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INTRODUCTION 
 
Tumor heterogeneity often reduces the efficacy of both 
non-targeted and genome-driven targeted cancer 
therapies [1-4]. Deregulated cellular metabolism is a 
trait shared by virtually all tumor cells across multiple 
cancer types, and might be exploited to bypass this 
therapeutic limitation [5-8]. However, given the 
intrinsic metabolic flexibility of cancer cells, targeting 
specific metabolic pathways might be just as 
challenging as targeting somatic mutations, if not more 
so [9-13]. A higher anti-cancer potential might arise 
from combining standard treatments with specific 
dietary interventions which, by changing the levels of 
certain host metabolites, would restrict the usage of 
alternative signaling and metabolic nodes by cancer 
cells [14]. Although originally assumed not to be 
relevant, the possibility that specific dietary inter-
ventions can influence the outcome of some cancer 
treatments is beginning to be recognized in pre-clinical 
and clinical scenarios.  
  
Restriction of the amino acids serine and glycine in the 
diet increases the survival of cancer-prone mice [15], 
and provides a plausible explanation for the recognized 
anti-cancer effects of low-protein diets or dietary 
restriction [16]. Furthermore, the high-fat low-protein/  
carbohydrate ketogenic diet (KD), which increases 
blood ketones such as β-hydroxybutyrate (BHBA) and 
decreases blood glucose by simulating the physiological 
response to fasting, greatly enhances the doses of the 
anti-folate methotrexate can be improved through a 
simple dietary supplementation of histidine [18]. Such 
experimental  confirmation  that  harnessing dietary me- 

  efficacy/toxicity ratios of PI3K inhibitors in animal 
models [17]. Finally, the efficacy of lower, non-toxic  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tabolic pathways can augment the effects of cancer 
drugs has received a high degree of social media 
attention as it highlights that a careful scientific exa-
mination of diet as (complementary) medicine is long 
overdue in oncology. Not surprisingly, combinations of 
dietary approaches including fasting or low-calorie 
fasting-mimicking diets (FMD) and KD with chemo-
therapy, immunotherapy or other cancer treatments are 
beginning to be viewed as potentially promising strate-
gies to reduce treatment-related adverse effects and 
boost efficacy outcomes [14]. However, it should be 
acknowledged that an established indication of FMD or 
KD, which could decrease protein-calorie intake during 
oncology treatments, is not yet available and caution 
has been raised given the prevalence of malnutrition and 
sarcopenia in patients with cancer [19].  
  
An alternative to this “drug plus diet” approach is the 
use of pharmacological interventions with low toxicity 
profiles that can reproduce the metabolic features 
associated with these diets (e.g., lowering glucose/insu- 
lin/IGF1 and increasing ketone bodies). One such 
pharmacological mimetic is metformin, a biguanide 
drug commonly used to treat type 2 diabetes and which 
was originally identified as a putative dietary res-
triction-mimetic that reproduced the hepatic gene 
expression profiles shaped by long-term calorie restrict-
tion in mice [20,21]. Global metabolomic profiling 
suggests that metformin might promote a KD-like 
signature of fatty acid oxidation involving significant 
increases of BHBA and also of tricarboxylic acid (TCA) 
cycle intermediates in patients with endometrial cancer 
[22] and in people with Li-Fraumeni syndrome, who are 
predisposed to various cancers [23]. Although a few 

ABSTRACT 
 
Certain dietary interventions might improve the therapeutic index of cancer treatments. An alternative to the 
“drug plus diet” approach is the pharmacological reproduction of the metabolic traits of such diets. Here we 
explored the impact of adding metformin to an established therapeutic regimen on the systemic host 
metabolism of cancer patients. A panel of 11 serum metabolites including markers of mitochondrial function 
and intermediates/products of folate-dependent one-carbon metabolism were measured in paired baseline 
and post-treatment sera obtained from HER2-positive breast cancer patients randomized to receive either 
metformin combined with neoadjuvant chemotherapy and trastuzumab or an equivalent regimen without 
metformin. Metabolite profiles revealed a significant increase of the ketone body β-hydroxybutyrate and of the 
TCA intermediate α-ketoglutarate in the metformin-containing arm. A significant relationship was found 
between the follow-up levels of homocysteine and the ability of treatment arms to achieve a pathological 
complete response (pCR). In the metformin-containing arm, patients with significant elevations of 
homocysteine tended to have a higher probability of pCR. The addition of metformin to an established anti-
cancer therapeutic regimen causes a fasting-mimicking modification of systemic host metabolism. Circulating 
homocysteine could be explored as a clinical pharmacodynamic biomarker linking the antifolate-like activity of 
metformin and biological tumor response.  
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studies have explored the metformin-related metabolic 
responses in ovarian cancer patients who were receiving 
metformin for diabetes [24], or in treatment-naïve pre-
operative window clinical trials in endometrial and 
breast cancer [22, 25], there is no evidence of the 
impact of adding metformin to established treatment 
regimens on systemic metabolic markers in everyday 
oncology practice.  
  
