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ABSTRACT

The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a
huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular
survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis
and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association
of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or
decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or
apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-
related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss
the main factors involved in stress responses under such circumstances and focus on examples with clinical

relevance.

INTRODUCTION

The nucleolus has gained prominent attention in
molecular research over the past two decades, due to its
emerging role in various cellular processes. Among
them, the production of ribosomes is seemingly the
most important, as it controls translation of all proteins
in the cell and thus governs cell growth and
proliferation [1]. The nucleolus is a subnuclear,
membrane-less organelle, formed in early G1 phase of
the cell cycle around the short arms of acrocentric
chromosomes (chromosome 13, 14, 15, 21 and 22), in
nucleolar organizer regions (NORs). These NORs
contain the ribosomal DNA (rDNA) genes, arranged in
tandem repeats and transcribed by RNA Polymerase [
(Pol I) [2]. The resulting single polycistronic transcript,
known as 47S pre-rRNA, is further modified in the
nucleolus. The maturation of the primary transcript is
initiated co-transcriptionally and the main processing
steps involve endo- and exonucleolytic cleavages, pseu-

douridylation and 2’-O-methylation which lead to the
emergence of three ribosomal RNA (rRNA) species:
18S, 5.8S and 28S rRNAs. While 18S rRNA is in-
corporated into the small ribosomal subunit (SSU), 5.8S
and 28S rRNAs, along with 5S rRNA, are members of
the large ribosomal subunit (LSU) [3]. The gene
encoding 5S rRNA is an exception when compared to
other rRNA genes as it is located on chromosome 1 and
transcribed by RNA Polymerase III (Pol III) in the
nucleus [4, 5]. The protein components of the ribosome
are 80 ribosomal proteins (RPs), which are transcribed
in the nucleus by RNA Polymerase II (Pol II) and
translated in the cytoplasm. However, both the 5S
rRNA and the RPs need to be imported into the
nucleolus in order to be incorporated into the ribosome
[6]. During late ribosome maturation, the forming
subunits are first moved into the nucleus, followed by
transport to the cytoplasm where ribosomes can fully
assemble and assume their protein-translation function

[3].
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It can be readily accepted that ribosome biosynthesis
consumes most of the cell’s energy, particularly when
compared to other biological processes, as it requires
the synthesis of the most abundant RNA and protein
species in the cell. This not only includes the concerted
action of all three RNA polymerases and the cell’s
translation apparatus, but also the activity of more than
200 non-ribosomal factors within the nucleolus [7, 8].
Therefore, it is not surprising that cellular signaling
networks which sense the nutrient status, growth
factors, extra- and intracellular stress levels affect the
rate of ribosome biogenesis, mainly by altering the
activity of Pol I [9, 10]. Disruption of ribosome
biogenesis also promotes signaling pathways that lead
to cell cycle arrest and cellular senescence or apoptosis
[8, 11]. The earliest observation that impaired ribosome
biogenesis halts cell cycle progression comes from a
study by Volarevic et al., where they described that the
conditional knockout of ribosomal protein RPS6 (eS6)
causes cell cycle arrest in mouse liver cells [12]. Since
then, a number of studies have demonstrated that the
disruption of virtually any step in ribosome biogenesis
can result in cell cycle arrest, primarily through
activation of the tumor suppressor protein p53. This
particular process was recently termed as the Impaired
Ribosome Biogenesis Checkpoint (IRBC) [13].

Impaired ribosome biogenesis is usually best visible as
structural alterations of the nucleolus which can be seen
also in various human diseases [14-17]. Importantly,
increased size of nucleoli usually reflects intense
ribosome biogenesis and has been recognized by
physicians for a long time as a hallmark of many tumor
types [18]. Interestingly, despite excessive ribosome
biogenesis being believed to drive the fast proliferation
of cancer cells, some of the most rapidly dividing tumor
cells do not display this phenotype [19]. Moreover,
patients with another group of human diseases called
ribosomopathies, are prone to developing various kinds
of tumors. Ribosomopathies are characterized by
mutations in RPs or ribosome biogenesis factors,
showing a decreased rate of ribosome biosynthesis due to
deficiencies of these components required in the ribo-
some biogenesis pathway. Symptoms of these disorders
arise from tissue specific growth arrest and/or
incompetent translation. There is a wide spectrum of
phenotypes displayed by ribosomopathy patients and
affected tissues frequently show upregulation of p53 as a
consequence of IRBC [20, 21]. Altered ribosome bio-
genesis was also connected to aging and it is also relevant
in neurodegenerative disorders such as: Alzheimer,
Parkinson, Huntington and other advanced age-related
diseases (for more details on this topic see the following
reviews [16, 17]). However, the exact contribution of
IRBC to these complex disorders and aging remains an
intriguing question open to further research.

In this review, we summarize the most important steps
of ribosome biogenesis, focusing mainly on human cell
culture studies. Furthermore, we describe the main
effectors of IRBC and review studies that provide
evidence for the existence of this pathway as well as
examining the clinical relevance of IRBC in aging and
age-related diseases.

Ribosome biogenesis

Ribosome biogenesis begins with rRNA synthesis in the
nucleolus. As a first step a pre-initiation complex (PIC)
is formed around the rDNA promoter region. The PIC
itself consists of the upstream binding factor (UBF),
selectivity factor (SL1 also known as TIF1-B), trans-
cription initiation factor 1A (TIF1-A or hRRN3) and
Pol 1. UBF marks the promoter regions by binding as a
homodimer to the core promoter surrounding the
transcription start site and to the upstream core element
(UCE), thereby creating a DNA loop structure. Next,
SL1 is recruited to the promoter: binding to both UBF
and the rDNA. The interaction of TIF1-A with Pol I is
essential for its recruitment to the promoter and
formation of the complete PIC. Promoter opening and
escape is also stimulated by UBF and is accompanied
by the release of TIF1-A from the Pol I complex [22,
23]. Surprisingly, UBF was shown to bind the whole
length of rDNA transcript units, and it has been
suggested that it is involved in the control of elongation
process as well [24]. Transcription termination occurs
when Pol I encounters transcription termination factor 1
(TTF-1)-bound terminator elements, the stalled Pol I is
subsequently removed by the polymerase 1 and
transcript release factor (PTRF) [25].

In contrast to the synthesis of 47S rRNA, the precursor
of 5S rRNA is transcribed by Pol III in the nucleoplasm.
The main factors involved in this process are the
transcription factors IIIA, IIIB and IIIC (TFIIIA, TFIIIB
and TFIIC), which are responsible for labeling of the
promoter region and the recruitment of Pol I1I [5, 26].

