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ABSTRACT

In celiac disease (CD), an intolerance to dietary gluten/gliadin, antigenic gliadin peptides trigger an HLA-
DQ2/DQ8-restricted adaptive Thl immune response. Epithelial stress, induced by other non-antigenic gliadin
peptides, is required for gliadin to become fully immunogenic. We found that cystic-fibrosis-transmembrane-
conductance-regulator (CFTR) acts as membrane receptor for gliadin-derived peptide P31-43, as it binds to CFTR
and impairs its channel function. P31-43-induced CFTR malfunction generates epithelial stress and intestinal
inflammation. Maintaining CFTR in an active open conformation by the CFTR potentiators VX-770 (lvacaftor) or
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Vrx-532, prevents P31-43 binding to CFTR and controls gliadin-induced manifestations. Here, we
evaluated the possibility that the over-the-counter nutraceutical genistein, known to potentiate CFTR
function, would allow to control gliadin-induced alterations. We demonstrated that pre-treatment with
genistein prevented P31-43-induced CFTR malfunction and an epithelial stress response in Caco-2 cells. These
effects were abrogated when the CFTR gene was knocked out by CRISP/Cas9 technology, indicating that
genistein protects intestinal epithelial cells by potentiating CFTR function. Notably, genistein protected gliadin-
sensitive mice from intestinal CFTR malfunction and gliadin-induced inflammation as it prevented gliadin-
induced IFN-y production by celiac peripheral-blood-mononuclear-cells (PBMC) cultured ex-vivo in the presence
of P31-43-challenged Caco-2 cells. Our results indicate that natural compounds capable to increase CFTR

channel gating might be used for the treatment of CD.

INTRODUCTION

Celiac disease (CD), a food intolerance to dietary
proteins from wheat, rye and barley, affects up to 1% of
the world population [1-3]. In a subset of genetically
susceptible individuals bearing the human leukocyte
antigen (HLA) DQ2/DQ8, the ingestion of gluten
triggers an immune reaction against gluten peptide,
abolishing the normal state of oral tolerance and
inducing an adaptive immune response against gluten-
derived peptides with an autoimmune component [4-6].
This leads to the production of (diagnostic) auto-
antibodies against the self-antigen tissue trans-
glutaminase 2 (TGM2) and eventually culminates in
villous atrophy due to chronic intestinal inflammation
[4-8]. In vivo, two peptides derived from the gluten
component gliadin, a 33-mer (P56-88) and a 25-mer
(P31-55), remain undigested [5, 9-10]. P56—88, which
contains the antigenic moiety of gliadin (the fragment
P57-68), is deamidated by TGM2, binds to HLA-
DQ2/DQ8, and induces an adaptive Thl response. P31—
55 is not recognized by T cells, but confers a potent
adjuvant signal, in thus far that it induces an epithelial
stress response with activation of TGM2 [5, 9-10].
However, additional factors are required to perturb
epithelial homeostasis and then to ignite the
pathogenesis of CD. Such “external” triggers include
reovirus infections [11] and perhaps other, yet-to-be-
defined factors [8] that induce epithelial stress with
TGM2 activation, upregulation of IL-15 and the
cytotoxic activation of intraepithelial CD8" T
lymphocytes [5-8].

Recently, we discovered that the peptide P31-43, a
fragment of P31-55, is able to trigger the epithelial
stress response by binding to, and reducing the ATPase
activity of, the nuclear binding domain 1 (NBD1) of the
cystic fibrosis transmembrane conductance regulator
(CFTR), thus inhibiting the chloride channel function of
CFTR [12]. CFTR is a protein located at the surface
membrane of epithelial cells (and other cell types) that

signals [13-15]. Inherited loss-of-function mutations in
the CFTR gene cause cystic fibrosis (CF), the most
common life-threatening  inherited disease in
Caucasians [16, 17]. In CF patients, impaired CFTR
function fosters major pathogenic changes of the
intracellular milieu including oxidative stress, TGM2
activation, autophagy impairment and alternated
endosomal trafficking [15, 18-19]. All these features are
reminiscent of those induced by gliadin peptides in the
intestine from CD patients. Indeed, the acquired CFTR
dysfunction induced by P31-43 in the small intestinal
mucosa provides the stress signal that alerts the innate
immune response and ultimately enables the immune
response against the antigenic moiety of gliadin [12].