Here we explored the impact of metformin on serum 
metabolic profiles of patients participating in the 
METTEN study, a phase 2 clinical trial of HER2-
positive breast cancer patients randomized to receive 
either metformin combined with anthracycline/taxane-
based chemotherapy and trastuzumab or an equivalent 
regimen without metformin, before surgery [26]. A 
panel of 11 metabolites was selected based on the DR-
mimetic [22] and one-carbon (1C) metabolism anti-
folate-like activities of metformin [27–30], and included  
BHBA and the key TCA cycle intermediate α-keto- 
glutarate, and also intermediates or products of 1C 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

metabolism (i.e., cystathionine, taurine, betaine, 
choline, dimethylglycine, homocysteine, methionine, s-
adenosyl methionine [SAM], and s-adenosyl 
homocysteine [SAH]).  
 
RESULTS 
 
Study participants 
 
To investigate the metabolic changes associated with 
adding metformin to an anthracycline/taxane-based 
chemotherapy and trastuzumab regimen, we conduced 
the present study with paired baseline and post-
treatment serum samples collected from 68 patients 
belonging to the intention-to-treat population of the 
METTEN trial, which included randomly assigned 
patients receiving at least one dose of study medication 
[26]. The baseline characteristics of these patients are 
shown in Table 1. The comparison of clinical-
pathological variables of each cohort revealed no 
significant differences. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Baseline patient demographic and tumor characteristics.  
    Metformin arm (n=33) Standard arm (n=35) p-value 
Age (years)  0.649 
 <50 18 (54.5%) 21 (60.0%)  
 ≥50 15 (45.5%) 14 (40.0%)  
 Mean ± SD (range) 48.6 ± 10.2 (32–75) 49.1 ± 11.0 (30–72) 0.843 
 
Menopausal status 

  
0.772 

 Post 13 (39.4%) 15 (42.9%)  
 Pre 20 (60.6%) 20 (57.1%)  
 
Body weight (kg) 

   

 Mean ± SD (range) 65.8 ± 7.8 (52–89) 65.3 ± 9.6 (48–83) 0.806 
 
Body mass index 

    
 

0.467 
 <25 18 (54.5%) 16 (45.7%)  
 ≥25 (overweight) 15 (45.5%) 19 (54.4%)  
 
Clinical tumor status 

     
0.7501 

 cT2 21 (63.6%) 21 (60.0%)  
 cT3 11 (33.3%) 10 (28.6%)  
 cT4b 1 (3.0%) 3 (8.6%)  
 cT4d 0 (0.0%) 1 (2.9%)  
 
Clinical nodal stage 

     
0.4141 

 cN0 8 (24.2%) 11 (31.4%)  
 cN1 21 (63.6%) 16 (45.7%)  
 cN2 1 (3.0%) 4 (11.4%)  
 cN3 3 (9.1%) 4 (11.4%)  
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Hormone receptor status 

     
1.000 

    ER and/or PgR positive 18 (54.5%) 19 (54.3%)  
    ER and PR negative 15 (45.5%) 16 (45.7%)  
 
Tumor grade 

    
0.4671 

 G1 2 (7.7%) 0 (0.0%)  
 G2 12 (46.2%) 14 (48.3%)  
 G3 12 (46.2%) 15 (51.7%)  

1 Fisher´s exact test 
 

Figure 1. Median fold-change and interquartile range for circulating metabolites (post-treatment vs pre-treatment) in the standard neo-
djuvant regimen arm (A), the metformin plus standard regimen arm (B), and in patients on metformin compared with those not exposed 
to metformin (C). Metabolites with statistically significant absolute change on Wilcoxon signed rank test are shown with p-values.  
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Addition of metformin elevates circulating levels of 
β-hydroxybutyrate and α-ketoglutarate in breast 
cancer patients treated with a conventional 
neoadjuvant schedule 
 