The rate of ribosome production is regulated mainly on
the level of rRNA synthesis. This is carried out by a
number of factors and signaling pathways which are
dependent on wvarious cellular needs, such as the
availability of nutrients, and the presence of mitogenic
or stress signaling [10]. Mitogenic stimuli activate
several, typically oncogenic pathways which upregulate
rDNA transcription. For example, MAPK/ERK
pathway phosphorylates UBF, TIF1-A and TFIIB to
stimulate Pol I and Pol III mediated rRNA transcription,
respectively [27-30]. Moreover, both MAPK/ERK and
PI3K/AKT signaling activate the expression of c-Myc
[31, 32], which can boost ribosome biogenesis at
multiple levels. It stimulates the formation of PIC by
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recruiting SL1 to the rDNA promoter, increasing the
activity of Pol II to drive transcription of RP genes
while simultaneously upregulating Pol III transcription
by activating TFIIIB [33-35]. Furthermore, growth
factors also activate the mammalian target of rapamycin
(mTOR) signaling network which contributes to the
activation of UBF, TIF1-A and Pol III associated
transcription factors TFIIIB and TFIIC [36-38].
Additionally, p53 is also involved, both directly and
indirectly, in the control of Pol I transcription. It
interacts with SL1 to prevent its recruitment to rDNA
promoters, thus inhibiting Pol I transcription [39], and
also limits Pol III activity via the direct binding of
TFIIIB [40]. One of the main transcriptional targets of
p53 is p21, which is able to activate the retinoblastoma
protein (pRb) through the inhibition of CDKs [41, 42].
Besides its well-known role in cell cycle regulation,
pRb is able to bind to several ribosome biogenesis
factors, like UBF and TFIIIB to suppress rRNA
transcription [43-45].

Transcription of rDNA results in the emergence of a
single polycistronic primary transcript, known as the
47S rRNA. This transcript contains 18S, 5.8S and 28S
rRNAs separated by internal transcribed spacers (ITS1
and ITS2) and flanked by external transcribed spacers
(5’-ETS and 3’-ETS). Over the course of rRNA
maturation, the ITSs and ETSs are removed by the
combined action of endo- and exonucleases. The pro-
cessing of the 47S pre-rRNA is initiated co-
transcriptionally by the formation of the so-called small
subunit (SSU) processome [3]. The recruitment of the
transcriptional U three protein (t-UTP) complex to the
5’ end of the 47S pre-rRNA belongs among the earliest
steps of SSU processome formation. t-UTPs strictly co-
localize with the Pol I transcription machinery; forming
bead-like structures during active transcription in the
nucleolus [46]. Subsequently, t-UTPs and other SSU
processome factors initiate the early processing steps of
18S rRNA [46]. Importantly, a cleavage in the ITSI
region separates the processing pathways of the two
subunits (for more information on the topic of rRNA
processing refer to one of the following reviews [3,
47)).

The maturation of rRNA is coordinated mainly by box
C/D and box H/ACA small nucleolar ribonucleoprotein
complexes (snoRNPs), named after a specific motif of
the RNA component, which catalyze site-specific 2’-O-
methylation and pseudouridylation of rRNA species
respectively. Box C/D snoRNPs are composed of the
methyltransferase fibrillarin (FBL), accessory proteins
Nop56, Nop58, and 15.5K/NHPX along with the
snoRNA component. The snoRNA hybridizes to the
pre-rRNA to bring it into the proper conformation to be
accessible for methylation by FBL. Furthermore, FBL’s

function is not limited to the methylation of pre-rRNA,
when it forms a complex with e.g. U3, U8 or Ul4 box
C/D snoRNAgs, it is also involved in chaperoning and
directing the pre-rRNA for endo- and exonucleolytic
cleavages [48]. Box H/ACA snoRNPs consist of the
pseudouridine synthase dyskerin, the accessory proteins
Nhp2, Nopl0, Garl and the H/ACA snoRNA com-
ponent [48]. Box H/ACA snoRNPs operate similarly to
box C/D snoRNPs, besides their function in site-specific
pseudouridylation and cleavage of rRNA, box H/ACA
RNPs are also involved in other cellular processes such
as: mRNA splicing, production of miRNAs and
telomere maintenance [48, 49].

In addition to snoRNPs, numerous other proteins (e.g.
ATPases, GTPases, RNA helicases) are also implicated
in rRNA processing. By chaperoning rRNA to facilitate
proper folding, or by the removal of processing factors
from the rRNA, these factors allow subsequent rRNA
maturation steps and the assembly of RPs onto the
rRNA to proceed [3]. An example of this is the multi-
functional protein nucleolin (NCL), which is involved
in multiple stages of ribosome biogenesis. NCL is
recruited to the rRNA genes and interacts with both the
promoter and the coding regions to facilitate trans-
cription elongation by Pol I [50]. Furthermore, as a
histone chaperone, NCL can bind to H2A-H2B dimers
to promote their dissociation from the nucleosome and
stimulate chromatin remodelers, like SWI/SNF and
ACF, thereby increasing the rate of transcription [51].
NCL is also involved in rRNA maturation, as it binds to
a specific site in the 5’-ETS region of the pre-rRNA and
has a role in the cleavage of this site possibly by
facilitating the action of its interaction partner, U3
snoRNA [52, 53]. Moreover, NCL was demonstrated
to interact with a subset of RPs and have an important
function in the pre-ribosome assembly [54, 55].

Nucleophosmin (NPM) is another multifunctional
protein that is involved in ribosome biogenesis at
multiple levels. Similarly to NCL, NPM is a histone
chaperone, with the ability to stimulate rRNA trans-
cription [56]. The requirement of NPM for rRNA
processing was first described by Savkur and Olson in
1998. This study demonstrated that NPM is involved in
the cleavage of pre-rRNA in the ITS2 region to promote
the release of 28S rRNA [57]. These results were con-
firmed later on, as downregulation of NPM led to the
impairment of this processing step [58]. Furthermore,
NPM has been demonstrated to have a role in the
nuclear export of RPL5 (uL18) and the pre-ribosomal
subunits [59, 60]. Additionally, NPM has been
implicated in numerous other cellular processes such as:
centrosome duplication, regulation of cell cycle and
maintenance of genome stability [61].
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In parallel with the rRNA processing the newly
synthesized RPs are imported into the nucleus and
assemble onto the pre-ribosomal subunits [3]. Since
nascent RPs in the cytoplasm are readily degraded by
the proteasome, their nuclear import has to occur
immediately following their synthesis [62, 63]. The
nuclear import of RPs is an active, energy-dependent
process facilitated by several proteins of the p-
karyopherin family. Importin-f, transportin, RanBP5
and RanBP7 have been reported to promote the nuclear
import of RPL23A (uL23), RPS7 (eS7) and RPL5 [64],
while importin-11 was suggested to be a mediator of
RPL12 (uL11) transport [65]. Furthermore, importin-7
was shown to participate in the nuclear import of
several RPs, such as RPL4 (ulL4), RPL6 (eL6) and
RPL23A [66]. Once in the nucleus or nucleolus, RPs
are believed to be actively involved in rRNA maturation
presumably by stabilizing the secondary structure of the
pre-tfRNA. The incorporation of RPs into the pre-
ribosome occurs in a highly hierarchical order, which
correlates to the level of rRNA processing they are
involved in, during either the early or late phases of
maturation [3].

In addition to its synthesis, the maturation and assembly
of 5S rRNA into the LSU is also exceptional. The pre-

cursor of the 5S rRNA is matured in the nucleus and is
assembled shortly after maturation; adding two LSU
RPs, RPL5 and RPL11 (uL5) to the structure. As a
ternary complex, the 5S RNP is incorporated into the
pre-60S subunit [67, 68].

Similar to the nuclear import of RPs, the export of the
pre-40S and pre-60S particles occurs through an
energy-dependent process, which is also facilitated by
B-karyopherins. Most importantly, exportin-1 is
involved in the export of both of the pre-ribosomal
subunits [69]. After their transport into the cytoplasm,
pre-40S and pre-60S ribosomal subunits undergo the
final maturation steps which include the dissociation of
the remaining non-ribosomal proteins and the
association of last RPs into their subunits [70]. Finally,
the mature SSU and LSU particles can be joined
together during translation initiation to fulfil their
protein production function [71].

