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ABSTRACT 
 
Background: Recently, increasing evidence has uncovered the roles of mRNA-miRNA-lncRNA network in 
multiple human cancers. However, a systematic mRNA-miRNA-lncRNA network linked to pancreatic cancer 
prognosis is still absent. Methods: Differentially expressed genes (DEGs) were first identified by mining 
GSE16515 and GSE15471 datasets. DAVID database was utilized to conduct functional enrichment analysis. 
Protein-protein interaction (PPI) network was built using STRING database, and hub genes were identified by 
Cytoscape plug-in CytoHubba. Upstream miRNAs and lncRNAs of mRNAs were predicted by miRTarBase and 
miRNet, respectively. Expression, survival and correlation analysis for genes, miRNAs and lncRNAs were 
performed via GEPIA, Kaplan-Meier plotter and starBase. Results: 734 and 180 upregulated and downregulated 
significant DEGs were identified, respectively. Functional enrichment analysis revealed that they were 
significantly enriched in focal adhesion, pathways in cancer and metabolic pathways. According to node degree, 
hub genes in the PPI networks were screened, such as TGFB1 and ALB. Among the top 20 hub genes, 7 
upregulated genes and 2 downregulated hub genes had significant prognostic values in pancreatic cancer. 33 
miRNAs were predicted to target the 9 key genes. But only high expression of 8 miRNAs indicated favorable 
prognosis in pancreatic cancer. Then, 90 lncRNAs were predicted to potentially bind to the 8 miRNAs. SCAMP1, 
HCP5, MAL2 and LINC00511 were finally identified as key lncRNAs. By combination of results from expression, 
survival and correlation analysis demonstrated that MMP9/ITGB1-miR-29b-3p-HCP5 competing endogenous 
RNA (ceRNA) sub-network was linked to prognosis of pancreatic cancer. Conclusions: In a word, we established 
a novel mRNA-miRNA-lncRNA sub-network, among which each RNA may be utilized as a prognostic biomarker 
of pancreatic cancer. 
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INTRODUCTION 
 
Pancreatic cancer ranks as the third leading cause of 
cancer-related deaths in the United States [1]. 
Pancreatic cancer is one of the most quickly fatal 
cancers all over the world, with mortality almost equal 
to its incidence [2]. Besides, pancreatic cancer lacks of 
obvious early symptoms, thereby leading to most 
patients with pancreatic cancer being diagnosed at 
advanced stages. Over the past years, in spite of huge 
improvements in surgery, chemotherapy and 
radiotherapy for pancreatic cancer have been achieved, 
prognosis is still extremely dismal with nearly 100% of 
5-year mortality rate [2, 3]. Furthermore, to date, the 
precise mechanisms how pancreatic cancer occurs and 
progresses are still not clearly elucidated. It is essential 
to explore underlying molecular mechanisms and 
develop effective therapeutic targets and novel 
prognostic biomarkers for pancreatic cancer. 

In 2011, Salmena et al. proposed a novel regulatory 
mechanism between noncoding RNA (ncRNA) and 
messenger RNA (mRNA), namely competing 
endogenous RNA (ceRNA) hypothesis [4]. In this 
theory, cross-talk between ceRNAs achieves by 
competitively binding to shared miRNAs [5]. The 
discovery of ceRNA mechanism has attracted the 
attention of many researchers and scholars. They 
conducted a variety of related investigations in 
respective study field, including cancer. Long non-
coding RNAs (lncRNAs) are a class of ncRNA with 
length more than 200 nucleotides, which have been 
reported to act as miRNA sponges to decrease miRNA 
abundance, thus relieving inhibitory effect of miRNA 
on downstream target genes [6-9]. Increasing evidence 
has well documented that lncRNA-miRNA-mRNA 
ceRNA network plays key roles in multiple human 
cancers, such as breast cancer [10], gastric cancer [11], 
liver cancer [12] as well as pancreatic cancer [13]. 

 
 
Figure 1. Identification of significant differentially expressed genes (DEGs) in pancreatic cancer. (A) Volcano plot showing 
the DEGs identified from GSE16515. (B) Volcano plot showing the DEGs identified from GSE15471. X axis represents log transformed 
P value, and Y axis indicates the mean expression differences of genes between pancreatic cancer samples and normal samples. Note: 
The two volcano plots showed all of the DEGs; the black dots represent genes that are not differentially expressed between 
pancreatic cancer samples and normal samples, and the green dots and red dots represent the downregulated and upregulated 
genes in pancreatic cancer samples, respectively. |log2FC| >1 and adj. p-value < 0.05 were set as the cut-off criteria. (C) The 
intersection of upregulated DEGs of GSE16515 and GSE15471 datasets. (D) The intersection of downregulated DEGs of GSE16515 and 
GSE15471 datasets. The intersected DEGs were defined as the significant DEGs. 
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However, current knowledge for lncRNA-miRNA-
mRNA in human cancers is not enough, including 
pancreatic cancer.  
 