To probe the specific metabolic response associated 
with metformin, the serum profiles of BHBA, α-keto-
glutarate, cystathionine, taurine, betaine, choline, 
dimethylglycine, homocysteine, methionine, SAM, and 
SAH were first evaluated within each arm of the study.  
An inspection of the metabolite profile by comparing 
the median fold-change (post-treatment vs pre-
treatment) revealed that none of the measured meta-
bolites showed differences in those patients receiving 
the standard neoadjuvant arm without metformin 
(Figure 1A). In the metformin-containing arm, however, 
we observed a statistically significant increase in the 
serum levels of BHBA (p=0.003), α-ketoglutarate 
(p=0.000), and SAM (p=0.037) post-treatment (Figure 
1B). When we evaluated the differential impact on 
serum metabolic profiles between treatment arms, only 
BHBA (p=0.038), and α-ketoglutarate (p=0.029) 
reached statistical significance (Figure 1C).  
 
Metformin-driven increase of BHBA is higher in 
breast cancer patients achieving pathological 
complete response.  
 
The fold-changes in serum levels of BHBA, α-keto-
glutarate, and homocysteine in patients achieving or  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

not pCR in the two treatment arms are represented as 
waterfall and violin plots in Figures 2, 3, and 4 
respectively. The fold-change increase of circulating 
BHBA reached statistical significance in metformin-
treated patients achieving pCR, but not in non-pCR 
patients (Figure 2). By contrast, the fold-change in-
crease of α-ketoglutarate reached statistical signifi-
cance in metformin-treated patients irrespective of their 
pCR status (Figure 3). Finally, metformin-treated 
patients achieving pCR had significantly higher levels 
of circulating homocysteine than non-pCR patients 
(p=0.047; Figure 4).  
 
Follow-up homocysteine predicts the likelihood to 
benefit from adding pre-operative metformin 
 
 Baseline levels of serum homocysteine (week 0 [w0]) 
were not significantly associated with pCR in patients 
(Table 2, Figure 5). However, we observed a significant 
relationship between the follow-up levels of 
homocysteine (i.e., post-treatment [w24] minus pre-
treatment [w0]) and the ability of the treatment arms to 
achieve pCR (odds ratio [OR]follow-up homocysteine × arm = 
13.42, 95% confidence interval [CI]: 1.37–130.98, 
p=0.025; Table 2). Accordingly, those patients with 
higher levels of homocysteine in the metformin-
containing arm tended to have a higher probability of 
pCR (OR = 5.47, 95%CI: 0.93–32.11, p=0.060; Figure 
5).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Left. Waterfall plots showing the log2 fold chance of circulating BHBA and correlation with treatment outcomes. Right. 
Violin plots depicting the log2 fold chance of circulating BHBA in each treatment arm categorized by treatment outcomes. (pCR: 
pathological complete response; QT: chemotherapy; Tzb: trastuzumab; MET: metformin; p-values by Wilcoxon signed-ranked test).   
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After additional adjustments for potential confounding 
tumor characteristics, such as tumor size and hormone 
receptor status, the relationship between the follow-up  
levels of  homocysteine  and  the  ability  of  treatment  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Arms to achieve a pCR in patients remained 
significant (adjusted ORfollow-up homocysteine × 
arm = 47.58, 95%CI: 1.60–1411.93, p=0.026; Table 
3). In the metformin-containing arm, the positive 

Figure 3. Left. Waterfall plots showing the log2 fold chance of circulating α-KG and correlation with treatment outcomes. Right. 
Violin plots depicting the log2 fold chance of circulating α-KG in each treatment arm categorized by treatment outcomes. (pCR: 
pathological complete response; QT: chemotherapy; Tzb: trastuzumab; MET: metformin; p-values by Wilcoxon signed-ranked test).   
 

 

Figure 4. Left. Waterfall plots showing the log2 fold chance of circulating Hcy and correlation with treatment outcomes. Right. 
Violin plots depicting the log2 fold chance of circulating Hcy in each treatment arm categorized by treatment outcomes. (pCR: 
pathological complete response; QT: chemotherapy; Tzb: trastuzumab; MET: metformin; p-values by Wilcoxon signed-ranked test).   
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association between circulating follow-up homo-
cysteine and pCR maintained a tendency towards 
significance (p=0.076) after accounting for tumor size 
and hormone receptor status (Table 3). The lack of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

association between circulating follow-up homo-
cysteine and pCR in the (non-metformin) reference 
arm remained after adjusting for these factors (Table 
3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Association of the interaction between baseline and follow-up levels of circulating 
homocysteine and pathological complete response by treatment arm. 