Impaired ribosome biogenesis

Ribosome biogenesis is an extremely energy-
demanding process, which cells utilize for their growth
and proliferation. In the case of impaired ribosome
biogenesis, cells must immediately shut down their cell
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Figure 1. Impaired ribosome biogenesis. Impairment of multiple ribosome biogenesis stages (in bold black) activate p53 via
the RPL5/RPL11/5S rRNA/Mdm?2 pathway and is associated with various ribosomopathies (in red) TCS (Treacher Collins synd-
rome), DC (dyskeratosis congenital), SDS (Shwachman-Diamond syndrome), DBA (Diamond-Blackfan anemia) 5g- (5g- syndrome).
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cycle to avoid incomplete growth and unprepared
division. The central player in this control is the tumor
suppressor protein p53 (Figure 1).

Activation of p53 by impaired ribosome biogenesis

Under normal conditions the level of p53 in cells is kept
low, despite the fact that it is continuously expressed.
Downregulation of p53 is ensured post-translationally
by Mdm2, an E3 ubiquitin ligase [72-74]. Mdm2 forms
a heterodimer with its inactive paralogue MdmX and
their interaction is required for the stability of the
complex [75]. Ubiquitylation of p53 by Mdm2
stimulates the nuclear export of p53 and its degradation
by the 26S proteasome [76]. In addition, the interaction
between Mdm2 and p53 counteracts p53’s trans-
activating activity; the ability to trigger the expression
of its target genes [77]. Once stabilized, p53 is also
responsible for the transactivation of Mdm2, providing
a negative feedback loop to quench its own activity
after the activating stress has been overcome [78, 79].

Perturbation of ribosome biogenesis promotes the
recruitment and binding of a group of RPs and nucleolar
factors to the Mdm2 central acidic domain, thereby
disrupting its interaction with p53 which is then no
longer degraded and thus becomes activated [8, 80].
Although Mdm?2 binding activity, and thus the ability to
induce p53 was shown for multiple RPs, it is generally
accepted that RPLS and RPL11 have major roles in p53
activation in response to ribosomal stress. This effect is
best illustrated when Pol I is inhibited by, for example,
a low dose of actinomycin D (ActD) treatment, which
normally induces a p53 response. In the absence of
RPLS5 and/or RPL11 ActD induced p53 stabilization is
largely inhibited. Interestingly, depletion of other RPs
cannot abolish p53 activation in this manner [81, 82].
While most RPs are still synthesized during impaired
ribosome biogenesis, they are rapidly degraded by the
proteasome [63, 82, 83]. However, under these
conditions RPL5 and RPL11 are able to accumulate in a
ribosome free fraction, as a result of their mutual
protection from proteasomal degradation, further
supporting the central function of these proteins in
IRBC [82]. Moreover, the assembly of RPLS5 and
RPL11 into the 5S RNP complex is continued even
when ribosome biogenesis is impaired; the formation of
this particle is essential for the binding of Mdm2 by
these RPs [84]. Furthermore, the association of such a
complex might render RPL5 and RPL11 more resistant
to degradation when compared to other RPs.

The source of the Mdm?2 binding RPs that are involved
in IRBC is an intriguing question. In most cases,
impairment of ribosome biogenesis leads to the
disintegration of the nucleolar structure leading to

spontaneous release of RPs and other nucleolar proteins
into the nucleoplasm. Thus, disruption of the nucleoli
seems to be an important prerequisite for p53 activation
[85]. However, this logical proposal was questioned by
Fumagalli et al. who demonstrated that RPS6 silencing,
which inhibits SSU biogenesis, does not disrupt
nucleolar structure, while p53 still accumulates via
IRBC. It turned out that under these conditions
translation of 5’ terminal oligopyrimidin tract contain-
ing messenger RNAs (5’-TOP mRNAs), including
RPL11 and RPL5 mRNA, is upregulated [81, 86]. The
newly synthesized RPs are then actively imported into
the nucleus to promote a pS3-dependent response while
nucleolar structure stays intact [8, 87]. Furthermore, it
has been also demonstrated that even when
disintegration of the nucleoli occurs upon impaired
ribosome biogenesis, the induction of p53 relies on the
presence of nascent RPL5 and RPL11 proteins [82].
Thus, while disruption of the nucleolus might be only a
consequence of perturbed ribosome biogenesis, the
conditions and mechanisms which induce such
morphological changes remain unclear.

Besides RPL5 and RPL11, there is another nucleolar
factor, called alternative reading frame protein (ARF),
which is capable of binding to Mdm2 and thereby
promotes the activation of p53 [88]. ARF is a tumor
suppressor protein encoded by the INK4A locus, which
also encodes a cyclin-dependent kinase (CDK) inhibitor
termed pl6 using alternative reading frame of the same
genetic locus [88, 89]. Under normal conditions, ARF is
expressed at low levels and sequestered into the
nucleolus by NPM [90]. ARF is typically activated by
oncogenes, which overstimulate ribosome biogenesis to
gain excessive growth potential. Under such stimuli,
AREF is released to the nucleoplasm where, similarly to
RPs, it interacts with the central acidic domain of
Mdm?2 and indirectly promotes the stabilization of p53
[88, 91, 92]. Consequently, it was demonstrated that the
absence of NPM triggers p53-mediated apoptosis
through the activation of ARF [93]. Additionally,
excessive quantities of ARF was shown to promote the
degradation of NPM and therefore inhibit ribosome
biogenesis [58]. This was suggested to induce 5S RNP
mediated IRBC, implicating an interplay between the
two pathways [87]. Moreover, ARF has a direct
inhibitory effect on ribosome biogenesis; by suppres-
sing the phosphorylation of UBF and the nucleolar
import of TTF-1 it is able to shutdown rRNA synthesis,
which triggers IRBC [87, 94, 95]. Surprisingly, one
study demonstrated that overexpression of NPM also
promotes the upregulation of p53, since NPM is also
capable of interacting directly with Mdm2 to prevent
p53’s degradation [96]. Overexpression of NPM also
inhibits the translocation of p53 from the nucleus to
mitochondria, which prevents the activation of the so
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called intrinsic apoptotic pathway [97]. However, upon
apoptotic stimuli, NPM display pro-apoptotic activity as
it translocates to the cytoplasm, where NPM binds the
pro-apoptotic BAX protein, triggering cytochrome-c
release from the mitochondria [98]. This dual function
of NPM in the apoptotic process depicts the numerous
functions of NPM in cells, which often differ depending
on the conditions.

It is also worth mentioning that several studies have
uncovered that activated IRBC also promotes cell cycle
arrest through p53-independent pathways. For instance,
RPL11 is capable of promoting the degradation of E2F-
1 by binding to Mdm2 [99, 100]; E2F-1 is a trans-
cription factor that is required for cell cycle progression
[101]. Since nearly half of human cancers have
inactivated p53 [102], discovering pS53-independent
pathways of IRBC, makes ribosome biogenesis relevant
therapeutic target in cancer research (for more detailed
reviews see [11, 87, 103, 104]).

