts, especially the P-
MCI subjects, are relatively small. However, it is
important to note that our supplementary analysis
combining ADNI and NADS cohorts still showed a
very high power in predicting conversion from MCI to
AD. Therefore, our results remain convincing. Second,
we only used parts of MCI subjects from ADNI cohorts
due to our entry criteria, which may affect our results.
Finally, this study assessed only the predictive power of
the CARE index during a three-year follow-up period.
Future studies with longer and multiple follow-up times
(at four years, five years, and so on) are needed to refine
and generalize our CARE index estimates. Furthermore,
the diffusion tensor imaging (DTI) has been considered
as an advanced technology on studying the MCI/AD
patients. Therefore, the further studies will corroborate
and extend high prediction performance of the CARE
index and explore whether combining DTI, brain
structural and functional MRI can improve this high
prediction performance. Finally, other cognitive mea-
sures and non-invasive biomarkers may play crucial
roles in improving prediction performance that were not
addressed here (such as the CDR—sum of boxes and
diffusion tensor imaging measures).

In conclusions, the CARE index is sufficiently robust
and generalizable for predicting which MCI individuals,
across datasets, will develop AD over three years. It can
be usefully applied to select individual subjects with
MCI for clinical trials and to predict with high
sensitivity and specificity for early treatment which
individual subjects with MCI will convert to AD in the
future.

METHODS
Subjects

The data for study subjects were obtained from two
independent datasets: ADNI and NADS.

ADNI

Baseline data used in this study were consistent with data
in our previously published study [16]. The details of the
ADNI information are provided in SI Methods S.1.

We selected a total of 74 MCI subjects with a baseline
diagnosis of amnestic MCI, based on the requirements in
our previously published study [16]. Finally, 46 subjects
had a three-year follow-up clinical diagnosis of MCIL
According to the follow-up clinical diagnosis by the
National Institute of Neurological and Communicative
Disorders and Stroke or the Alzheimer's Disease and
Related Disorders Association (NINCDS-ADRDA)
criteria for the diagnosis of probable AD [38], those MCI
subjects who progressed to AD within 36 months of
entering the study were labeled as progressive MCI (P-
MCI), and those who did not progress were labeled as
non-progressive MCI (N-MCI) subjects. The clinical
statuses for P-MCI and N-MCI subjects are employed as
the “ground truth” in our classification experiments as
described below. The characteristics of the MCI subjects
are provided in Table 1.

NADS

The NADS study recruited 87 subjects with a baseline
diagnosis of amnestic MCI status. Written informed
consent was obtained from all of the participants, and
the study was approved by the responsible Human
Participants Ethics Committee of the Affiliated
ZhongDa Hospital, Southeast University, Nanjing,
China.

All amnestic MCI subjects met the diagnostic criteria
proposed by Petersen and colleagues [39] and the
current revised consensus criteria of the International
Working Group on amnestic MCI [40]. The inclusion
and exclusion criteria (see details in SI Methods S.2)
used to choose subjects can be found in our previously
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published studies [41]. Finally, 56 subjects had a three-
year follow-up clinical diagnosis of amnestic MCI. The
clinical status of each MCI subject was reevaluated at
36 months and classified into the N-MCI and P-MCI
groups, as described above. The characteristics of the
MCI subjects are provided in Table 1.

Neuropsychological assessment

In the NADS dataset, all subjects underwent a
standardized clinical interview and comprehensive
neuropsychological assessments that were performed
by neuropsychologists (Dr. Gu, Gao, and Yan). These
assessments included mini-mental state examination
(MMSE), Mattis Dementia Rating Scale (MDRS);
Auditory Verbal Learning Test-immediate recall
(AVLT-IR); Auditory Verbal Learning Test—5-min
delayed recall (AVLT-5-min-DR); Auditory Verbal
Learning Test-20-min delayed recall (AVLT-20-min-
DR); Logical Memory Test—immediate recall (LMT-
IR); Logical Memory Test—20-min delayed recall
(LMT-20-min-DR); Rey-Osterrieth Complex Figure
Test (ROCFT); Rey-Osterrieth Complex Figure Test —
20-min delayed recall (ROCFT-20min-DR); Trail-
Making Tests A and B (TMT-A and B); Digital
Symbol Substitution Test (DSST); Digit Span Test
(DST); Stroop Color and Word Test A, B, and C;
Verbal Fluency Test (VFT); Semantic Similarity
(Similarity) test; and Clock Drawing Test (CDT).
These tests were used to evaluate multi-domains of
cognitive function, including general cognitive
function, episodic memory, information processing
speed, executive function, and visuo-spatial function,
respectively. Note that all subjects in the NADS
dataset had both scores of comprehensive neuro-
psychological assessment and at least one R-fMRI
scan with corresponding anatomical scans at 3-year
follow-up to investigate the links between the changes
of characterizing AD risk event and the changes of
neuropsychological performance. Furthermore, we
have standardized the tests in the NADS dataset into
the ADNI dataset when the cognitive measure scores
obtained across different study datasets may have
different testing composition.

MRI data acquisition

ADNI dataset

The ADNI data acquisition process is described at
http://adni.loni.ucla.edu/. The details regarding image
acquisition are provided in SI Methods S.4.