 Odds ratio (95%CI) p-value 
 

Baseline homocysteine (w0) 
 

1.162 (0.340–3.965) 
 

0.811 
Treatment arm 0.658 (0.241–1.792) 0.412 

Homocysteine × treatment arm 0.706 (0.110–4.516) 0.713 
   

Homocysteine w0 standard arm 1.162 (0.340–3.965) 0.811 
Homocysteine w0 metformin arm 0.820 (0.204–3.298) 0.780 

   
Follow-up homocysteine (w24-w0) 0.408 (0.097–1.714) 0.221 

Treatment arm 0.825 (0.226–3.009) 0.771 
Homocysteine × treatment arm 13.419 (1.375–130.982) 0.025 

   
Homocysteine w24-w0 standard arm 0.408 (0.097–1.714) 0.221 

Homocysteine w24-w0 metformin arm 5.474 (0.933–32.108) 0.060 
 

 

 

Figure 5. Relationship between the baseline (w0) and the follow-up (w24 minus w0) levels of circulating Hcy and the ability of 
treatment arms to achieve pCR. (w: week). 
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DISCUSSION 
 
We are now beginning to recognize that the causes of 
therapeutic cancer resistance might involve alterations 
in the host rather than in the cancer cells themselves. 
Metabolomic analysis of peripheral blood provides a 
snapshot of the global physiological state of several 
organs and tissues. We used this approach in the present 
study to evaluate the impact of adding metformin to a 
well-established neoadjuvant regimen of chemotherapy 
and trastuzumab on the metabolism of HER2-positive 
breast cancer patients. Our findings should therefore be 
considered in terms of the complex interaction between 
host and tumor, as well as on systemic effects on 
several metformin-responsive organs including liver, 
fat, and muscle.  
  
Our results identify a signature of significantly-altered 
circulating metabolites that exclusively associates with 
the combination of metformin, chemotherapy, and tras-
tuzumab. Moreover, we confirm that metformin can 
provoke a fasting-mimicking modification of the 
systemic host metabolism involving a significant 
augmentation of both the ketone body BHBA, a marker 
of mitochondrial fatty acid β-oxidation, and α-
ketoglutarate, a key intermediate of the TCA cycle.  
  
AMP-activated protein kinase (AMPK) and mammalian 
target of rapamycin (mTOR) complex 1 (mTORC1), 
two key regulators of metabolism that are respectively 
activated and inhibited in acute response to cellular 
energy depletion, are known to inhibit β-oxidation and 
ketogenesis in the liver, adipose tissue and perhaps 
muscle,  while also  promoting  the  use  and  storage  of  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
glucose [31–33]. mTORC1 blockade activates β-
oxidation (i.e., adipose tissue lipolysis), thereby induc-
ing the release of acetyl-CoA that can either enter the 
TCA cycle or the ketogenesis pathway when the TCA 
cycle is shut down (e.g., in fasting conditions) [34, 35]. 
Our data therefore imply that one of the physiological 
consequences of metformin-induced inhibition of 
mTORC1 [36] on systemic metabolism is the release of 
ketone bodies, here BHBA, in the circulating meta-
bolome of cancer patients. Circulating levels of α-
ketoglutarate, which are increased by starvation and 
mimic calorie restriction via inactivation of mTOR [37], 
also become significantly elevated in breast cancer 
patients co-treated with metformin but not in those 
treated only with a standard combination of chemo- and 
targeted therapy. Upregulation of ketone body 
metabolism and α-ketoglutarate, both key sensors of 
mitochondrial perturbations that involve the mTOR 
pathway, provides a rationale to suggest that the partial 
suppression of the mitochondrial electron transport 
chain [38,39] by adding metformin to an established 
therapeutic regimen leads to a systemic catabolic 
response mimicking fasting in breast cancer patients. 
Moreover, our data suggest that HER2-positive breast 
cancer patients who clinically benefited from neo-
adjuvant metformin were particularly sensitive to its 
metabolic effects on mitochondrial fatty acid β-oxida-
tion. Because breast tumor tissues were not available for 
metabolomic analysis we cannot discard the possibility 
that, beyond an indirect effect of metformin on hepatic 
and adipose tissues and perhaps also on short-chain 
fatty acid (butyrate-producing) gut microbiota [40,41], 
it could directly promote inhibition of the mTOR 
pathway and increase fatty acid oxidation in the breast 

Table 3. Association of the interaction between baseline and follow-up levels of circulating 
homocysteine and pathological complete response by treatment arm adjusted by tumor size 
and hormone receptors status. 