Impaired rRNA synthesis

Perturbation of rRNA synthesis at multiple levels was
shown to activate IRBC. It has been demonstrated by
numerous studies that the induction of IRBC and the
stabilization of p53 can be achieved by different
conditions of inhibited Pol I transcription, including: the
silencing of POLRIA, a gene encoding the catalytic
subunit of Pol I [105]; knockout of the TIFI-A gene
[106]; or inactivation of UBF by a monoclonal antibody
[85]. Impairment of the Pol I transcription machinery
can also be accomplished by using several small
molecule inhibitors. For instance, the DNA intercalating
agent ActD is a very potent inhibitor of rRNA syn-
thesis; it intercalates into the DNA at guanosine-
cytosine (GC) rich regions which are mainly present in
rDNA genes. Therefore, at lower concentrations it
preferentially inhibits transcription by Pol I [107, 108].
Several studies showed that ActD causes severe stress
through this mechanism, disrupts the nucleolar structure
and strongly induces p53 [11, 85, 104]. BMH-21, a
newly identified drug has a similar mechanism of
action, as it also intercalates into the GC-rich rDNA.
Besides its incorporation into the rDNA, BMH-21 also
promotes the proteasomal degradation of Pol I [109,
110]. Other chemical compounds employ different
mechanisms to suppress rRNA synthesis. CX-3543
(quarfloxin) inhibits transcription elongation by
disrupting the interaction of NCL with rDNA [111], and
CX-5461 prevents the recruitment of SL1 to rDNA
promoters [112]. Both drugs are potent inducers of the
IRBC response. Furthermore, CX-5461 showed a
preferential toxicity in some cancer cells compared to
normal primary cells, causing p53-dependent apoptosis
in Ep-Myc lymphoma cells [113], as well as inducing

p53-independent senescence and autophagy in solid
tumor cell lines [112]. CX-5461 quickly advanced to
phase 1 clinical trials [113-115], representing an
example of therapeutic potential in targeting ribosome
biogenesis. Of note, a recent study showed that in
addition to their inhibitory effect on rDNA trans-
cription, both CX-5461 and CX-3543 elicit cytotoxicity
through induction of DNA damage [116].
Mechanistically, these drugs bind to and stabilize the
four stranded DNA structures, G-quadruplexes (G4),
thereby causing replication-dependent DNA damage
[111, 116]. Elimination of G4 structures is carried out
mainly by the homologous recombination (HR)
machinery, therefore cancer cells deficient in HR
components are particularly sensitive to these drugs
[116]. Thus, besides the activation of IRBC, DNA
damage induction also contributes to the increased
sensitivity of cancer cells towards CX-5461 and CX-
3543.

Impairment of the Pol III transcription machinery was
also investigated by several research groups. Depletion
of the POLR3A4 gene, which encodes the catalytic
subunit of Pol III, impairs 5S rRNA biosynthesis and
leads to cell cycle arrest in a p53-independent manner
[117]. Since 5S rRNA is the essential component of 5S
RNP, formed during both intact and impaired ribosome
biogenesis, perturbation of its biosynthesis diminishes
the formation of the ternary RNP complex which is
involved in p53 stabilization. This may explain the lack
of p53 induction in Pol III depleted cells [84].
Furthermore, deficiency of TFIIIA, which is involved
exclusively in 5S rRNA transcription [118, 119], also
led to p53-independent cell cycle arrest and could
reverse the activation of p53 induced by Pol I depletion,
supporting the hypothesis that 5S rRNA is essential for
the induction of p53 in IRBC [68, 84, 117, 120].

Consequences of impaired rRNA synthesis and
activated IRBC are well represented by patients
suffering from Treacher Collins syndrome (TCS). TCS
is a severe craniofacial disease with symptoms include-
ing: micrognathia, retrognathia, coloboma of the lower
eyelids, loss of medial eyelashes, external ear aplasia or
microtia, a large or protruding nose and zygomatic bone
hypoplasia [121, 122]. TCS is an autosomal dominant
disorder mainly caused by mutations in the TCOFI
gene. A minority of TCS cases (~8%) are associated
with mutations in the POLRIC and POLRID genes,
which encode the RPACI and RPAC2 proteins,
respectively. Both RPAC1 and RPAC2 proteins are
parts of the RNA polymerase I and III complexes. [123,
124]. The TCOFI gene encodes a protein named
Treacle, which has a prominent role in both rRNA
synthesis and the early processing steps [125, 126].
Haploinsufficiency of Treacle disrupts ribosome bio-
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genesis, leading to the activation of IRBC and the
initiation of pS53-mediated apoptosis specific to the
neural crest cells during early embryogenesis. The
affected stem cell population is responsible for the
formation of the bone, cartilage and connective tissue of
the head [127, 128]. The strong connection of IRBC and
p53-induced neural crest cell apoptosis with the
pathogenesis of TCS was shown in the mouse model of
the disease. Similarly to TCS patients, Treacle
haploinsufficient mice display severe craniofacial
abnormalities. Importantly, this phenotype can be
reversed either by the chemical inhibition or genetic
inactivation of p53 [129]. Recent findings suggest that
TCOF1 is involved in the DNA damage response
(DDR) and this might also contribute to TCS pathology.
It was shown by several groups that upon DNA damage
DDR protein NBS1 is relocated to the nucleolus, where
it interacts with TCOF1 in a CK2- and ATM-dependent
manner in order to suppress rRNA transcription [130,
131]. Interestingly, neuroepithelial cells, including
progenitors of neural crest cells, have been reported to
exhibit increased amount of DNA damage in a Tcof] "
background. The accumulation of DNA damage has
been suggested to be a consequence of the higher level
of reactive oxygen species (ROS) produced in this
tissue [132]. Since ROS are potent inducers of DNA
damage [133, 134], proficient expression of TCOF1 in
neural crest cells is essential. Indeed, the administration
of the antioxidant N-acetyl-cysteine partially reduced
craniofacial malformations in Tcofl ™" mouse embryos
and accumulation of p53 [132], indicating that both
DNA damage and the IRBC contribute to TCS
pathology. Additionally, a recent study provides insight
into pathogenesis and tissue-specificity of TCS. Calo et
al. reported that upon TCOF1 depletion the nucleolar
RNA helicase DDX21 redistributes to the nucleoplasm,
leading to the inhibition of ribosome biogenesis [135].
Interestingly, such disruptions in the localization of
DDX21 seem to be specific for cranial neural crest cells
and depletion of DDX21 alone has been presented to
induce craniofacial malformations [135]. The authors
suggest that IDNA damage that occurs as a consequence
of impaired Pol I transcription machinery induces p53
activation and DDX21 relocalization, followed by
apoptosis in tissues, which are hypersensitive to
elevated levels of p53 [135]. These findings add novel
layers to the research of ribosomopathies and offer
new therapeutic avenues for the small group of TCS
patients.

Impaired rRNA maturation

rRNA processing is initiated co-transcriptionally and
early processing factors, such as the t-UTP complex and
Treacle, have been shown to have an important role in
facilitating both rRNA synthesis and maturation.