In this study, we first acquired aberrantly expressed 
mRNAs by mining two GEO datasets. Subsequently, 
we conducted functional enrichment analysis for these 
aberrantly expressed mRNAs. Then, protein-protein 
interaction analysis was also employed, and hub genes 
were identified. By combining expression and 
prognostic roles of hub genes in pancreatic cancer, 7 
upregulated genes and 2 downregulated genes were 
selected for subsequent analysis. Next, upstream  

miRNAs and lncRNAs were predicted. Besides, we also 
further evaluated the prognostic roles of these miRNAs 
and lncRNAs in pancreatic cancer. The correlations of 
mRNAs, miRNAs and lncRNAs were also determined. 
Finally, a novel ceRNA regulatory sub-network 
associated with pancreatic cancer patients’ prognosis 
was successfully established. Intriguingly, each RNA in 
this ceRNA network may be utilized to indicate 
prognosis of pancreatic cancer based on our current 
analytic results. They may also serve as promising 
diagnostic biomarkers or therapeutic targets for 
pancreatic cancer in the future. 

 
 

Figure 2. GO functional annotation for the significant DEGs. (A) The top ten enriched biological process (BP) of the upregulated 
significant DEGs. (B) The top ten enriched molecular function (MF) of the upregulated significant DEGs. (C) The top ten enriched cellular 
component (CC) of the upregulated significant DEGs. (D) The top ten enriched biological process (BP) of the downregulated significant 
DEGs. (E) The top ten enriched molecular function (MF) of the downregulated significant DEGs. (F) The top ten enriched cellular 
component (CC) of the downregulated significant DEGs. 
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RESULTS 
 
Screening of significant DEGs in pancreatic cancer 
 
In search of gene expression microarrays regarding 
pancreatic cancer in the GEO database, two datasets 
(GSE16515 and GSE15471) were finally included. 
Subsequently, differential expression analysis was 
conducted by using GEO2R (|log2FC| > 1 and adj. p-
value < 0.05), and some DEGs in each dataset were 
discovered. These DEGs from GSE16515 and 
GSE15471 datasets were shown in Figure 1A and 
Figure 1B, respectively. Next, we further identified 
some significant DEGs which were commonly appeared 
in the two datasets. As shown in Figure 1C and Figure 
1D, a total of 734 and 180 upregulated and 
downregulated significant DEGs in pancreatic cancer 
were identified. These upregulated and downregulated 
significant DEGs were concretely listed in Table S1 and 
Table S2, respectively. Also, these significant DEGs 
were selected for subsequent analyses. 
 
Functional enrichment analysis for the significant 
DEGs 
 
To predict the underlying biological function and 
corresponding pathways of these significant DEGs, 

DAVID database was introduced to perform functional 
enrichment analysis, including three GO terms (BP: 
biological process; CC: cellular component; MF: 
molecular function) and KEGG pathway. 
 
For upregulated significant DEGs, as presented in 
Figure 2A-C, the enriched GO functions included cell 
adhesion, extracellular matrix organization and wound 
healing in the BP category; protein binding, calcium ion 
binding and cadherin binding involved in cell-cell 
adhesion in the MF category; and extracellular 
exosome, plasma membrane and membrane in the CC 
category. Besides, Figure 3A revealed that these 
upregulated significant DEGs were significantly 
enriched in some cancer-associated pathways, such as 
pathways in cancer, focal adhesion, proteoglycans in 
cancer and small cell lung cancer. 
 
As shown in Figure 2D-E, the enriched GO functions 
for downregulated significant DEGs included 
proteolysis, transport and metabolic process in the BP 
category; protein homodimerization activity, enzyme 
binding and pyridoxal phosphate binding in the MF 
category; and integral component of membrane, 
extracellular exosome and integral component of 
plasma membrane in the CC category. Similarly, some 
enriched KEGG pathways were also observed, among 

 
Figure 3. KEGG pathway enrichment analysis for the significant DEGs. (A) The top ten enriched KEGG pathways of the 
upregulated significant DEGs. (B) The top ten enriched KEGG pathways of the downregulated significant DEGs. 
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which metabolic pathways, pancreatic secretion and 
glycine, serine and threonine metabolism were the most 
highly enriched pathways (Figure 3B). 
 