 Odds ratio (95%CI) p-value 
 

Baseline homocysteine (w0) 
 

1.135 (0.323–3.984) 
 

0.843 
Treatment arm 0.679 (0.234–1.967) 0.475 

Homocysteine × treatment arm 0.976 (0.147–6.506) 0.980 
   

Homocysteine w0 standard arm 0.950 (0.263–3.430) 0.937 
Homocysteine w0 metformin arm 1.193 (0.265–5.373) 0.819 

   
Follow-up homocysteine (w24-w0) 0.135 (0.009–1.983) 0.144 

Treatment arm 1.400 (0.302–6.494) 0.668 
Homocysteine × treatment arm 47.584 (1.604–1411.933) 0.026 

   
Homocysteine w24-w0 standard arm 0.144 (0.010–2.077) 0.155 

Homocysteine w24-w0 metformin arm 6.614 (0.822–53.189) 0.076 
 

 



www.aging-us.com 2882 AGING 

cancer tumor cells themselves, altogether contributing 
to the apparent release of BHBA into the serum of 
HER2-positive breast cancer patients co-treated with 
metformin.  
  
Our findings also highlight the positive correlation 
between metformin-driven alterations in specific 
metabolites, here homocysteine, and the likelihood of 
HER2-positive breast cancer patients achieving clinical 
benefit from the pre-operative treatment in terms of 
pCR rate. We observed a significant relationship 
between the follow-up circulating levels of homo-
cysteine and the ability of treatment arms to achieve 
pCR, suggesting that the direction and/or intensity of 
the relationship between the elevation of circulating 
homocysteine and pCR significantly varied in each 
treatment arm. Accordingly, those patients with 
significant elevations of homocysteine, a metabolic 
checkpoint of 1C metabolism, tended to have a 
significantly higher probability of pCR, but only in the 
metformin-containing arm. Antifolates, a group of anti-
cancer agents targeting various enzymatic steps in 
folate-dependent 1C metabolism, are known to exert an 
indirect influence on the rate of appearance/disappea- 
rance of homocysteine from cellular and plasma/serum 
compartments [42–46]. The ability of homocysteine to 
behave as a shared marker of the pharmacodynamic 
effect of metformin and antifolate drugs strongly 
supports the increasing recognition that anti-diabetic 
biguanides may exhibit folate mimicry and antifolate-
like activity [27–29,46]. Homocysteine levels are 
known to increase in non-cancer patients undergoing 
biguanide treatment [47,48], and metabolomic paral-
lelisms have been noted between the responses of 
cancer cells to biguanides and anti-folate drugs such as 
methotrexate [27,49]. Dihydrofolate reductase, the best-
understood target through which methotrexate blocks 
the synthesis of tetrahydrofolate methyl donors and 
indirectly promotes the accumulation of homocysteine 
[50,51], has been proposed as a putative target of 
metformin not only in the gut microbiota, but also in 
intestinal cells [28–30]. Because pre-clinical and 
clinical studies have shown that well-recognized 
detrimental effects of homocysteine such as cellular 
hypomethylation do not accompany the antifolate-like 
activity of metformin [30,52], it remains an open 
question whether the increase in circulating homo-
cysteine levels, a classic marker of 1C deficiency, is 
secondary to reduced vitamin B12 levels, folate levels 
(or a combination of both), or results from direct tar-
geting of folate-dependent enzymes in the gut micro-
biota, gut mucosal cells, or the tumor cells themselves. 
In this regard, we are currently exploring whether the 
ability of metformin to promote a build-up of homo-
cysteine in those patients more likely to achieve a 
clinical response might be explained in terms of a non-

classic disruption of 1C metabolism involving the flux 
of 1C units generated from serine metabolism [30,53]. 
 
