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INTRODUCTION 
 
Diabetes is one of the most common chronic diseases 
worldwide [1]. Recently, more and more attentions 
focused on diabetes induced severe complications such 
as neuropathy, retinopathy, nephropathy and cardio-
vascular diseases. Two of ten patients with diabetes, 
either type 1 or type 2, will develop diabetic nephro-
pathy (DN) after 10 to 20 years, which makes diabetes 
the main cause of end stage renal diseases in western 
societies [2]. While 10 to 40 percent of patients with 
type 2 diabetes finally develop DN in urban China [3, 
4]. It seems that all types of the kidney cells, including 
glomerular epithelial (podocyte), endothelial (GECs) 
and mesangial cells, tubular epithelia, vascular 
endothelia and interstitial fibroblasts are sensitivity to 
hyperglycemia in varying degrees. The dysfunctions of  

 

the glomerular filtration barrier, which comprises GECs 
separated from podocytes by the glomerular basement 
membrane (GBM) may lead to albuminuria [5], an 
increase of urinary protein, which not only is an early 
sign of diabetic nephropathy, but also can predict the 
progression of renal damage [6]. 
 
Mature podocytes are terminally differentiated 
epithelial cells that cover the outer side of the GBM, 
consisting of a large cell body, major processes and foot 
processes [7, 8]. Differently from cell bodies and major 
processes floating freely in Bowman’s space, foot 
processes are situated on the GBM, which ultimately 
form a unique interdigitating pattern with neighboring 
cells [8, 9]. Adjacent FPs are connected by the 
glomerular slit diaphragm which is regarded as the main 
size selective filter barrier and composed of proteins 
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ABSTRACT 
 
Multiple studies indicate that microRNAs (miRNAs) are involved in diabetes. However, the roles of miRNA in the 
target organ damages in diabetes remain unclear. This study investigated the functions of miR-320a in diabetic 
nephropathy (DN). In this study, db/db mice were used to observe the changes in podocytes and their function in 
vivo, as well as in cultured mouse podocyte cells (MPC5) exposed to high glucose in vitro. To further explore the 
role of miR-320a in DN, recombinant adeno-associated viral particle was administered intravenously to 
manipulate the expression of miR-320a in db/db mice. Overexpression of miR-320a markedly promoted podocyte 
loss and dysfunction in DN, including mesangial expansion and increased levels of proteinuria, serum creatinine 
and urea nitrogen. Furthermore, MafB was identified as a direct target of miR-320a through AGO2 co-
immunoprecipitation, luciferase reporter assay, and Western blotting. Moreover, re-expression of MafB rescued 
miR-320a-induced podocyte loss and dysfunction by upregulating the expressions of Nephrin and glutathione 
peroxidase 3 (Gpx3). Our data indicated that miR-320a aggravated renal disfunction in DN by targeting MafB and 
downregulating Nephrin and Gpx3 in podocytes, which suggested that miR-320a could be a potential therapeutic 
target of diabetic nephropathy. 
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including Nephrin, podocin, P-cadherin, CD2AP, etc 
[8]. Podocytes are key components of the selective 
permeability barrier of the GBM, and diabetes induced 
apoptosis of podocytes contributed to the dysfunctions 
of the glomerular filtration barrier, which may lead to 
albuminuria [10]. Meanwhile, podocyte deletion can 
arise in the early stage of DN and predict the clinical 
progression [11]. Recently, it was found that enhanced 
oxidative stress may lead to podocyte loss [12]. 
However, the underlying specific mechanisms were still 
unrevealed. 
 
MafB is a member of the large Maf family, which 
contains a basic leucine zipper that mediates dimer 
formation and target DNA binding to the Maf recognition 
element (MARE) [13]. Previous researches have showed 
that MafB played a vital role in podocyte differentiation 
and its foot process formation [14]. MafB-deficient mice 
would die during the perinatal period [15]. Mutations of 
MafB impaired development and maintenance of 
podocytes [16], which resulted in focal segmental 
glomerulosclerosis (FSGS) [16] and carpotarsal 
osteolysis (MCTO) [17]. FSGS is a leading cause of end-
stage renal diseases in children and adults [16], while 
MCTO is a rare skeletal dysplasia frequently associated 
with progressive renal failure [17]. MafB gene has been 
identified in the vicinity of the susceptible locus for 
albuminuria by linkage analysis in diabetic KKT/a mice, 
and its expression were decreased significantly in the 
diabetic kidneys [18]. A recent study showed that 
overexpression of MafB in podocytes prevented the 
development of diabetic nephropathy [19]. 
 