Establishment and analysis of PPI network 
 
On the basis of the data from STRING database 
analysis, PPI networks of the upregulated significant 

DEGs and downregulated significant DEGs were 
constructed as shown in Figure 4A and Figure 4C, 
respectively. According to node degree, we identified 
some hub genes among these significant DEGs. For 
better visualization, the interactors of top 30 
upregulated (Figure 4B) and downregulated (Figure 4D) 
hub genes were re-built using Cytoscape software. 
Additionally, the top 30 hub genes and their 

 
 

Figure 4. The top 30 hub genes identified in protein-protein interaction (PPI) networks. (A) The PPI network of the 
significant upregulated DEGs. (B) The top 30 hub genes of the significant upregulated DEGs. (C) The PPI network of the significant 
downregulated DEGs. (D) The 30 hub genes of the significant downregulated DEGs. 
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corresponding node degrees were listed in Table 1 and 
top 10 upregulated hub genes were TGFB1, MMP9, 
CXCL8 (IL8), ACTB, ITGB1, STAT1, TOP2A, 
ACTA2, ICAM1 and CDK1, and top 10 downregulated 
hub genes were ALB, EGF, P4HB, MAT1A, GNMT, 
ABAT, CBS, CTH, PRSS3 and ECI2. The 20 hub genes 
were chosen for following analyses. 
 
Identification of key genes in pancreatic cancer 
 
In order to further identify key genes in pancreatic 
cancer, we determined the expression and prognostic 
values of the top 10 upregulated and downregulated hub 
genes using GEPIA and Kaplan-Meier plotter 
databases, respectively. Combined the results of 
expression analysis and survival analysis, we found that 
7 upregulated hub genes (MMP9, CXCL8, ACTB, 
ITGB1, STAT1, TOP2A and CDK1) were not only 
significantly upregulated in pancreatic cancer samples 
but also the increased expression of the 7 genes 
indicated poor prognosis in patients with pancreatic 

cancer (Figure 5A and Figure 5C-I) , and 2 
downregulated hub genes (GNMT and ABAT) were 
commonly appeared in “low expression” gene set and 
“good prognosis” gene set (Figure 5B and Figure 5J-K). 
In next analyses, we are interested to investigate the 9 
key genes, including 7 upregulated hub genes and 2 
downregulated hub genes. 
 
Prediction and validation of upstream key miRNAs 
of key genes 
 
Subsequently, we predicted upstream miRNAs of the 9 
key genes by using an experimentally validated 
microRNA-target gene interactions database, 
miRTarBase. As mentioned above, in this study, we 
only included microRNA-target gene interactions that 
were validated by reporter assay. Finally, we identified 
a total of 33 miRNAs that could potentially regulate six 
key genes (ITGB1, MMP9, STAT1, CXCL8, CDK1 
and ACTB) expression as presented in Figure 6 and 
Table S3. Upstream potential miRNAs of three other 

Table 1. The top 30 hub genes in PPI networks. 

Upregulated gene  Downregulated gene  
Gene symbol Degree Gene symbol Degree 
TGFB1 94 ALB 28 
MMP9 78 EGF 10 
CXCL8 (IL8) 75 P4HB 8 
ACTB 70 MAT1A 6 
ITGB1 67 GNMT 6 
STAT1 65 ABAT 6 
TOP2A 64 CBS 6 
ACTA2 58 CTH 6 
ICAM1 57 PRSS3 5 
CDK1 57 ECI2 5 
PTPRC 56 PLCB1 5 
ISG15 56 ERP27 4 
OAS1 55 PM20D1 4 
OAS2 53 PRDX4 4 
FN1 52 GCAT 4 
CXCL10 52 LPAR3 4 
OAS3 52 CCKBR 4 
COL1A1 51 EPHX1 4 
CCNB1 47 ACAT1 4 
SPP1 46 ERO1LB 4 
COL1A2 46 GATM 4 
ITGB5 45 EPOR 3 
ITGAM 45 GPT2 3 
ITGA2 43 RNASE1 3 
NDC80 43 PDIA2 3 
GBP1 42 ANPEP 3 
IRF9 41 C5 3 
MX1 41 AOX1 3 
TIMP1 41 SDSL 3 
HLA-A 40 CHRM3 3 
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key genes (TOP2A, GNMT and ABAT) were not 
observed. Besides, we noticed that all the six key genes 
were upregulated hub genes, with unfavorable 

prognostic values in pancreatic cancer. Based on the 
classical inverse relationship between miRNA and 
target gene, we hypothesized that the upstream miRNAs  