Therefore, perturbation of ribosome biogenesis due to
the absence of these early processing factors leads to a
drop in rRNA synthesis and impaired rRNA processing
as well [46, 125, 126]. We have recently demonstrated
that the depletion of one such early factor, HEAT repeat
containing 1 (HEATRI1) activates IRBC. Impaired
expression of HEATRI1 strongly induced p53 and p53-
dependent cell cycle arrest. In this scenario activation of
p53 was triggered by IRBC, evidenced by the robust
disruption of the nucleolar structure and the emergence
of Mdm2-RPL5 interaction. Furthermore, under these
conditions p53 induction can be reversed by con-
comitant depletion of RPL5 or RPL11 [136]. UTP10,
the yeast homolog of HEATR1 is a member of the t-
UTP complex and has been demonstrated to have a role
in rRNA synthesis as well as in early steps of pre-rRNA
processing [137-139]. Correspondingly, we and others
have demonstrated that human HEATRI positively
regulates rRNA synthesis and co-localizes with the Pol I
transcription machinery regardless of active trans-
cription [46, 136]. Upon impaired rRNA synthesis,
HEATRI, along with other Pol I associated factors, is
redistributed to the periphery of the nucleolus to form
so-called nucleolar caps; structures characteristic for
impaired rDNA transcription [46, 136, 140]. Moreover,
this localization appears to be solely dependent on UBF
[46]. In addition, similarly to UTP10, HEATR1 has also
been shown to be involved in the early 18 S rRNA
maturation [46]. The exact function of HEATRI1 in
rRNA synthesis and processing remains largely
unknown. However, as it possesses a C-terminal HEAT
repeat, a motif suggested to mediate protein-protein
interactions, HEATR1 might promote connections
between the Pol I transcription machinery and rRNA
processing factors. Analogous results, i.e. repressed
transcription and processing of rRNA and IRBC
activation, were obtained for other yeast t-UTP
homologs, such as: 1A6/DRIM [141], WDR43 [142]
and NOL11 [143].

Depletion, mutation or overexpression of numerous
subsequent processing factors have been shown to
impair TRNA maturation and induce IRBC [144-147].
Downregulation of the box C/D snoRNP component
FBL is one such an example; it has been shown to
impair rRNA processing and activate the IRBC pathway
which leads to p53-mediated apoptosis in embryonic
stem cells [148]. Similarly, depletion of box C/D
snoRNAs, such as U3 and U8 has been proposed to
induce IRBC, resulting in a very potent induction of p53
[149]. Both, FBL and U3 or U8 expression has been
shown to be upregulated in several cancer types,
indicating their potential involvement in tumorigenesis
[149-153]. High FBL expression led to the alteration of
the 2’-O-methylation pattern of rRNA and translational
infidelity. Moreover, the altered methylation of the
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rRNA also promoted the internal ribosome entry site
(IRES)-dependent  translation of proto-oncogenic
mRNAs, such as IGFIR, MYC, FGF1/2 and VEGFA
[154]. An abnormal rRNA methylation pattern has been
observed in aggressive breast cancer, where it induces a
decrease in the IRES-dependent translation of p353,
which contributes to tumor progression [153].
Additionally, opposing these effects, p53 was demons-
trated to counteract such harmful methylation pattern by
directly inhibiting the expression of FBL [154]
Consistently, recent study by Sharma et al. showed that
p53 depletion results in a robust increase in the level of
FBL and introduces alterations in the methylation
pattern of rRNAs. In addition, FBL ablation promotes
the loss of mainly peripheral 2-O-methylated sites
[155].

Mutations of the box H/ACA snoRNP component
dyskerin encoding gene DKC/ is associated with a rare
genetic condition known as X-linked form of dys-
keratosis congenita (X-DC). Dyskeratosis congenita
(DC) is a premature aging syndrome characterized by
the classical triad of mucocutaneous symptoms:
abnormal pigmentation of the skin, nail dystrophy and
leukoplakia of the oral mucosa. The most common
cause of death is bone marrow failure, but further
symptoms may also include: pulmonary fibrosis,
increased risk for wvarious malignancies, mental
retardation, ophthalmic, skeletal, gastrointestinal and
genitourinary abnormalities [156, 157]. The patho-
genesis of DC was originally thought to be a
consequence of impaired rRNA processing, caused by
mutations of dyskerin [49]. However, dyskerin is also a
component of the telomerase complex, formed from the
box H/ACA telomerase RNA component (TERC),
telomerase reverse transcriptase (TERT) and the box
H/ACA snoRNA associated proteins [49, 156]. Patients
with X-DC show accelerated telomere shortening,
which mainly affects the rapidly dividing stem and
progenitor cell populations. The possibility that DC is
actually a telomerase dysfunction disorder is supported
by the occurrence of DC due to mutations of TERT and
TERC in the autosomal dominant form of the disease
[49, 156, 158]. Furthermore, while depletion of dys-
kerin in human fibroblasts leads to early activation of
p53, presumably through the IRBC pathway, similar
upregulation of p53 was only observed later in the
fibroblasts of patients with X-DC or autosomal
dominant DC [159]. However, in the latter case p53
activation is actually the result of DNA damage arisen
from telomere attrition after cells go through several
cycles of population doubling [158, 159]. In agreement
with this, most of the mutations in DKC/ gene affect
the RNA binding domain, which is involved in
association with TERC, rather than affecting catalytic
activity or the expression level of dyskerin in X-DC

cases [156, 160]. DKCI mutations also seem to cause
altered rfRNA pseudouridylation, which impairs the
IRES-dependent translation of a specific group of tumor
suppressor mRNAs, including: p53, the CDK inhibitor
p27 and the anti-apoptotic proteins XIAP and BCL-X;.
Thus, impaired TRNA processing might contribute to
the cancer susceptibility observed in X-DC patients
[161, 162]. In addition, similarly to FBL, the over-
expression of dyskerin has also been associated with
cancer [163, 164], likely contributing via the dys-
regulated rRNA pseudouridylation, but precise
mechanism is not known.

Due to their importance in ribosome biogenesis,
depletion of the multifunctional proteins NCL or NPM
impairs this process at multiple levels; in the case of
NCL, it has been demonstrated to result in the activation
of p53, presumably via IRBC [51, 165]. Importantly,
overexpression of NCL has been documented in many
types of cancer [166]. This upregulation of NCL might
promote tumorigenesis by increasing the rate of rRNA
transcription and thus enhance ribosome production
[167-169]. Apart from that, NCL was shown to also be
involved in other cellular processes such as: chromatin
organization, DNA and RNA metabolism, angiogenesis,
cytokinesis, telomere maintenance, cell growth and
proliferation, all of which can contribute to the
tumorigenic potential of upregulated NCL [166, 167,
170]. Due to its high expression level NCL represents
an interesting target for cancer therapy [167]. Indeed,
aptameric compound AS1411, a G-rich oligonucleotide
which binds to NCL with high affinity, counteracts
NCL’s RNA binding activity and induces apoptosis in
various cancer cells [171, 172]. The therapeutic
potential of AS1411 was already presented in a phase I
trial for patients with different kinds of advanced cancer
[173, 174] and phase II trials for patients with advanced
renal cell carcinoma and acute myeloid leukemia
(AML) [175, 176].

In contrast to other nucleolar processing factors, by
binding to Mdm2, NPM has been shown to be actively
involved in IRBC [96]. While another study reported
that ablation of NPM also induces the upregulation of
p53 through the activation of ARF [93]. Consistent with
these rather conflicting results, NPM has been
demonstrated to display both pro-oncogenic and tumor
suppressive functions during tumorigenesis [61, 177,
178]. Overexpression of NPM has in fact been reported
in many types of solid tumors [179-189]. Its role in
tumorigenesis is commonly linked to its function in
ribosome biogenesis. Interestingly, low levels of NPM
have also been reported for certain cancers; such as
gastric or breast cancer [190, 191]. Furthermore,
mutations and rearrangements of the NPMI gene are
often seen in numerous hematological malignancies
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[177, 192, 193]. The involvement and importance of
NPM in tumorigenesis, particularly in cases when it is
upregulated, makes it an attractive target for cancer
therapy. Indeed, several small molecule inhibitors of
NPM have been tested in preclinical studies and clinical
trials [194]. One such promising compound is
NSC348884 which, by binding to NPM, is able to
dissociate ARF from the complex with NPM; thereby
inducing the upregulation of p53, which subsequently
triggers apoptosis [195]. Furthermore, this compound
has been shown to efficiently induce cytotoxicity in
preclinical studies involving solid and hematological
cancers [195, 196], however clinical trials of
NSC348884 has not been initiated to date.