Three previous clinical studies have employed 
metabolomic approaches to assess the pharmaco-
dynamic effects of metformin in endometrial, ovarian, 
and breast cancer types. The first study involved obese, 
nondiabetic endometrial cancer patients (n=20) treated 
with metformin (850 mg) daily for up to 4 weeks prior 
to surgical staging in a preoperative window clinical 
trial for endometrial cancer. In agreement with our 
findings, BHBA showed the most profound change in 
metabolite concentration in response to metformin, and 
more pronounced effects were reported in the serum of 
responder patients [22]. The second study assayed tissue 
and serum samples from patients with ovarian cancer 
(n=10) who were receiving metformin for diabetes, 
while using control samples from non-diabetic patients 
with lower mean body-mass index [24]. The authors 
found that the predominant mechanism of action by 
metformin in cancer is to target tumor-cell intrinsic 
mitochondrial metabolism, as suggested by our findings 
of metformin-driven elevation of circulating α-
ketoglutarate. The third study recruited female patients 
with treatment-naïve primary breast cancer (n=40) who 
received 13–21 days of slow release metformin at 
escalating dose levels (500 mg for days 1–3, 1,000 mg 
for days 4–6, and 1,500 mg thereafter) and lacked a 
control arm [25]. In agreement with our suggestion of 
metformin-driven β-oxidation in tumor cells, the 
authors found that patients with augmented glucose 
uptake into the primary breast cancer following 
metformin treatment presented a significant increase in 
intratumoral acetylcarnitine, likely reflecting an in-
creased flux of glucose carbons toward acetyl-CoA via 
increased fatty acid oxidation and ketogenesis [54-56]. 
Nonetheless, it is important to note that our present 
study is the first detailing a systemic modification in 
host metabolism caused by metformin in cancer patients 
treated with targeted therapy (the anti-HER2 mono-
clonal antibody trastuzumab) in combination with 
chemotherapy (anthracycline/taxane). 
 
In summary, recent strategies in cancer therapy have 
begun to focus on the potential beneficial effects of 
adjuvant dietary interventions (e.g., fasting, KD) on 
those metabolic pathways in tumor cells and the tumor 
environment (e.g., microbiota, tumor microenviron-
ment, immune system) that play a key role in cancer 
progression and therapeutic resistance [14, 57–60]. 
However, the safety and efficacy of such nutritional 
interventions should be examined for each single 
type/genetic subtype of cancer before they can be 
exploited for clinical application for cancer patients. In 
this context, our present findings showing that the 
addition of metformin to a well-established neoadjuvant 



www.aging-us.com 2883 AGING 

regimen causes a fasting-mimicking modification of the 
systemic host metabolism, including an elevation of 
BHBA, together with the favorable safety and 
tolerability profile of metformin [26, 61–64], might 
allow metformin to be considered as a moderate 
fasting/KD-mimicking agent in combination with 
standard of care therapies in multiple cancer types. 
Nevertheless, the ever-growing number of individual 
clinical trials (>300) investigating metformin in the 
treatment of various types of cancer has highlighted a 
need for more rigorous planning to focus on potential 
predictive biomarkers [65]. Along this line, we have 
recently proposed that the minor allele (C) of the single-
nucleotide polymorphism (SNP) rs11212617, located 
near the ataxia telangiectasia mutated gene, might 
warrant consideration as a predictive clinical biomarker 
to inform the personalized used of metformin in breast 
cancer patients [66]. In contrast to predictive 
biomarkers, which attempt to a priori predict the 
likelihood to respond to a particular treatment from the 
properties of the tumor, pharmacodynamic biomarkers 
provide a post-treatment measure of whether a given 
drug has reached its target, exerted a pharmacological 
response, and the degree of such response [67]. In our 
hands, no significant relationship existed between 
baseline (pre-treatment) serum homocysteine levels and 
the ability of metformin to achieve pCR in patients, 
whereas the (post- minus pre-treatment) follow-up 
difference in circulating homocysteine across treatment 
paralleled the clinical efficacy of neoadjuvant 
metformin. Thus, circulating homocysteine might be 
explored as an informative, non-invasive pharmaco-
dynamic biomarker capable of linking the antifolate-like 
activity of metformin and biological tumor response 
using other treatment regimens and other cancer types.  
 