 
Figure 5. Screening the key genes in pancreatic cancer. (A) Identification of key genes among the top 10 hub genes of the 
significant upregulated DEGs by combining expression and prognosis analyses using GEPIA and Kaplan Meier-plotter databases, 
respectively. (B) Identification of key genes among the top 10 hub genes of the significant downregulated DEGs by combining 
expression and prognosis analyses using GEPIA and Kaplan Meier-plotter databases, respectively. (C) Expression and prognostic value of 
MMP9 in pancreatic cancer. (D) Expression and prognostic value of CXCL8 in pancreatic cancer. (E) Expression and prognostic value of 
ACTB in pancreatic cancer. (F) Expression and prognostic value of ITGB1 in pancreatic cancer. (G) Expression and prognostic value of 
STAT1 in pancreatic cancer. (H) Expression and prognostic value of TOP2A in pancreatic cancer. (I) Expression and prognostic value of 
CDK1 in pancreatic cancer. (J) Expression and prognostic value of GNMT in pancreatic cancer. (K) Expression and prognostic value of 
ABAT in pancreatic cancer. 
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Figure 6. Construction of miRNA-gene network using Cytoscape software. 
 

 
 

Figure 7. Prognostic values of miRNAs in pancreatic cancer. (A) Prognostic value of has-miR-132 in pancreatic cancer. (B) 
Prognostic value of has-miR-133a in pancreatic cancer. (C) Prognostic value of has-miR-29b in pancreatic cancer. (D) Prognostic value of 
has-miR-491 in pancreatic cancer. (E) Prognostic value of has-miR-192 in pancreatic cancer. (F) Prognostic value of has-miR-29c in 
pancreatic cancer. (G) Prognostic value of has-miR-9 in pancreatic cancer. (H) Prognostic value of has-miR-140 in pancreatic cancer. 
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Figure 8. Screening the key lncRNAs in pancreatic cancer. (A) Identification of key lncRNAs among the predicted lncRNAs by 
combining expression and prognosis analyses using GEPIA and Kaplan Meier-plotter databases, respectively. (B) Expression and 
prognostic value of SCAMP1 in pancreatic cancer. (C) Expression and prognostic value of HCP5 in pancreatic cancer. (D) Expression and 
prognostic value of MAL2 in pancreatic cancer. (E) Expression and prognostic value of LINC00511 in pancreatic cancer. 
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of 6 upregulated key genes should theoretically display 
favorable prognostic roles. Therefore, we further 
assessed prognostic values of the 33 predicted miRNAs 
using Kaplan-Meier plotter database. The results of 
survival analysis showed that 8 (miR-132-3p, miR-
133a-5p, miR-29b-3p, miR-491-5p, miR-192-5p, miR-
29c-3p, miR-9-3p and miR-140-5p) out of 33 miRNAs 
functioned as positive prognostic biomarkers for 
patients with pancreatic cancer as presented in Figure 7. 
The 8 miRNAs were defined as the key miRNAs. 
 
Prediction and validation of upstream key lncRNAs 
of key miRNAs 
 
Growing studies have suggested that lncRNA functions 
as ceRNA to interact with mRNA by competing for 
shared miRNA [14, 15]. In view of this theory, we 
further predicted those lncRNAs that can potentially 
bind to the 8 key miRNAs (miR-132-3p, miR-133a-5p, 
miR-29b-3p, miR-491-5p, miR-192-5p, miR-29c-3p, 
miR-9-3p and miR-140-5p) using an online database 
miRNet. A total of 90 lncRNAs were discovered (Table 
S4). There is a negative correlation between lncRNA 
and miRNA based on the ceRNA hypothesis. Thus, we 
analyzed these lncRNAs expression in pancreatic cancer 
using GEPIA database. Only 10 (SCAMP1, EMG1, 

HCP5, TUG1, MAL2, H19, LINC00511, RP11-
311C24.1, RP11-400F19.6 and CTC-459F4.3) out of 90 
lncRNAs were significantly upregulated in pancreatic 
cancer samples when compared with normal controls. 
Subsequent survival analysis for the 10 upregulated 
lncRNAs demonstrated that patients with high 
expression of SCAMP1, HCP5, MAL2 and LINC00511 
had unfavorable prognosis. Combined the results of 
expression analysis and survival analysis for these 
predicted lncRNAs, we re-defined the 4 lncRNAs 
(SCAMP1, HCP5, MAL2 and LINC00511) as key 
lncRNAs (Figure 8). 
 