RP imbalance and impaired pre-ribosome assembly

The activation of p53 via the downregulation of both
SSU and LSU RPs has been consistently demonstrated
by multiple studies [81, 82, 86, 197-204]. Phenotypic
consequences of the RP deficiency are well represented
by a rare autosomal dominant disorder called Diamond
Blackfan anemia (DBA), which is a bone marrow
failure syndrome due to elevated apoptosis of the
erythroid progenitor cells [202, 205, 206]. Patients
suffering from DBA often show other symptoms as
well, including: short stature, craniofacial, cardiac or
genitourinary abnormalities and predisposition to cancer
[157, 206]. Mutations in a subset of both 40S and 60S
RP genes are observed in approximately 50% of DBA
cases; the molecular background of the remaining cases
is unknown [206-208]. In the most cases of DBA,
disruption of the RPSI9 (eS19) gene is observed,
however several patients show mutations of: RPLS,
RPLI11, RPL15 (elL15), RPL36 (eL36), RPL35A (elL33),
RPS7, RPS10 (eS10), RPSI17(eS17), RPS24 (eS24),
RPS26 (eS26) or RPS274 (eS31) genes. These
mutations cause the haploinsufficiency of the certain RP
and most likely impair the global translational capacity
of the cells [205, 207]. In erythroid progenitors such
insufficiency reduces the production of hemoglobin,
leading to increased amount of free heme which has
strong pro-oxidative potential. Elevated oxidative stress
then leads to p53-independent apoptosis of these cells
[209, 210]. This theory was well supported by a mouse
model where the gene for Feline Leukemia Virus
Subgroup Receptor 1 (FLVCRI1), a heme exporter
protein, was deleted. FLVCRI1-null mice exhibit
increased intracellular heme and show a phenotype
resembling DBA [211]. Since the RPs which are
commonly mutated in DBA patients are involved also in
several diverse steps of ribosome biogenesis, their
reduced expression also activates the IRBC and
subsequent p53-dependent apoptosis [21, 210]. Such
IRBC activation is indeed detectable as accumulation of
p53 has been shown in DBA-patients’ bone marrow

samples [202]. Similarly, some mouse and zebrafish
models of DBA, which show a similar, but not com-
pletely overlapping phenotype with impaired erythro-
poiesis, also have upregulated p53 [212-215]. The
contribution of IRBC- and heme-induced apoptosis to
the resulting DBA phenotype was studied by p53
inactivation in various models. While in zebrafish p53
inactivation only rescued developmental abnor-
malities, but did not affect the observed defective
erythropoiesis, in mouse models inactivation of p53
reversed the apoptosis of erythroid progenitors [212,
214, 215].

Another ribosomopathy characterized by the reduced
expression of an RP is 5q  syndrome, which is often
referred to as a somatically acquired form of DBA. The
5q syndrome is a myelodysplastic disease, which is
predominantly present in women of advanced age and is
caused by the deletion of the long arm of chromosome
5. Similarly to DBA, it is also characterized by
disrupted erythropoiesis in the bone marrow, causing
macrocytic anemia and a predisposition to AML.
Although the extensive deletion of chromosome 5 q arm
results in the loss of about 40 genes, RPSI4 (uSI1)
seems to be particularly important for the pathogenesis
of the disease [205, 216-219]. This is illustrated by
mouse models with haploinsufficiency of RPS14 which
recapitulate the human phenotype and also show
upregulation of p53. In these mouse models, genetic
inactivation of p53 was sufficient to rescue apoptosis of
bone marrow progenitors [219]. Additionally, an
increased level of p53 was also represented in
hematopoietic cells of 5q patients [202, 217].

Overall, due to the involvement of RPs in ribosome
biogenesis a decrease in their expression leads to the
initiation of the IRBC pathway. The subsequent
stabilization and activation of p53 resulting in p53-
dependent apoptosis seems to be the main cause of the
pathogenesis of these diseases. However, active IRBC
alone does not explain the tissue-specific effects of
defective RPs in either of the aforementioned diseases.
The sensitivity of erythroid progenitors is explained by
an increased dependence on ribosome biogenesis due to
rapid cell division combined with additional oxidative
stress caused by the heme overload [21, 209]. The
relative contribution of IRBC versus oxidative stress to
the apoptosis of erythroid progenitors remains an
unanswered question.

In contrast to the decreased expression of RPs, the
selective overexpression of certain RPs has been
observed in multiple types of cancer, suggesting an
active role in tumorigenesis [6]. For instance, RPS13
(uS15) and RPL23 (uL14) were shown to be up-
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regulated in gastric cancer contributing to the multidrug
resistance of these cells [220].

Impaired RP import and pre-ribosome export

Golomb et al. demonstrated that depletion of f-
karyopherin importin-7, not only disrupts the nuclear
import of some RPs, but also causes the disruption of
the nucleolar structure and activates IRBC, leading to
p53 stabilization and activation [221]. In addition to -
karyopherins, other transport adaptor proteins might
also be involved in the nuclear import of RPs. Lately,
symportin-1 was identified as a crucial protein re-
quired for the co-import of RPLS5 and RPL11 in yeast
[222]. Furthermore, symportin-1 in Chaetomium
thermophilum might also serve as a molecular
chaperon for the assembly of RPL5 and RPL11 with
5S rRNA, to form the 5S RNP complex, which is able
to subsequently incorporate into the LSU [223].
Whether human homolog of symportin-1, HEAT
repeat containing protein 3 (HEATR3), has analogous
functions remains to be investigated. Since 5S RNP is
the main mediator of IRBC (as discussed above),
impairment of the chaperoning of this complex might
counteract the activation of the IRBC pathway and as a
consequence could potentially lead to tumorigenesis.

Depletion or leptomycin-B-mediated pharmacological
inhibition of exportin-1 inhibits the nuclear export of
the premature subunits, induces morphological
alterations of the nucleolus and activates p53 through
IRBC [221]. Therefore, the disruption of either the
import of RPs or the export of the pre-ribosomal
particles is able to elicit the IRBC response.

As with the other steps of ribosome biogenesis, the
transport of RPs and pre-ribosomal subunits also
appears to be upregulated in cancer. For instance, the
nuclear import of RPs was reported to be upregulated
by the mTOR and c-Myc oncogenic pathways [221,
224]. Moreover, c-Myc is also required for the up-
regulation of exportin-1 expression [221]. Thus, tar-
geting B-karyopherins involved in ribosome biogenesis
might be an appealing approach for cancer therapy;
although, it is important to bear in mind that these
transport adaptor proteins have a large subset of cargo
proteins which are involved in other cellular processes
as well.