MicroRNAs (miRNAs) are short (usually about 22 
nucleotides) noncoding RNAs, which regulate gene 
expression by inducing degradation or translational 
repression of target mRNA in animals and plants  
[20, 21]. MiRNAs generally bind to complementary 
sites within the 3′ UTRs of their target mRNAs 
incompletely [22, 23]. Recent studies have 
demonstrated that miRNAs not only played important 
roles in various biological processes, such as develop-
ment and differentiation, but also acted as biomarkers in 
multiple human diseases [24, 25]. Among them, 
increased miR-320a was found in the plasma of patients 
with diabetes or diabetic animal models by investigating 
the miRNAs profiles in diabetes [26–28]. Most 
importantly, a cohort study revealed that the increased 
circulating level of miR-320a was a consequence of 
diabetic kidney dysfunction, and would be restored to 
normal level after simultaneous pancreas-kidney 
transplantation [26, 27]. Moreover, miR-320a promoted 
insulin resistance in high glucose treated adipocytes 
[29], and impaired myocardial microvascular 
angiogenesis in type 2 diabetic Goto-Kakizaki rats [28]. 
Our previous study also showed that the levels of 

circulating miR-320a was elevated in patients with 
coronary artery disease (CAD) and high-risk individuals 
of CAD, including persons with diabetes [30]. 
Meanwhile, we discovered that miR-320a contributed to 
metabolism disorder associated injury. However, 
whether miR-320a participates in diabetic kidney 
dysfunction is still unknown. Thus, we investigated the 
role of miR-320a in DN and the underlying mechanisms 
in the current study. 
 
RESULTS 
 
MiR-320a level was increased in the kidney of 
diabetic mice 
 
As shown in Figure 1A, albumin-to-creatinine ratio 
(ACR) was gradually elevated with age in db/db mice 
compared with C57BL/Ks mice, which indicated 
diabetic kidney dysfunction. Further, the levels of 
serum creatinine (CR) and blood urea nitrogen (BUN) 
in db/db mice were remarkedly increased compared 
with C57BL/Ks mice at the age of 24 weeks (Figure 1B 
and 1C). Moreover, periodic acid–Schiff (PAS) staining 
revealed mesangial expansion in the kidney of db/db 
mice (Figure 1D). Meanwhile, immunostaining of 
Desmin, the podocyte injury marker, indicated podocyte 
injury in diabetic glomeruli (Figure 1E). By using 
quantitative RT-PCR assays, increased miR-320a was 
found in the renal cortex of db/db mice compared to 
C57BL/Ks mice (Figure 1F). These results suggested 
that db/db mice developed DN, and miR-320a might 
participate in the pathological process of DN. 
 
Overexpression of miR-320a aggravated renal 
dysfunction in db/db mice 
 
In order to explore the effects of miR-320a in DN, 
recombinant adeno-associated viral (rAAV) system was 
used to manipulate the expression levels of mature miR-
320a in mice. We found that almost all karyotes in 
glomeruli and the majority of tubular epithelial cells 
were efficiently transfected, while the fluorescence 
intensity of the GFP staining in the pancreas was 
limited (Supplementary Figure 1A and 1B). After 4 
months, treated db/db mice were sacrificed and it was 
found that rAAV-miR-320a treatment elevated the level 
of miR-320a, while rAAV-miR-320a TuDs reduced the 
expression of miR-320a in the renal cortex of db/db 
mice (Figure 2A). During the observation period, the 
level of blood glucose and body weight were elevated in 
db/db mice compared with control mice. Among them, 
db/db mice treated with rAAV-miR-320a had increased 
blood glucose and weight gain than the control db/db 
mice, while db/db mice with rAAV-miR-320a TuDs 
exhibited opposite effects (Figure 2B and 2C). Of note, 
miR-320a overexpression exacerbated the diabetes-
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induced renal dysfunction as evidenced by increased 
24h urine volume, ACR, serum CR and BUN (Figure 
2D–2G). On the contrary, knockdown of miR-320a by 
rAAV-miR-320a TuDs attenuated the renal dysfunction 
in db/db mice (Figure 2D–2G). Furthermore, over-
expression of miR-320a increased diabetes-induced 
mesangial expansion and podocyte injury in diabetic 
glomeruli compared with control db/db mice, while 
knockdown of miR-320a alleviated these injuries 
(Figure 2H and 2I). These data indicated that miR-320a 
damaged the integrity of GBM in db/db mice. 
 