NADS dataset

The details regarding image acquisition parameters are
provided in SI Methods S.4 and in our previously
published studies [42].

Image preprocessing

Conventional preprocessing steps were conducted using
Analysis of Functional Neurolmages (AFNI) software,
SPM8, and MATLAB (Chen et al., 2016). The
preprocessing allows for T1-equilibration (removing the
first 15 s of R-fMRI data); slice-acquisition-dependent
time shift correction (3dTshift); motion correction
(3dvolreg);  detrending  (3dDetrend);  despiking
(3dDespike); spatial normalization (original space to the
Montreal Neurological Institute [MNI] space, SPMS);
averaging white matter and CSF signal retrieval
(3dROIstats) using standard SPM white matter and CSF
mask in the MNI space; white matter, CSF signal, and
motion effect removal (3dDeconvolve); global signal
removal necessity check (the global signal will be
removed if necessary) [5]; and low-frequency band-pass
filtering (3dFourier, 0.015-0.1Hz).

Biomarker events, expected stage, and missing
biomarker

According to our previously published studies [16], 10
well-studied AD biomarkers were selected, each
representing an event that dynamically occurs along
with AD progression. These biomarkers include three
functional connectivity indices (FCI) from the
hippocampus (HIPFCI), the posterior cingulate cortex
(PCC™™), and the fusiform gyrus (FUS™™); two gray
matter concentration indices (GMI) from the hippo-
campus (HIP®™) and fusiform gyrus (FUS®™); two
CSF biomarkers (APi.4; and p-tau levels); and three
cognitive biomarkers (MMSE, ADAS-Cog, and AVLT
scores). Detailed methods to extract FCI and GMI are
provided in SI Methods S.6 and S.7.

The optimal temporal sequence, S™"™, is determined
by the event-based probabilistic (EBP) model. The
S°Ptimal - gequence, in which these biomarker events
occur, was well studied in our previously published
work [16]. The mathematical detail of the EBP model is
described previously [16, 17] and in SI Methods S.8,
S.9, and S.10.

In the case of missing biomarkers, the mathematical
detail of the S°™™! sequence of biomarker events with
missing data is described in SI Methods S.8-S.12.

Individual CARE index

We numbered each of the 10 biomarker events by their
order of occurrence in S®"™; collectively, these events
comprise the index for CARE index. Each subject’s
CARE index score is defined as that at which the order
number had the highest likelihood value in S°P"™

(SI Methods S.11). Note that in this study, three
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biomarkers (two CSF biomarkers of AB1-42 and p-tau
levels and ADAS-Cog scores) were missing in the
NADS dataset. Therefore, the same biomarkers in the
ADNI dataset were selected to be consistent with those
in the NADS dataset to compute the CARE index.

Statistical analysis

Demographic and neuropsychological data

The statistical analyses were conducted with SPSS 22.0
software. The two-sample #-test, chi-square (y°) test,
and Mann-Whitney U tests were used to compare the
differences in demographic data, neuropsychological
performance, each individual biomarker feature, and the
CARE index between N-MCI and P-MCI subjects. A
statistical threshold was set at a p < 0.05.

MCI conversion prediction

We evaluated the power of the CARE index and of
individual biomarkers to discriminate P-MCI subjects
from N-MCI subjects with the use of receiver
operating characteristic (ROC) curves [43]. To
demonstrate the CARE index’s power to predict
clinical progression from MCI to AD, the area under
the ROC (AUC) values were employed to compare the
CARE index and individual biomarkers using a
nonparametric method for correlated samples [44].
The optimal cutoff value of the CARE index for
discriminating P-MCI subjects from N-MCI subjects
was extracted from the ADNI dataset, generating
optimal sensitivity and specificity values, accuracy,
odds ratio (OR), and relative risk (RR). Furthermore,
we applied the CARE index classifier obtained from
the ADNI dataset to the NADS dataset to validate the
generalizability of the classifier in discriminating
between P-MCI and N-MCT subjects.

To compare the stability and generalizability of the
CARE index to discriminate between P-MCI and N-
MCI subjects with those of individual biomarkers, we
also applied the optimal classifier of each biomarker
obtained from the ADNI dataset to the NADS dataset.
To avoid unbalanced class frequency to lead to
discrepancies between sensitivity and specificity [7, 35],
we also reported the balanced accuracy: defined as
(sensitivity + specificity)/2 [45]. To directly observe the
power of each biomarker in distinguishing P-MCI
subjects from N-MCI subjects across datasets, we
ranked the AUC, optimal sensitivity and specificity,
accuracy, and balanced accuracy of the CARE index
and individual biomarkers.

In addition, to avoid limitations due to the relatively
small sample size and the differences in the predictive
power of the CARE index between the ADNI and
NADS cohorts due to the differences of MCI

heterogeneity in general, we performed a supplementary
analysis with the combined cohort of ADNI and NADS
datasets.

Behavioral significance of the changes in CARE index
measured at baseline and the three-year follow-up

We performed a multiple linear regression model
analysis to examine the relationships between the
changes in CARE index and the changes in cognitive
performance or clinical variables at baseline and the
three-year follow-up in MCI subjects (See details in S/
Methods S.13). The statistical threshold was set at a p <
0.05 (FDR-corrected).
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