Construction of key mRNA-miRNA -lncRNA triple 
sub-network in pancreatic cancer 
 
By a series of in silico analyses, a key mRNA-miRNA-
lncRNA competitive endogenous RNA triple regulatory 
network in pancreatic cancer were constructed. The 
network totally contained 9 mRNA-miRNA pairs 
(MMP9-miR-132-3p, MMP9-miR-133a-5p, MMP9-
miR-29b-3p, MMP9-miR-491-5p, ITGB1-miR-192-5p, 
ITGB1-miR-29c-3p, ITGB1-miR-29b-3p, ITGB1-miR-
9-3p and STAT1-miR-140-5p), 7 miRNA-lncRNA pairs 
(miR-132-3p-SCAMP1, miR-29b-3p-HCP5, miR-140-
5p-HCP5, miR-29c-3p-HCP5, miR-140-5p-MAL2, 

 
 

Figure 9. The novel mRNA-miRNA-lncRNA competing endogenous RNA (ceRNA) triple regulatory network associated 
with prognosis of pancreatic cancer. 
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miR-29b-3p-LINC00511 and miR-29c-3p-LINC00511) 
and 7 mRNA-lncRNA pairs (MMP9-SCAMP1, MMP9-
LINC00511, MMP9-HCP5, ITGB1-HCP5, ITGB1-
LINC00511, STAT1-HCP5 and STAT1-MAL2). This 
network was depicted in Figure 9. 
 
As mentioned above, lncRNA can competitively bind to 
miRNA, thereby relieving suppressive effect of miRNA 
on mRNA. Based on this hypothesis, there are inverse 
relationships between miRNAs and lncRNAs or 
mRNAs and positive associations between mRNAs and 
lncRNAs. Herein, TCGA pancreatic cancer data were 
employed to determine the correlations of mRNA-
miRNA or miRNA-lncRNA or mRNA-lncRNA pairs in 
the established network (Figure 9). As shown in Table 
2, 6 of 9 mRNA-miRNA pairs (MMP9-miR-132-3p, 
MMP9-miR-29b-3p, MMP9-miR-491-5p, ITGB1-miR-
192-5p, ITGB1-miR-29c-3p, ITGB1-miR-29b-3p), 3 of 
7 miRNA-lncRNA pairs (miR-29b-3p-HCP5, miR-140-
5p-MAL2 and miR-29c-3p-LINC00511) and 4 of 7 
mRNA-lncRNA pairs (MMP9-HCP5, ITGB1-HCP5, 
STAT1-HCP5 and STAT1-MAL2) were fitted with the 
ceRNA mechanism. Taken all the three levels into 
consideration, we constructed a novel mRNA-miRNA-
lncRNA triple sub-network, MMP9/ITGB1-miR-29b-

3p-HCP5, which is significantly associated with 
prognosis of pancreatic cancer. The sub-network may 
also be developed as promising diagnostic biomarkers 
or therapeutic targets for pancreatic cancer in the future. 
 
DISCUSSION 
 
Pancreatic cancer is notorious for its highly lethal nature 
and poor prognosis. Extremely poor prognosis of 
patients with pancreatic cancer greatly promotes us to 
develop effective treatment measures and excavate 
novel prognostic indicators. Only in these ways can the 
outcome of pancreatic cancer patients be improved 
rapidly. Recent studies have suggested that ncRNAs, 
including miRNAs and lncRNAs, play important roles 
in cancer initiation and progression [16-20]. After the 
first proposal of ceRNA hypothesis by Salmena et al. 
[4], increasing investigations regarding ceRNAs in 
human cancers have been carried out. For example, Liu 
et al. suggested that lncRNA XIST/miR-34a axis 
modulates thyroid cancer proliferation and growth by 
MET-PI3K-AKT signaling [21]; lncRNA XLOC_ 
006390 was found to facilitate cervical cancer 
tumorigenesis and metastasis as a ceRNA against miR-
331-3p and miR-338-3p [22]; Huang et al. found that 

Table 2. The correlation between miRNA-mRNA pairs identified by starBase database (The pairs conformed 
to the ceRNA hypothesis are marked with Bold type). 