Impaired assembly of ribosomal subunits

One of the most important steps to initiate the subunit
assembly is the release of the eukaryotic translation
initiation factor 6 (elF6) from the LSU, which is
promoted by the GTPase activity of elongation factor

like-1 (EFL1). Interestingly, ribosome maturation is
abrogated at this step in a human autosomal recessive
disorder, called Shwachman-Diamond syndrome (SDS)
[225-227]. SDS is another bone marrow failure
syndrome, with additional symptoms, including:
exocrine pancreatic insufficiency, gastrointestinal,
skeletal, immune system abnormalities and pre-
disposition to AML [208, 228, 229]. Biallelic mutations
in the SBDS gene is present in 90% of SDS cases.
Ribosome maturation protein SBDS is required for the
EFL1-promoted removal of eIF6 from the 60S
ribosomal subunit, thus governing the final assembly of
the ribosome [225-227]. Furthermore, SBDS was also
reported to localize into the nucleolus [230], where it
interacts with the 28S rRNA and NPM, which implies
that it might have additional functions in the earlier
steps of ribosome biogenesis as well [231]. The
involvement of SBDS in both early and late steps of
ribosome biogenesis is consistent with the observation
of upregulated p53 in SDS patient-derived samples,
presumably a consequence of active IRBC [232, 233].
However, concomitant depletion of p53 in zebrafish and
mouse models of SDS only partially rescues the
pathologic phenotype; indicating that insufficient
translation, alongside with activated IRBC and up-
regulated p53, has a prominent role in the pathogenesis
of the disease [234, 235].

Aberrant ribosome biogenesis and aging

Numerous studies presented a direct connection
between dysregulated ribosome biogenesis and aging.
For instance, the downregulation of ribosome bio-
genesis components or nutrient sensing pathways,
which stimulate ribosome production, have been shown
to increase the lifespan of multiple organisms including
C. elegans, D. melanogaster, yeast, mice and human
[236-249]. Therefore, enhanced ribosome biogenesis,
visualized by enlarged nucleoli, is believed to accelerate
aging. Indeed, consistent with this idea, the size of the
nucleoli and the amount of rRNA increases during
aging in human primary fibroblasts and a single, large
nucleolus is often observed in senescent cells [250,
251]. Furthermore, fibroblasts isolated from patients
suffering from the premature aging disease Hutchinson-
Gilford progeria, have enlarged nucleoli and
upregulated ribosome biogenesis [251]. Since the rate of
protein translation is proportional to the rate of
ribosome biogenesis [22, 252] it was suggested that
upregulation of protein synthesis and disruption of
global proteostasis is the mechanism through which
ribosome biogenesis promotes aging [253]. This theory
is supported by studies showing that reduction in the
rate of translation can increase lifespan, and furthermore
that altered proteostasis is a hallmark of aging [238,
254-258]. Additionally, caloric restriction that has been
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shown to promote longevity [259-261], leads to the
downregulation of ribosome biogenesis by several
mechanisms [262-264]. Under such dietary conditions,
deacetylase SIRT1 is induced [265, 266]. SIRTI, as a
component of the energy dependent nucleolar silencing
complex (eNoSC), is responsible for the epigenetic
silencing of rDNA gene expression [264] and its
overexpression can extend the lifespan [267].
Furthermore, a higher rate of metabolism and reduced
amount of the tumor suppressors p53 and ARF might
also contribute to aging [268, 269].

Accumulation of DNA damage in rDNA

Besides direct changes in rDNA expression level and/or
rate of ribosome biogenesis, another theory relates to
the accumulation of rDNA damage for aging. The
repetitive nature of rDNA and the high rate of rRNA
synthesis cause the rDNA repeats to be subject to
recombination events and DNA damage, possibly due to
collisions between the replication and transcription
machineries and R-loop formations [270-274]. As a
result, DNA damage can accumulate in rDNA, this in
turn can lead to genome instability, which has also been
implicated in cellular aging [258, 275]. Indeed, it has
been recently demonstrated that hematopoietic stem
cells, which are highly proliferative, and thus have
upregulated ribosome biogenesis, accumulate DNA
damage in their rDNA genes during aging [276].
Moreover, premature aging diseases, such as Bloom and
Werner syndromes are associated with increased rDNA
instability [277-279]. BLM and WRN helicases, that are
mutated in Bloom and Werner syndromes, respectively
have been shown to associate with the Pol 1
transcription machinery and promote rRNA synthesis
[280, 281]. These findings indicate that rDNA in-
stability in these diseases can be attributed to disrupted
rRNA transcription and consequent accumulation of
rDNA damage due to unresolved rDNA structures.

Deregulation of ribosome biogenesis in aging

Several studies have reported the downregulation of
ribosome biogenesis in aged tissues. A progressive
decrease in the expression of RPs or rRNA has been
observed during the aging process [282, 283],
inefficient ribosome biogenesis has been accounted for
age-related cataract [284] and diminished skeletal
muscle hypertrophy [285]. On the other hand, it has
been suggested that such decrease of ribosome bio-
synthesis may be a compensatory mechanism in aged
tissues to prolong lifespan [283].

Being an age-related disease, upregulation of ribosome
biogenesis and increased size of the nucleoli have been
observed in various types of cancer cells [18].

Numerous reports suggests that rather than being a
passive consequence of tumorigenesis, upregulation of
ribosome biogenesis is a key step to promote this
process [113, 162, 286]. The increase in the rate of
ribosome biogenesis drives translation, excess growth
and proliferation [287] and the selective upregulation of
certain ribosome biogenesis components in many cases
contributes to tumorigenesis. For instance, over-
expression of key rRNA processing factors, such as
FBL or dyskerin has been reported in various cancers
[150-153, 163, 164]. Upregulation of FBL or dyskerin
alters the posttranscriptional modification of the rRNAs,
thus changes the structure of the ribosomes. These
altered ribosomes presumably do not change the amount
of total protein production, however they affect the
quality of translation [288]. Marcel et al. designated
these altered complexes ‘cancer ribosomes’ in FBL
upregulated cells, because of their active involvement in
tumorigenesis due to preference for IRES-dependent
translation of oncogene mRNAs [154]. Moreover, FBL
overexpression has been observed in aged mice [289]
and lower expression of it seems to be associated with
increased lifespan in humans [262]. Additionally,
similarly to FBL and dyskerin, selective overexpression
of certain RPs has been reported to promote tumori-
genesis [220, 290, 291]. Changes in the balance of the
RPs might change the structure of the ribosome;
however, since many of these RPs possess extra-
ribosomal functions, these cannot be excluded from
contribution to tumorigenesis.