CFTR oscillates between two distinct conformations,
which reflect the open and closed states of the chloride
channel [17, 20]. P31-43 only binds to NBD1 when it is
in the closed state, then blocking its gating function
[12]. Stimulating CFTR channels by means of
pharmacological “potentiators” such as VX-770
(Ivacaftor) or Vrx-532, which both increase the
probability of CFTR channel opening [21, 22], prevents
P31-43 binding to CFTR, thus curtailing the pathogenic
effects of P31-43 on the intestinal mucosa of gliadin-
sensitive mice [12].

Several compounds that are authorized as over-the-
counter food additives are endowed with the capacity to
potentiate CFTR channel gating. Thus, genistein, a
naturally occurring phytoestrogen contained in soy [23],
is a widely recognized CFTR activator, acting both on
isolated cells [24, 25] and on tissues [26-28]. Driven by
the consideration that natural compounds have a known
safety profile facilitating their clinical implementation,
we investigated the question as to whether genistein
might be used to treat celiac disease. Here, we demons-
trate that genistein is capable of preventing gliadin-
induced CFTR malfunction and enteropathic effects in a
variety of preclinical models.
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RESULTS

Genistein prevents the pathogenic effects of P31-43
on intestinal epithelial cells

To determine whether genistein may protect intestinal
epithelial cells from the gliadin-induced inhibition of
CFTR function, we incubated confluent intestinal
epithelial (Caco-2) cells, which are reportedly sensitive
to gliadin or gliadin-derived peptides [10, 29], for 3 to
24 h with the gliadin-derived peptide LGQQQPFPP
QQPY (P31-43) (20 pg/ml) [9, 10, 12] in the presence
or absence of a 20 min pre-incubation with genistein
(50 puM). The peptide QLQPFPQPQLPY (P57-68)
(20pg/ml) [9, 10], which belongs to 33-mer sequence,
as well as the scrambled peptidle GAVAAVGVVAGA
(PGAYV) were used as controls [12].

Pre-incubation with genistein (50 pM) was effective in
preventing the P31-43 induced decrease of the
forskolin-inducible chloride current in confluent Caco-2
cells mounted in Ussing chambers (Figure 1A). The
capacity of genistein to revert the inhibitory effect of
P31-43 were comparable to those of VX-770 (Ivacaftor)
or Vrx-532 [12]. The genistein-mediated reversion of
P31-43 mediated CFTR inhibition was confirmed by
means of other methodology based on measuring the
rate of iodide efflux (Figure 1B).

Next, we investigated whether pre-incubation with
genistein (50 uM) would be capable of preventing the
epithelial stress response and innate immunity
activation induced by P31-43. Pre-incubation with
genistein protected Caco-2 cells from signs of epithelial
stress, as it prevented ERK 1/2 phosphorylation and
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Figure 1. Genistein prevents CFTR malfunction induced by P31-43. (A) Representative traces of CFTR-dependent Cl- secretion
measured by forskolin (Fsk)-inducible chloride current (Isc (uA/cm2)) in Caco-2 cells mounted in Ussing chambers after 3 h of incubation
with P57-68 or P31-43 peptides (20 ug/ml), optionally after pre-treatment (20 min) with genistein (50 uM); quantification of the peak
CFTR Inhibitor 172 (CFTRinh172)-sensitive Isc (Alsc) in Caco-2 cells (n=3 independent experiments). MeanstSD of samples assayed;
***p<0.001 P57-68 versus P31-43 challenge, °°*°p<0.001 P31-43 versus genistein+P31-43 (ANOVA, Bonferroni post-hoc test). (B)
Treatment of Caco-2 cells with P57-68, PGAV or P31-43 (3h) or with P31-43 after pre-treatment (20 min) with Genistein. Assessment of
iodide efflux by SPQ fluorescent probe upon stimulation with forskolin (Fsk), expressed as percentage of CFTR function. MeanstSD of
samples assayed; ***p<0.001 P57-68 or PGAV challenge or untreated cells versus P31-43 challenge, °°p<0.01 P31-43 versus

Genistein+P31-43 (ANOVA, Bonferroni post-hoc test).
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PPARy downregulation induced by P31-43 (Figure 2A-
2B), as well as the reactive oxygen species (ROS)
overproduction (Supplementary Figure 1A). Notably,
pre-incubation of Caco-2 cells with genistein controlled
the P31-43 induced inflammation, secondary to TGM?2
activation [12-14] (Figure 2A-2B), although genistein
itself had no impact on TGM2-mediated transamidation
reactions (Figure 2C).