miRNA mRNA R P-value 
miR-132-3p MMP9 -0.181 1.56e-02 
miR-133a-5p MMP9 -0.048 5.22e-01 
miR-29b-3p MMP9 -0.202 6.80e-03 
miR-491-5p MMP9 -0.194 9.48e-03 
miR-192-5p ITGB1 -0.223 2.80e-03 
miR-29c-3p ITGB1 -0.443 5.82e-10 
miR-29b-3p ITGB1 -0.440 7.78e-10 
miR-9-3p ITGB1 0.096 2.03e-01 
miR-140-5p STAT1 0.016 8.34e-01 
miRNA lncRNA R P-value 
miR-132-3p SCAMP1 0.396 4.40e-08 
miR-29b-3p HCP5 -0.163 3.00e-02 
miR-140-5p HCP5 0.193 9.68e-03 
miR-29c-3p HCP5 0.009 9.01e-01 
miR-140-5p MAL2 -0.204 6.25e-03 
miR-29b-3p LINC00511 -0.051 4.99e-01 
miR-29c-3p LINC00511 -0.219 3.34e-03 
mRNA lncRNA R P-value 
MMP9 SCAMP1 -0.129 8.57e-02 
MMP9 LINC00511 0.061 4.16e-01 
MMP9 HCP5 0.267 3.15e-04 
ITGB1 HCP5 0.223 2.77e-03 
ITGB1 LINC00511 0.046 5.45e-01 
STAT1 HCP5 0.591 3.67e-18 
STAT1 MAL2 0.185 1.34e-02 
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H19 promoted non-small-cell lung cancer development 
by STAT3 signaling via sponging miR-17 [23]. In 
pancreatic cancer, many positive results have been also 
reported. Gao et al. demonstrated that lncRNA ZEB2-
AS1 promoted pancreatic cancer cell growth and 
invasion by regulation of the miR-204/HMGB1 axis 
[24]; tumor-derived exosomal lncRNA SOX2OT was 
also observed to enhance EMT and stemness by acting 
as a ceRNA in pancreatic cancer [25]; Chen et al. 
indicated that lncRNA AFAP1-AS1 facilitated 
pancreatic cancer growth and invasion by upregulating 
the IGF1R oncogene through sequestration of miR-133a 
[26]; Gao et al. suggested that lncRNA ROR acted as a 
ceRNA to modulate Nanog expression by sponging 
miR-145 and predicted poor prognosis in pancreatic 
cancer [27]. However, integrated and comprehensive 
analysis of ceRNAs and mRNAs in pancreatic cancer is 
still not enough. To the best of our knowledge, this is 
the first study to investigate the specific ceRNA 
network in pancreatic cancer by way of “mRNA-
miRNA-lncRNA” order pattern, instead of lncRNA-
miRNA-mRNA order pattern. Inspiringly, a novel 
mRNA-miRNA-lncRNA triple regulatory network was 
constructed and each RNA in this network possessed a 
significant prognostic value in pancreatic cancer. 
 
In this present study, we identified a total of 914 
significant DEGs, consisting of 734 upregulated and 
180 downregulated DEGs by intersection of DEGs from 
two GEO datasets, GSE16515 and GSE15471. GO is 
widely used as functional enrichment analysis for a 
large number of genes [28]. The results of these 
significant DEGs related GO analysis demonstrated that 
they were significantly enriched in some GO terms that 
were associated with cancer biological behaviors, 
including cell adhesion [29], wound healing [30] and 
activation of MAPK activity [31]. KEGG pathway 
enrichment analysis revealed that multiple enriched 
pathways were obtained, primarily involving pathways 
in cancer and metabolic pathways. Besides, GO analysis 
and pathway analysis also indicated that these 
significant DEGs were significantly enriched in focal 
adhesion. It has been well documented that focal 
adhesion and cell adhesion play key roles in cancer 
invasion and metastasis, thereby causing cancer 
progression [32, 33]. Thus, these significant DEGs may 
be involved in modulation of invasion and metastasis of 
pancreatic cancer. 
 
To systemically analyze the relationships and functions 
of significant DEGs in pancreatic cancer, we mapped 
the DEGs into STRING database and obtained PPI 
networks. A variety of interactions among these 
significant DEGs were obtained, especially for the 
upregulated significant DEGs. It has been widely 
acknowledged that genes with more node degree in the 

PPI network usually play more roles. Therefore, we 
screened the hub genes in the two PPI networks 
according to node degree. For further identifying key 
genes in pancreatic cancer, the top ten upregulated and 
downregulated hub genes were selected for further 
expression and survival analyses. The analytic results 
demonstrated that 7 upregulated (MMP9, CXCL8, 
ACTB, ITGB1, STAT1, TOP2A and CDK1) and 2 
downregulated (GNMT and ABAT) hub genes may act 
as the key genes in pancreatic cancer. Intriguingly, most 
of these key genes have been well investigated in 
pancreatic cancer. For example, MMP9 participated in 
pancreatic cancer angiogenesis and invasion [34, 35]; 
CXCL8 promoted invasiveness and angiogenesis in 
pancreatic cancer [36]; ITGB1 was upregulated in 
pancreatic cancer and increased ITGB1 indicated a poor 
outcome [37]; and STAT1 enhanced pancreatic cancer 
growth and metastasis [38]. These publications partially 
support the accuracy of our bioinformatic analyses. 
 