MATERIALS AND METHODS 
 
Participants 
 
We prospectively collected serum samples from patients 
(n=68) with early, non-metastatic HER2-positive breast 
cancer that were recruited into the METTEN study (EU 
Clinical Trials Register, EudraCT number 2011-
000490-30; registered 28 February 2011, 
https://www.clinicaltrialsregister.eu/ctr-search/trial/ 
2011-000490-30/ES) [26]. The ethics committee of the 
Dr. Josep Trueta Hospital (Girona, Spain) and 
independent Institutional Review Boards at each site 
participating in the METTEN study approved the 
protocol and any amendments. All procedures were in 
accordance with the ethical standards of the institutional 
research committees and with the 1964 Helsinki 
Declaration  and  its  later  amendments  or  comparable  

ethical standards. Informed consent was obtained from 
all individual participants included in the metabolomic 
sub-study presented here.  
 
Patients were randomly assigned to receive daily 
metformin (850 mg twice-daily) for 24 weeks 
concurrently with 12 cycles of weekly paclitaxel (80 
mg/m2) plus trastuzumab (4 mg/kg loading dose 
followed by 2 mg/kg) followed by four cycles of 3-
weekly fluorouracil (600 mg/m2), epirubicin (75 
mg/m2), cyclophosphamide (600 mg/m2) with 
concomitant trastuzumab (6 mg/kg) (arm A), or 
equivalent sequential chemotherapy plus trastuzumab 
without metformin (arm B), followed by surgery. 
Patients had surgery within 4–5 weeks of the last cycle 
of neoadjuvant treatment [26]. In all participants, 
venous blood was collected, after an overnight fast, into 
tubes with no added anticoagulants (serum). The tubes 
were centrifuged at 2500 × g at 4oC, and serum was 
stored at -80oC until use to minimize preanalytical 
errors. Post-surgery, patients received thrice-weekly 
trastuzumab to complete 1 year of neoadjuvant-adjuvant 
therapy. 
 
Metabolomics 
 
Methods to optimize reproducibility and robustness for 
the simultaneous measurement of selected metabolites 
from energy and 1C metabolism and chromatographic 
conditions have been previously described [68–70]. 
Briefly, surrogate deuterated standards were added to 
maximize technical precision during the injection and 
recovery during the extraction procedures (Isotec Stable 
Isotopes, Miamisburg, OH, USA). The calibration 
curves were prepared immediately before each assay 
using commercially available metabolites (Fluka, St 
Gallen, Switzerland). The samples for gas chroma-
tography were derivatized and analyzed on an Agilent 
Technologies (Santa Clara, CA, USA) 7890A gas 
chromatograph coupled with an electron impact (EI) 
source to a 7200 quadrupole time-of-flight mass 
spectrometer (QTOF-MS) equipped with a 7693 auto-
sampler module and a J&W Scientific HP-5MS column 
(30 m × 0.25 mm, 0.25 μm). The liquid chromatography 
platform (UHPLC-ESI-QqQ-MS) was based on an 
Agilent 1290 Infinity Ultra High Performance Liquid 
Chromatograph (UHPLC) coupled with an iFunnel 
electrospray ionization source (ESI) and a 6490 triple 
quadrupole mass spectrometer (QqQ-MS). The MS 
analysis alternated between MS and data-dependent 
MS2 scans using dynamic exclusion. Metabolites were 
identified and quantified using available reference 
libraries and the Qualitative and Quantitative Analysis 
B.06.00 software (Agilent Technologies). 
 



www.aging-us.com 2884 AGING 

Statistical analysis 
 
Descriptive data were summarized using percentages, 
medians or means with their respective 25 and 75 
percentiles, or standard deviations as appropriate. 
Clinical baseline characteristics between treatment arms 
were assessed using Chi-square or Fisher’s exact test for 
categorical variables, Student’s t test for continuous 
variables with normal distribution, or Mann-Whitney U 
test for non-normal distributions. The assumption of 
normality was evaluated with the Shapiro-Wilk test. 
Changes in circulating metabolite levels between pre- 
and post-treatment were compared using the Wilcoxon 
test. Binary logistic regression was used to assess the 
prognostic effect of both the baseline and the follow-up 
(post-pre) differences in circulating metabolites on 
pCR. Unadjusted and adjusted ORs with their relative 
95% CIs were reported as a measure of association. All 
tests were 2-sided and p≤0.05 was set as statistically 
significant. Statistical analyses were carried out using 
SPSS (IBM Corp. released 2017. IBM SPSS Statistics 
for Windows, Version 25.0; Armonk, NY, USA) and 
STATA (StataCorp. 2013. Stata Statistical Software: 
Release 13; StataCorp LP, College Station, TX, USA). 
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