Interestingly, genistein prevented the decrease of Beclin
1 (BECN 1) protein levels, as well as the accumulation
of the autophagic substrate sequestosome 1 (SQSTM1),
that occurred upon P31-43 challenge (Figure 3A-3B).
Conversely, the inactivation of autophagy by means of
the pharmacological inhibitor 3-methyladenine (3MA)
abolished the genistein-mediated protective effects on
intestinal epithelial stress (as shown by the elevated
PPARy abundance and decreased ERK1/2 phospho-
rylation level; Supplementary figure 2A-2B) triggered
by P31-43, linking CFTR function, autophagy and
maintenance of cellular homeostasis.

We previously demonstrated that the pharmacological
[13] or P31-43 mediated [12] inhibition of CFTR
function leads to CFTR disposal from the plasma mem-
brane (PM) of epithelial cells owing to CHIP-mediated
CFTR ubiquitination and subsequent SQSTM1 binding
that diverts CFTR recycling to lysosomal degradation.
In line with the protective effect of genistein against the
P31-43 induced CFTR inhibition and accumulation of
SQSTMI1, pretreatment with genistein prevented the
P31-43 induced disposal of mature CFTR from the
plasma membrane (Figure 3C). Moreover, genistein
negated the capacity of P31-43 to favour PM disposal of
the CFTR interactor ezrin (Figure 3D), a key
component of the ezrin—radixin—moesin (ERM) mem-
brane complex that contributes to cytoskeleton organi-
zation and F-actin assembly.

We previously reported that P31-43 induces additional
pro-inflammatory effects on Caco-2 cells, namely
NLRP3 inflammasome activation and NF-kB p65 trans-
location into the nucleus with consequent increased
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Figure 2. Genistein prevents P31-43 induced epithelial stress response. (A-B) Caco-2 cells were left untreated or incubated with
P57-68 or with P31-43 in the presence or absence of VX-770 or genistein. Immunoblot of phospho-ERK 1/2 (A) or PPARy (B) and
densitometric analysis of protein levels relative to B-actin (right) (n=3 independent experiments). Means+SD of triplicates of independent
experiments; **p<0.05 or ***p<0.001 untreated or P57-68 versus P31-43, *°p<0.01 P31-43 versus genistein+P31-43, ##p<0.01 P31-43
versus VX-770+P31-43 (ANOVA, Bonferroni post-hoc test). (C) In situ detection of TG2 activity, in Caco-2 cells pulsed with Ca®', by
immunoblotting of the TGM2-catalyzed incorporation of 5-biotinamidopentylamine (BAP) and blotting with anti-biotin antibody (n=3
independent experiments). Data information: The blots are representative of one experiment for group of treatment.
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IL-1B production and upregulation of IL-15 [12], a cells in which stable CFTR deletion was induced by