MiRNAs and lncRNAs, are involved in regulation of 
gene expression and function by ceRNA mechanism as 
previously described. Some upstream miRNAs of the 
key genes were first predicted. Survival analysis 
revealed that patients with higher expression of 8 
miRNAs (miR-132-3p, miR-133a-5p, miR-29b-3p, 
miR-491-5p, miR-192-5p, miR-29c-3p, miR-9-3p and 
miR-140-5p) have better prognosis in pancreatic cancer. 
The tumor suppressive roles of the 8 miRNAs in 
pancreatic cancer have been reported. For example, 
Abukiwan et al. suggested that inhibition of miR-132-
3p drove progression of pancreatic cancer [39]; miR-
133a-5p was also found to function as a tumor 
suppressor in pancreatic cancer [40, 41]; the group of 
Wang Lihua showed that miR-29b-3p decreased 
proliferation and mobility of pancreatic cancer by 
targeting SOX12 and DNMT3b [42]. Then, we further 
predicted 90 upstream lncRNAs of these key miRNAs. 
By combining expression analysis and survival analysis 
for these lncRNAs in pancreatic cancer using TCGA 
data, only 4 lncRNAs (SCAMP1, HCP5, MAL2, 
LINC00511) were defined as the key lncRNAs. 
SCAPM1 suppressed migration and invasion of 
pancreatic cancer [43]; MAL2 expression predicted 
distant metastasis in pancreatic cancer [44]. Regarding 
to HCP5 and LINC00511, a variety of studies have also 
suggested that they act as two crucial oncogenes in 
human cancers [45, 46]. Thus, a prognosis-associated 
mRNA-miRNA-lncRNA network in pancreatic cancer 
was successfully established. In this network, some 
pairs have been identified. For example, Lu et al. 
demonstrated that miR-29c inhibited pancreatic cancer 
cell growth, invasion and migration by targeting ITGB1 
[47]. These reports further imply the accuracy of our 
current analytic results. Finally, correlation analysis for 
the RNA pairs in the constructed mRNA-miRNA-
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lncRNA network revealed that only MMP9/ITGB1-
miR-29b-3p-HCP5 sub-network absolutely conformed 
to ceRNA hypothesis. Certainly, although attractive 
findings have been obtained by a series of bioinformatic 
analyses in our current study, more lab experiments and 
large-scale clinical trials need to be performed in the 
future. 
 
CONCLUSIONS 
 
In summary, by integrated bioinformatics analysis, we 
constructed a novel mRNA-miRNA-lncRNA ceRNA 
triple regulatory network, in which all RNAs possessed 
significant predictive values for pancreatic cancer 
prognosis. In addition to the prognostic value of this 
mRNA-miRNA-lncRNA network in pancreatic cancer, 
it also provides some key clues for molecular 
mechanistic investigations of pancreatic cancer in the 
future. However, our team and other labs should 
conduct more studies to further validate these findings. 
 
MATERIALS AND METHODS 
 
MicroRNA microarray 
 
At the first step, we searched for the datasets that 
compared gene expression between pancreatic cancer 
tissues and normal tissues in the Gene Expression 
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). 
Only datasets containing more than 15 cancer samples 
and 15 normal samples were included. Then, the titles 
and abstracts of these datasets were screened and full 
information of the datasets of interest were further 
evaluated. Finally, only two datasets (GSE16515 and 
GSE15471), based on the platform of Affymetrix 
Human Genome U133 Plus 2.0 Array (GPL570), were 
selected for subsequent analyses. GSE16515 dataset 
contained 36 pancreatic tumor samples and 16 normal 
samples, and GSE15471 dataset contained 36 pairs of 
pancreatic cancer tissues and adjacent normal tissues. 
 
Differential expression analysis 
 
The online analytic tool GEO2R (https://www.ncbi. 
nlm.nih.gov/geo/geo2r), provided by the GEO database, 
was utilized to obtain DEGs from the two datasets. 
|log2FC| > 1 and adjusted p-value (adj. p-value) < 0.05 
were set as the cut-off criteria when we performed the 
differential expression analysis. Besides, we employed 
an online tool, VENNY 2.1.0 (http://bioinfogp.cnb. 
csic.es/tools/venny/index.html), to draw the Venn 
diagrams. The DEGs that were commonly appeared in 
both GSE16515 and GSE15471 datasets were re-
defined as the significant DEGs, including upregulated 
significant DEGs and downregulated significant DEGs. 