A high rate of ribosome biogenesis and enlarged
nucleoli are the main characteristics of stem cells as
well as cancer cells. Similarly to cancer cells, stem cells
rely on ribosome biogenesis for their growth and
proliferation and it also ensures pluripotency [148, 292-
294]. During differentiation these cells lose high
expression of ribosome biogenesis factors and obtain
shrunken nucleoli [295]. Several studies have
demonstrated that partial depletion of certain nucleolar
factors involved in ribosome biosynthesis induces
differentiation of pluripotent stem cells [148, 292, 294,
296, 297]. Furthermore, complete loss of some
ribosome biogenesis components affects stem cells
more drastically, when compared to differentiated cells
[148, 297]. Consistently, decreased expression of ribo-
some biosynthesis factors observed in ribosomopathies
induces growth arrest and apoptosis in hematopoietic or
other stem cell types, while differentiated cells remain
mostly unaffected. Furthermore, although upregulation
of ribosome biogenesis is traditionally associated with
aging and cancer, downregulation of this process can
also promote tumorigenesis, as patients with
ribosomopathies are predisposed to development of
certain cancer types [20, 205, 208]. This can be
explained as a result of a lower amount of available
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mature ribosomes introducing competition between
various mRNAs. Thus tumor suppressors encoding
mRNAs with lower affinity to the ribosome may lose
their translational capacity [287]. High and stable
expression of p53 can decrease lifespan in mice and
humans [298-300], therefore it is possible that
upregulated p53 usually observed in ribosomopathies
can also contribute to accelerated aging of those
patients. Indeed, one of the ribosomopathies, dys-
keratosis congenita has been associated with premature
aging. Whether this is a more general feature that is also
shared by other ribosomopathies needs further invest-
tigation. Although, both upregulation and down-
regulation of ribosome biogenesis can accelerate aging
process, timing of the downregulation of the ribosome
biogenesis is important factor that must be considered.
While numerous studies show that an overall decrease
in ribosome biogenesis promotes longevity, it must
occur in the post-developmental phase. When it is
downregulated early in life, as in the case of ribo-
somopathies, it has more severe consequences, which
reduce lifespan [301].

Although differentiated, non-dividing cells usually
display shrunken nucleoli and reduced rate of ribosome
biogenesis, prominent nucleoli can be observed in
terminally differentiated neurons [17]. It has been
demonstrated that during development, post-mitotic
neurons rely on increased ribosome biogenesis for their
somatoneuritic growth [302, 303]. Specifically, neuro-
trophics, such as the brain-derived neurotrophic factor
(BDNF) stimulate ribosome biosynthesis, through the
ERK1/2 signaling cascade [302]. Consequently,
upregulated ribosome biogenesis supply developing
neurites with a sufficient number of ribosomes for the
increased local protein synthesis to promote morpho-
genesis of the neurons [17, 302]. Furthermore, it has
been also suggested that neurite outgrowth, which is
promoted in mature neurons during regeneration of the
nerves following injury, depends on the upregulation of
ribosome biogenesis [304, 305].

Ribosome biogenesis and neurodegenerative diseases

The importance of active ribosome biogenesis in mature
neurons is further supported by the observation that it is
frequently impaired in neurodegenerative diseases. For
instance, Alzheimer’s disease (AD) has been reported to
associate with reduced number of the ribosomes [306],
which may be the linked to the increased oxidation of
rRNA [307, 308] and/or epigenetic silencing of rDNA,
seen in AD patient’s brains [309, 310]. Furthermore,
aberrant NORs have been also observed in AD patients
[311]. Additionally, the microtubule-associated protein,
tau, whose function is severely impaired in AD, has
been reported to localize to the nucleolus, where it

interacts with several nucleolar proteins and may have a
role in several nucleolus-associated functions under
normal conditions [312-315]. Downregulation of
ribosome biogenesis has also been documented in
Parkinson’s disease (PD), which is often accompanied
with disrupted nucleolar structure of the affected
dopaminergic neurons [316, 317]. This phenotype may
be mediated by NCL, since its expression has been
reported to be decreased in the substantia nigra of PD
patients [318]. Furthermore, NCL has been also
documented to interact with a-synuclein and DJ-1, the
two major proteins involved in the pathogenesis of
familial PD [319]. Moreover, a mutation of DJ-1 has
been presented to impair ribosome biogenesis by the
exclusion of TNF receptor associated protein (TTRAP)
from the nucleolus [320]. Whereas another study on PD
has been reported that the overexpression of parkin
associated substrate (PARIS) represses rRNA trans-
cription by direct interaction with the Pol I transcription
machinery [321]. Several factors perturbing ribosome
biogenesis have been observed in Huntington’s disease
(HD) as well. For instance, the PIC component, UBF
has been shown to be downregulated in HD patients
[322]. UBF’s function and thus rRNA synthesis has
been also suggested to be inhibited via the decreased
acetylation and/or increased methylation of UBF, both
mediated by the mutant huntingtin protein [322, 323].
Furthermore, it has been also suggested that the CAG
triplet expansion containing transcripts, characteristic of
HD, are able to associate with NCL and this interaction
leads to the reduced recruitment and binding of NCL to
the rDNA promoter, followed by promoter hyper-
methylation and results in the rRNA synthesis
suppression [324]. Overall, numerous studies indicate
that impaired ribosome biogenesis is a key feature of
neurodegeneration. The diversity and complexity of
mechanisms that perturb this process indicate the
existence of more factors capable of impairing ribosome
biogenesis in these syndromes with a rather hetero-
geneous genetic background. Additionally, since the
accumulation of p53 has been reported in AD, PD and
HD [325-327], the activation of IRBC is evident and
may be fundamental for the pathology of these diseases.

Although the complex relationship between aging, age-
related diseases and ribosome biogenesis and the
regulation thereof is just being elucidated, the
importance of the tight regulation of these processes is
evident from these examples.

CONCLUSION

In the past decades, a tremendous effort was made to
explore the various steps of ribosome biogenesis and the
regulation of this process. It has long been acknow-
ledged that due to its complexity, ribosome biogenesis
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requires a huge energy investment from cells.
Therefore, it is regulated by numerous complex path-
ways. The impairment of ribosome biogenesis, at any
step from rRNA synthesis to ribosome assembly, has
been demonstrated to result in severe consequences
such as: cell cycle arrest, senescence or apoptosis
mainly through the RPL5/RPL11/5S rRNA/Mdm2/p53
axis. Although the process of IRBC is well-established
and widely accepted, further research is ongoing. For
instance, it is not fully understood how the defects in
various steps of ribosome biogenesis are sensed and
transduced to uniformly induce IRBC.

The dependence of ribosome biogenesis on the nutrient
and energy status of cells renders the entire process
highly vulnerable to internal and external stress stimuli.
Indeed, multiple studies have reported that a number of
typical cellular stressors, such as: DNA damaging
agents (UV- and vy-irradiation, genotoxic chemo-
therapeutics); hypoxia, nutrient and growth factor
deprivation; heat shock and oncogene activation induce
alterations in ribosome biogenesis and ultimately
activate the IRBC [328]. Consistently, a report from
Burger and colleagues showed that a diverse group of
commonly used chemotherapeutic drugs (e.g. alkylating
agents, antimetabolites, mitosis inhibitors, kinase
inhibitors, translation inhibitors, etc.), are all capable of
perturbing ribosome biogenesis [108]. Interestingly, the
stage of ribosome biogenesis inhibition differed
between these compounds; some of them suppressed the
process earlier while others inhibited later steps [108].
These results suggest that chemotherapeutic agents
induce IRBC, which might contribute to their
cytotoxicity. IRBC-induced apoptosis or senescence
might be beneficial for cancer therapeutics, since cancer
cells highly rely on ribosome production for their
growth and proliferation. However, traditional chemo-
therapeutic drugs possess other cytotoxic effects such
as: genotoxicity, nucleotide deprivation, inhibition of
signal transduction, and others which poison non-
cancerous cells as well. Therefore, it might be more
favorable to take advantage of those compounds, which
are rather specific and exclusively inhibit ribosome
biogenesis. However, these agents must still be treated
with caution, as other populations of rapidly dividing
cells, such as stem cells might be sensitive to the
perturbation of ribosome biogenesis. Other therapeutic
approaches, targeting the various steps of ribosome
biogenesis may be a valid therapeutic strategy, as
selective upregulation of some ribosome biosynthesis
factors is observed in various cancers.
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