known mediator of the gliadin-induced enteropathy [5- CRISP/Cas9 technology (Caco-2¢rrr-x0)- In the absence
8, 30, 31]. Importantly, genistein abolished all these of CFTR expression, genistein was unable to oppose the
P31-43 induced effects (Figure 4A-4B). capacity of P31-43 to induce ERK1/2 phosphorylation
(Figure 4C) and IL-15 upregulation (Figure 4D), thus
Genistein prevents P31-43 induced inflammation by confirming that genistein, similarly to VX-770 [12],
targeting CFTR controls the epithelial stress response and IL-15 pro-
duction through on-target (via CFTR) rather than off-
As it is true for most natural compounds, genistein is target effects.
endowed with pleiotropic activities, including anti-
oxidant and anti-inflammatory properties [32-33]. To Altogether, these results suggest that the genistein-
determine whether the capacity of genistein to oppose mediated potentiation of CFTR channel activity might
P31-43 effects on epithelial cells is secondary to the be taken advantage to treat the gliadin-induced entero-
potentiation of CFTR channel function, we used Caco-2 pathy.
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Figure 3. Genistein prevents P31-43 induced Beclin 1 downregulation and plasma membrane CFTR disposal. (A-D)
Treatment of Caco-2 cells with P57-68 or P31-43 (3h) or with P31-43 after the optional pre-treatment (20 min) with genistein or VX-770.
(A) Immunoblot of total lysate with anti-Beclin 1 antibody (/eft) and densitometric analysis of protein levels relative to B-actin (right) (n=3
independent experiments). Means+SD of triplicates of independent experiments; ***p<0.001 untreated or P57-68 challenged cells versus
P31-43 treatment, °°p<0.01 P31-43 versus genistein+P31-43 or ##p<0.01 P31-43 versus VX-770+P31-43 (ANOVA, Bonferroni post-hoc
test). (B) Immunoblot of membrane protein fractions with anti-SQSTM1 Ab and anti-flotillin as a control (/eft), and relative densitometric
analysis of immunoblot (right) (n=3 independent experiments). MeanstSD of triplicates of independent experiments; ***p<0.001
untreated or P57-68 versus P31-43 treatment, °°p<0.01 P31-43 versus genistein+P31-43 or ##p<0.01 P31-43 versus VX-770+P31-43
(ANOVA, Bonferroni post-hoc test). (C-D) Immunoblot of membrane protein fractions with anti-CFTR (C) or Ezrin (D) and anti-flotillin as a
control (left) and relative densitometric analysis of immunoblot (right) (n=3 independent experiments). MeanstSD of triplicates of
independent experiments; **p<0.01 or ***p<0.001 untreated or P57-68 challenged cells versus P31-43 treatment, °°p<0.01 P31-43
versus genistein+P31-43 (ANOVA, Bonferroni post-hoc test). Data information: The blots are representative of one experiment for group
of treatment.
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Figure 4. Genistein opposes P31-43 induced inflammation in intestinal epithelial cells by targeting CFTR. (A-B) Caco-2 cells
incubated with or without P31-43 in the presence or absence of genistein. Protein levels (by specific ELISA) of IL-1 B (A) and IL-15 (B).
Means+SD of pooled samples assayed in triplicates; ***p<0.001 untreated cells versus P31-43, °°p<0.01 P31-43 versus genistein+P31-43
(ANOVA, Bonferroni post-hoc test). (C) Immunoblot of phospho-ERK 1/2 in CFTR-WT Caco-2 cells or in CFTR-knock out Caco-2 cells treat-ed or
not with genistein (left) and densitometric analysis of protein levels relative to B-actin (right) (n=3 independent experiments). MeansSD of
triplicates of independent experiments; **p<0.01 versus CFTR-knockout Caco-2 cells (ANOVA, Bonferroni post-hoc test). (D) CFTR-knockout
Caco-2 cells incubated with P31-43 in the presence or absence of genistein. Protein levels (by specific ELISA) of IL-15. Means+SD of pooled
samples assayed in triplicates. Data information: The blots are representative of one experiment for group of treatment.

Genistein prevents P31-43 induced manifestations in
gliadin sensitive mice

To investigate whether genistein may counteract the
pathogenic effects of gliadin in vivo [34-39], we took
advantage of an established mouse model of gliadin
sensitivity. Three successive generations of BALB/c
mice were fed with a gluten-free diet, and then young
(10-week-old) mice were challenged with gliadin for 4
weeks (5 mg/daily for one week and then 5 mg/daily

thrice a week for 3 weeks), following established
protocols [12,34-37]. In this experimental model,
genistein (25mg/kg in 100ul DMSO) was administered
intraperitoneally 15 min prior to gliadin challenge. In all
tested mice, genistein prevented the decrease of CFTR-
dependent CI' secretion measured in small intestines
mounted in Ussing chambers as the forskolin (Fsk)-
inducible increase in chloride current (Isc (nA/cm2))
(Figure 5A). Beyond this electrophysiological effect,
genistein prevented the upregulation of TGM2 (Figure
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Figure 5. Genistein protects gliadin-sensitive mice and celiac PBMC from the effects of gliadin. (A-D) BALB/c mice fed with
a gluten-free diet for at least 3 generations, orally challenged with vehicle or gliadin for 4 weeks (5 mg/daily for one week and then 5
mg/daily thrice a week for 3 weeks) in the presence or absence of intraperitoneal genistein administered 15 minutes prior gliadin
challenge (n=10 mice per group of treatment). (A) Representative traces of CFTR-dependent CI secretion measured by forskolin (Fsk)-
induced increase of chloride current (Isc (LA/cm2)) in small intestines mounted in Ussing chambers; quantification of the peak CFTR
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Inhibitor 172 (CFTRinhy7,)-sensitive Isc (Alsc) in tissue samples (n=5-10). MeansSD of samples assayed; ***p<0.001 gliadin versus
vehicle, °°p<0.01 gliadin versus genistein+gliadin (ANOVA, Bonferroni post-hoc test). (B-C) Immunoblot with anti-TGM2 (B) or anti-CFTR
(C) antibodies and B-actin loading control (left) and relative densitometric analysis of immunoblot (right) (n=3 independent
experiments). MeansSD of triplicates of independent experiments; ***p<0.001 gliadin versus vehicle, °*°p<0.001 gliadin versus
genistein+gliadin (ANOVA, Bonferroni post-hoc test). (D) Quantification of protein levels (by specific ELISA) of IFN-y (left) and IL-15
(right). MeansSD of triplicates of independent pooled samples. ***p<0.001 vehicle vs gliadin or °*°p<0.001 gliadin vs genistein+gliadin
(ANOVA, Bonferroni post hoc test). (E) IFN-y release (ELISA) in culture supernatants by PBMC from 4 celiac patients cultured in the
lower compartment of a bidimensional co-culture model upon 24 h challenge of confluent CaCo-2 cells in the upper compartment with
P31-43 or P57-68 or with the combination of P31-43 and P57-68 in the presence or absence of genistein. MeansSD of triplicates of
independent pooled samples. ***p<0.001, P57-68 or P31-43 vs P31-43/P57-68 combination (n=4); °°p<0.001, P57-68/P31-43
combination vs genistein+ P57-68/P31-43 (n=4), (ANOVA, Bonferroni post hoc test). Data information: The blots are representative of