Gene ontology and KEGG pathway enrichment 
analysis 
 
Database for Annotation, Visualization, and Integrated 
Discovery (https://david.ncifcrf.gov/) was introduced to 
conduct Gene Ontology (GO) functional annotation and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis. The enriched GO terms 
and KEGG pathways were downloaded from the 
webpage. p-value < 0.05 was considered as statistically 
significant. Then, the top 10 enriched GO terms and 
KEGG pathways were displayed using ggplot2 package 
of R software [48]. 
 
Protein-protein interaction (PPI) network 
 
The PPI interaction networks between the DEGs were 
constructed by Search Tool for the Retrieval of 
Interacting Genes (STRING) database (http://string-
db.org/) [49]. Firstly, the DEGs were typed into the 
database. Then, high-resolution bitmaps were displayed 
and downloaded from the webpage. Only these 
interactors with combined confidence score >= 0.4 were 
shown in the bitmap. 
 
Identification of hub genes 
 
By calculating the degree of connectivity as we 
previously reported [50-52], the hub genes in the PPI 
networks were identified using CytoHubba, a plugin in 
Cytoscape software (Version 3.6.1). According to node 
degree, the top 30 hub genes were displayed in the 
Cytoscape software (Version 3.6.1). 
 
Gene expression analysis 
 
In the TCGA project, there are only 4 pancreatic normal 
samples, which are too small sample size for 
performing the comparison between pancreatic cancer 
and normal controls. Gene Expression Profiling 
Interactive Analysis (GEPIA) (http://gepia.cancer-
pku.cn/detail.php) is a newly developed interactive web 
server for analyzing the RNA sequencing expression 
data of 9736 tumors and 8587 normal samples from the 
TCGA and the GTEx projects [53]. In this study, 
GEPIA database, containing 179 pancreatic cancer 
samples and 171 normal samples, was used to analyze 
expression levels of key genes and lncRNAs in 
pancreatic cancer. Genes with |log2FC| > 1 and p-value 
< 0.05 were considered as statistically significant. 
 
Survival analysis 
 
Prognostic values of genes, miRNAs and lncRNAs in 
pancreatic cancer were analyzed using Kaplan-Meier 
plotter database, which is capable to assess the effect of 
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54675 genes on survival using 10461 cancer samples 
[54]. Pancreatic cancer mRNA RNA-seq and miRNA 
data from “Pan-cancer” item in Kaplan-Meier plotter 
database were selected. These genes, miRNAs and 
lncRNAs were first entered into the database. Then, the 
hazard ratio (HR) with 95% confidence interval and 
logrank p-value were automatically calculated and 
directly displayed on the webpage. Logrank p-value < 
0.05 was regarded as statistically significant. 
 
Prediction of miRNA 
 
Upstream miRNAs of key genes were predicted using 
miRTarbase database [55]. In miRTarbase database, the 
collected microRNA-target interactions are 
experimentally validated by reporter assay, western 
blot, qPCR, microarray and next-generation sequencing 
experiments. To obtain more accurate prediction results, 
in this study, we only included microRNA-target 
interactions that were validated by reporter assay. 
Prognostic values of these predicted miRNAs were 
further assessed using Kaplan-Meier plotter database as 
mentioned above. 
 
Prediction of lncRNA 
 
In this study, miRNet database was used to predict the 
upstream lncRNAs of miRNAs, which is a an easy-to-
use tool for miRNA-associated studies [56, 57]. 
“Organism-H.sapies”, “Tissue-Pancreas” and “target 
type-lncRNAs” were set as selection criteria. 
 
Correlation analysis 
 
The correlations of mRNA-miRNA, miRNA-lncRNA 
and mRNA-lncRNA pairs in pancreatic cancer were 
evaluated using starBase database, which is an open-
source platform for studying the ncRNA interactions 
from CLIP-seq, degradome-seq and RNA-RNA 
interactome data [58, 59]. p-value < 0.05 was 
considered as statistically significant. 
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SUPPLEMENTARY MATERIAL 
 
Please browse the links in Full Text version of this manuscript to see Supplementary Tables. 
 
Table S1. The commonly upregulated genes in GSE16515 and GSE15471 datasets. 
 
Table S2. The commonly downregulated genes in GSE16515 and GSE15471 datasets. 
 
Table S3. The miRNA-mRNA pairs predicted by miRTarBase database. 
 
Table S4. The lncRNA-miRNA pairs predicted by miRNet database. 
 