one experiment for group of treatment.

5B), as well CFTR disposal that is induced by gliadin
challenge in vivo (Figure 5C). Moreover, genistein was
effective in controlling the gliadin-induced IL-15
upregulation, as well as the increase of IFN-y levels in
mouse small intestines (Figure 5D).

In conclusion, our data indicate that genistein can
reduce epithelial stress and local immune dysregulation
induced by gliadin in vivo.

Genistein opposes the gliadin-induced immune
response ex vivo in celiac patients

To translate our findings into a relevant clinical setting,
we determined whether genistein would prevent the
HLA-restricted T cell activation induced by gliadin
peptides. To this aim, we implemented a bidimensional
co-culture model in which peripheral blood mono-
nuclear cells (PBMC), collected from 4 celiac patients
and 4 healthy controls, were placed in the lower
compartment and confluent Caco-2 cells were placed in
the upper compartment [40]. This experimental system
aims at reproducing a mucosal environment in which
the responsiveness of PBMC can be evaluated upon
epithelial exposure to the relevant antigen. Confluent
Caco-2 cells were challenged with a combination of
P31-43 and P57-68 to elicit an immune response, as
described [9-12], and IFN-y was quantified in the
supernatants from the lower compartment [40].
Genistein was effective in preventing the production of
IFN-y induced by the peptide combination (p<0.01)
(Figure 5D).

These results suggest that genistein could represent an
effective strategy to prevent or treat the gliadin-induced
immunopathology.

DISCUSSION

The inhibition of CFTR function perturbs cellular
proteostasis as it causes two major alterations in cellular
function, TGM2 activation and autophagy inhibition

[12-15]. Autophagy is crucial for the adaptation to cell-
autonomous and environmental triggers [14, 15, 41, 42].
In this context, CFTR may be conceived as a major
sensor of stress in thus far that it can activate autophagy
when a stressful event risks to perturb cellular homeo-
stasis [14, 15, 41]. Thus, CFTR, TGM2 and autophagy
are engaged in a feed forward loop [13-15, 43]. Indeed,
CFTR dysfunction leads to TGM2 activation and
consequent autophagy inhibition, while the restoration
of autophagy and the inhibition of TGM2 re-establish
CFTR function at the epithelial surface [13-15]. CFTR
inhibition can result from CFTR mutations, as they are
inherited by CF patients, or by acquired perturbation of
CFTR channel function, as this occurs in CD [12-15,
43]. Of note, the prevalence of CD is three-times higher
in CF patients than in general population, meaning that
CF predisposes to the development of CD [44-46]. In
both conditions, an initially partial CFTR inhibition
causes cells to derail in a spiral in which the activation
of TGM2 and the inhibition of autophagy sustain an
ever more severe inactivation of CFTR, thus locking
cells in a condition of perturbed proteostasis and con-
sequent chronic inflammation [43, 47, 48].

At present the therapy of CD is exclusively based on a
gluten-free diet or the still experimental ingestion of
enzymes that degrade pathogenic gliadin peptides
within the gut lumen [49, 50, 51]. Other experimental
strategies are emerging, such as tolerogenic vaccines to
desensitize celiac individuals or strategies to prevent
intestinal permeabilization [52-56]. In this perspective,
targeting the initial pro-inflammatory reactions might
represent an interesting option to prevent or treat CD.
Our data suggest that this cascade of events might be
interrupted at different levels within the “infernal trio”
composed by CFTR inhibition, TGM2 activation and
autophagy inactivation. At the apex synthetic drugs or
natural compounds can be used to potentiate CFTR
channel gating. Moreover, TGM2 inhibitors [12, 15, 18,
19, 29, 57-59] or autophagy enhancers [60-64], can
intercept the pro-inflammatory pathway downstream of
CFTR malfunction.

WWWw.aging-us.com 2010

AGING



We have previously demonstrated that Ivacaftor (VX-
770), which is already used for the treatment of CF
patients bearing plasma-resident CFTR mutants [65-69],
can prevent P31-43 binding to CFTR, thus opposing the
gliadin-induced CFTR malfunction with its pro-
inflammatory consequences [12]. Here, we evaluated
the ability of an established naturally-occurring CFTR
potentiator, the over-the-counter nutraceutical genistein,
to obtain similar effects. Apparently, genistein is as
efficient as VX-770 in protecting the small intestine of
gliadin-sensitive mice, human intestinal epithelial cells
and PBMC from celiac patients against gliadin-induced
inflammation.

Genistein is a biologically active isoflavone found in
soy products [23]. As many naturally-derived com-
pounds with beneficial effects on human health,
genistein is endowed with multifaceted biological
functions [25-28]. Beyond its ability to potentiate CFTR
channel gating [25-28], genistein reportedly has a broad
activity on a variety of diseases including cancer,
insulin resistance, diabetes, obesity, chronic inflam-
mation [32, 33]. Characterizing the mechanisms through
which over-the-counter nutraceuticals such as genistein
may have a broad pro-health activity is crucial for
defining appropriate indications and for designing
discovery programs aimed at selecting more active
compounds. Here, we demonstrate that genistein
protects intestinal epithelial cells from the pro-
inflammatory effects of P31-43 through an on-target
effect, namely by stimulating CFTR function. Indeed,
the protective effects of genistein against P31-43
induced epithelial stress were lost if CFTR was
genetically removed from the system. It will be
interesting to learn whether other natural compounds
may have similar CFTR-stimulatory effects.

MATERIALS AND METHODS
Peptides

The following peptides were synthesized by Inbios
(Napoli, Italy): a-gliadin peptide LGQQQPFPPQQPY
(P31-43) or QLQPFPQPQLPY (P57-68) or scrambled
GAVAAVGVVAGA (PGAV). All peptides were
obtained with or without Biotin-NH2-tag.

Cells and treatments

Human colon adenocarcinoma-derived Caco-2 and T84
cells were obtained from the ATCC. Cells were
maintained in T25 flask in Modified Eagle Medium
(MEM) for Caco-2, or Ham's F12 + DMEM (1:1) for
T84, supplemented with 10% fetal bovine serum (FBS),
2mM Glutamine + 1% Non Essential Amino Acids
(NEAA) and the antibiotics penicillin\streptomycin

(100 units/ml) (all reagents from Lonza) [29]. Cells
were grown in Transwells (Corning, 3470 or 3460)
under the normal condition. Briefly, 8 x 10* or 5 x 10°
cells were seeded in 6.5-mm diameter or 12-mm
diameter, respectively, and grown until the RT reached
800 to 1,200 Q-cm2. Transwells with a pore size of 0.4
um were used. Medium in both the apical and baso-
lateral chambers was changed every other day [40, 58].
Cells were treated with 20 pg/ml of either a-gliadin
peptide P31-43 or P57-68 or scrambled PGAV or
modified P31-43 either biotin-tagged or not, for
different time point (from 1h short challenge up to 24h)
[12, 70]. Caco-2 or T84 cells were also treated with:
CFTR potentiators VX-770 (10uM) or Genistein
(50uM) (Sigma Aldrich), TG2 inhibitor Z-DON (20nM,
Zedira), and with autophagy inhibitor 3-methyladenine
(3-MA, 3mM, Sigma Aldrich)

Mice and treatments

BALB/c mice (background BALB/cAnNCrl) [35] were
purchased from Charles River (Varese, Italy). Three-
generation gluten-free diet (Mucedola srl, Milan), male
and female, were challenged with gliadin for 4 weeks
[34-37]. To assess the effects of Genistein or VX-770
into a controlled environment, mice were challenged via
gavage for 4 weeks with 1) vehicle alone or ii) gliadin
(Sigma-Aldich, G3375) (5 mg/daily for one week and
then 5 mg/daily thrice a week for 3 weeks) [12,34-37]
in the presence or absence of intraperitoneal genistein
(25mg\kg in 100ul DMSO, Sigma-Aldrich) adminis-
tered 15 minutes prior each gliadin challenge (n=10
mice per group of treatment).

At the end of the last daily treatment, mice were
anesthetized with Avertine (tribromoethanol, 250
mg/kg, Sigma Aldrich, T48402) and then killed; the
intestines were collected for CFTR function analysis or
stored for all described techniques.

These studies and procedures were approved by the
local Ethics Committee for Animal Welfare (IACUC
No849) and conformed to the European Community
regulations for animal use in research (2010/63 UE).

Purification of PBMC and transwell co-culture
model

Five ml of peripheral blood have been withdrawn from
4 untreated celiac patients (females and males, age
range 8-25 years) and from 4 not CD-affected controls.
The Ethics Committee of the Istituto Superiore di Sanita
(ISS) approved the protocol (#CE/12/341), and patients
or patients’ parents signed the informed -consent.
Peripheral blood mononuclear cells were isolated using
lympholite (Cederlane, UK) density gradient overlaid
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by heparin blood diluted 1:1 in PBS and centrifuged (20
min at 900 rpm). After being washed three times,
PBMCs were resuspended in complete RPMI 1640
supplemented with 25 mM HEPES, 10 % (v/v) heat-
inactivated FBS, 100U/ml penicillin, 100 mg/ml
streptomycin, and 1% 2 mM I-glutamine.

For transwell experiments using polarized Caco-2 cells,
3 weeks prior to the experiment, Caco-2 cells were
seeded at a density of 80 x 10° cells x cm” on 0.4-pm, 1-
cm’ tissue culture inserts (Costar, Corning Incor-
porated). Transwell cultures (12-well) with confluent
Caco-2 monolayers were used for co-culture with 1 ml
PBMC (1.5 x 10° cells/ml) using PBMC medium and
kept in an incubator at 37 °C and 5 % CO2. Cells were
allowed to settle for 1 h before the starting of the
experiment. The permeability of the epithelial mono-
layer was assessed just before the experiments,
measuring the transwell electrical resistance between
the upper and lower compartments. A value of transwell
resistance >800 Q x cm?2 has been considered index of a
fully formed epithelial monolayer, not allowing the
paracellular passage of molecules [40].

Caco-2 cells were apically exposed for 3 h with P31-43
peptide (20 pg/ml) and then treated with P57-68 (20
pug/ml) in presence or absence of CFTR potentiators
Genistein. As negative control, cells were treated with
medium alone, and with P57-68 alone. After the
treatments,  supernatants from the basolateral
compartment were collected, centrifuged, and stored at -
20°C until cytokine measurement. At the same time, the
cells from the apical compartment were harvested,
lysated, and stored at —80 °C.

Ussing chamber

Chambers for mounting either transwell cell cultures or
mouse tissue biopsies were obtained from Physiologic
Instruments (model P2300, San Diego, CA, USA).
Chamber solution was buffered by bubbling with
identical Ringer solution on both sides and were
maintained at 37°C, vigorously stirred, and gassed with
95%02/5% CO2. Cells or tissues were short circuited
using Ag/AgCl agar electrodes. A basolateral-to-apical
chloride gradient was established by replacing NaCl
with Na-gluconate in the apical (luminal) compartment
to create a driving force for CFTR-dependent Cl
secretion. To measure stimulated Isc, the changed sodi-
um gluconate solution, after stabilization, was supplied
with 100uM amiloride. Agonists (forskolin) were added
to the bathing solutions as indicated (for a minimum 5
min of observation under each condition) to activate
CFTR channels present at the apical surface of the
epithelium (either cell surface or lumen side of the
tissue) and CFTRpyn172 (10uM) was added to the

mucosal bathing solution to block CFTR-dependent Isc.
Short-circuit current (expressed as Isc (uA/cm2)) and
resistance were acquired or calculated using the VCC-
600 transepithelial clamp from Physiologic Instruments
and the Acquire&Analyze2-3 software for data acqui-
sition  (Physiologic Instruments), as previously
described [12, 71-74].

CRISP/Cas9 CFTR Knockout

CFTR CRISP/Cas9 KO plasmids were purchased from
Santa Cruz Biotechnology and transfected in Caco-2
cells by UltraCruz trasfection reagent according to the
manufacturer's instructions (Santa Cruz Biotech.).
Successful transfection of CRISPR/Cas9 KO Plasmid
was visually confirmed by detection of the green
fluorescent protein (GFP) by immunofluorescece. The
cells were then sorted by replacing selective media with
Puromycin antibiotic approximately every 2-3 days for
a minimum of 3-5 days. The knockout was then
confirmed by western blot with specific CFTR antibody
and by functional assay (Ussing chamber or SPQ assay)
[12].

Immunoblot

The whole lysate or membrane fraction proteins of cell
lines and mice intestine homogenates were obtained
from treated and untreated cells or mice as described
[12, 13, 15, 18, 19, 58, 75-79]. The equal amount of
protein were resolved by SDS-PAGE gel and blotted
with antibodies against: SQSTMI1, (Sigma Aldrich,
108k4767)1:1000, PPARY (Santa Cruz Biotechnology,
sc7273) 1:500, BECNI (Abcam, ab58878) 1:1000,
CFTR clone M3A7 (Abcam, ab4067) 1:500, phospho-
ERK1/2 (php42/44, Cell Signaling Technology,
#91101) 1:1000, Ezrin (BD, 610603) 1:1000, biotin
(Abcam, abl1227 )1:2000, TG2( CUB Novus Bio)
1:1000 used as primary antibodies. Normalization was
performed by probing the membrane with anti-f-actin
(Cell Signaling, #4970) 1:1000, and anti-flotillin
(Abcam ab15148) 1:1000 antibodies.

Membrane fractionation

Protein from membrane fractionation were obtained as
described [13, 15, 18, 19, 71, 76]. Cells were homo-
genized with a Potter-Elvehjem pestle and centrifuged
at 2300xg for 15 min at 4 °C. Supernatants that contains
the cytoplasmic and PM fractions were centrifuged 1 h
at 16000xg at 4 °C; the pellet was the intact membrane
and was solubilized in BUFFER A (20mM Tris-HCI pH
7.4, 2mM EDTA, 20mM 2-ME, 1X PMSF, 1 pg/ml
inhibitor protease cocktail) +1% Triton X-100 and
centrifuged 1 h at 60000xg in the ultra-centrifuge. The
supernatants were collected as PM fraction. Proteins of
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PM fraction were used for WB and immunoblotted
against CFTR, Ezrin, SQSTMI\p62 and flotillin
antibodies.

ELISA

ELISA analysis was performed on tissue samples using
standard ELISA kits (R&D Systems) for IL-1p, IL-15,
INF-y. According to the manufacturer’s instructions.
Samples were read in triplicates at 450 nm in a Micro-
plate Reader (BioRad, Milan, Italy) using Microplate
Manager 5.2.1 software. Values were normalized to
protein concentration evaluated by Bradford analysis.

TGM2 enzyme activity detection

TG2 enzymatic activity in Caco-2 cells, treated as
described above, was detected by incorporation of 5-
(biotinamido)pentylamines  (BAP) into  protein
substrates. For BAP-incorporation, 2 mM BAP (Soltec
Ventures, B110) were directly added into the medium
together with the indicated treatments. In the presence
of TG2 transamidating activity, BAP is incorporated
into the substrates. To measure this activity, cells were
lysed and proteins were resolved by SDS-poly-
acrylamide gel. The blots were incubated with anti-
Biotin antibody [80, 81].

ROS detection

The cells were pulsed with SuM CellROX Green
Reagent (C10444, Thermo Fisher Scientific) for 10 min
in live-cell imaging at 37 °C. After washing, the cells
were subsequently analysed by confocal microscopy

[82].
Statistical analysis

GraphPad Prism software 6.01 (GraphPad Software)
was used for analysis. Data were expressed as
means+SD. Statistical significance was calculated by
ANOVA (Bonferroni's post hoc test) for multiple
comparisons and by Student's t-test for single
comparisons. We considered all P values 0.05 to be
significant. The in vivo groups consisted of ten mice/
group. The data reported are representative of at least
three experiments.
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SUPPLEMENTARY MATERIAL

Caco-2
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Supplementary Figure 1. Genistein reverses oxidative stress induced by P31-43. The cells were
challenged with P31-43 (20pug/ml for 24 hours) in presence or in absence of a 20 min pre-incubation with
genistein. Cells were afterwards loaded with CellROX (cellular ROS probe; 5 uM for 10 min at 37°C) and
analyzed by confocal microscopy. Quantification of cellular ROS. Means + SD of three independent
experiments. Two paired Student’s t test, *p<0.05 versus untreated cells and versus P31-43-treated cells.
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Supplementary Figure 2. 3-MA abrogates the effect of genistein on signs of mucosal inflammation. (A-B) Genistein-treated
cells were incubated with P31-43 in the presence or absence of 3-MA. Immunoblot of ph-ERK 1/2 (A) or PPARy (B) and densitometric
analyses of protein levels. B-actin was used as loading control. MeanstSD of three independent experiments; ***p<0.001 versus
untreated cells, °°p<0.01 versus P31-43-challenged cells and ##p<0.01 versus P31-43-challenged cells pre-treated with Genistein (ANOVA,
Bonferroni post-hoc test).
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