As proteinuria is often related to podocyte loss or 
dysfunction [11], we then measured the morphology 
and function of podocyte. We found that podocyte 
architectural integrity was disrupted in diabetic 
glomeruli as evidenced by the loss of WT1-positive 
podocytes, decreased Nephrin expression and effaced 
podocyte foot processes under electron microscope 
(Figure 2J–2L). Whereas these changes were mitigated 
by rAAV-miR-320a TuDs (Figure 2J–2L). Podocytes 
are susceptible to the damage of oxidative stress [6, 12], 

and podocyte loss is largely attributed to apoptosis in 
kidney diseases [12, 31]. Therefore, oxidative stress in 
kidney was evaluated using Dihydroethidium (DHE) 
probe. It was found that overexpression of miR-320a 
increased ROS in kidney of db/db mice, while 
knockdown of miR-320a reversed diabetes-induced 
ROS activation (Figure 2M). Further, the kidney 
sections were subjected to TUNEL staining, and the 
results showed that rare apoptotic glomerular cells were 
observed in kidneys of C57BL/Ks mice (Figure 2N). 
However, the number of WT1 and TUNEL-double 
positive glomerular cells, which indicated apoptotic 
podocytes, significantly increased in kidney of db/db 
mice (Figure 2N). Moreover, miR-320a overexpression 
promoted apoptosis of podocytes in diabetic kidney, 
while knockdown of miR-320a alleviated podocyte 
apoptosis (Figure 2N). Additionally, we found no 
significant difference among normal C57BL/Ks mice 
with different treatments (Supplementary Figure  
2A–2G), which indicated that miR-320a did not damage 
kidney function and podocytes under normoglycemic 
condition.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. MiR-320a was increased in the kidney of diabetic mice. (A) Urinary ACR was determined every four weeks since the age of 8 
weeks. (B) Serum creatinine and (C) BUN were detected at the age of 24 weeks. (D) Representative images of PAS staining of kidneys from 
C57BL/Ks and db/db mice. Scale bar, 50 μm. (E) Representative images of immunohistochemical staining of Desmin. Scale bar, 50 μm. (F) Relative 
miR-320a expression in renal cortex measured by real-time PCR. Data are expressed as mean ± SEM, n=8, *P<0.05 versus C57BL/Ks. 
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Figure 2. Overexpression of miR-320a aggravated renal dysfunction in db/db mice. (A) Relative miR-320a expression in renal cortex 
measured by real-time PCR. (B) Blood glucose was detected every 2 weeks. (C) Body weight, (D) 24h urine volume and (E) urinary ACR was 
determined every four weeks since the age of 8 weeks. (F) Serum creatinine and (G) BUN were detected at the age of 24 weeks. (H) Representative 
images of PAS staining of kidneys from C57BL/Ks and differently treated db/db mice. Scale bar, 50 μm. (I) Representative images of 
immunohistochemical staining of Desmin. Scale bar, 50 μm. (J) Typical images of WT1-stained glomeruli and average number of WT1-stained nuclei 
calculated per glomerular sections. Scale bar, 50 μm. (K) Representative images of immunofluorescence staining for Nephrin. Scale bar, 50 μm. (L) 
Representative electron microscopic image of the glomeruli staining from kidney sections. Scale bar, 1 μm. (M) Representative images of ROS 
detected by DHE probe in frozen kidney sections. Scale bar, 200 μm. (N) Typical images of apoptotic glomerular cells in diabetic glomeruli. Green, 
TUNEL; Red, WT1; Blue, Hoechst. Scale bar, 50 μm. Data are expressed as mean ± SEM, n=8, *P<0.05 versus C57BL/Ks, #P<0.05 versus db/db 
control, &P<0.05 versus db/db control.  

Overexpression of miR-320a enhanced hyperglycemia 
induced podocytes injury in vitro 
 
To further investigate the effects of miR-320a in 
podocytes, in vitro studies were performed using miR-
320a mimics/inhibitor transfection in cultured murine 
podocytes. Podocytes were cultured in medium with 
high glucose (HG, 30 mM) for 48 h to simulate a cell 
model of hyperglycemia. We found that the level of  
miR-320a was increased in HG-treated podocytes 
compared with normal glucose (NG) (Figure 3A). 
Meanwhile, overexpression of miR-320a caused an 
increase in albumin permeability in cultured podocytes 
with HG treatment, suggesting worse podocyte architec-
tural integrity (Figure 3B). Moreover, overexpression of 
miR-320a resulted in enhanced reorganization of actin 

cytoskeleton in podocytes, compared with control group 
(Figure 3C). Besides, significant increase in ROS and 
apoptosis were observed in HG treated podocytes by 
miR-320a mimics transfection, while miR-320a 
inhibitor alleviated these effects of HG (Figure 3D and 
3E).  
 
MafB is a target of miR-320a 
 
A series of genes were down-regulated in glomeruli of 
diabetic mice according to the microarray data deposited 
in Gene Expression Omnibus (accession number 
GSE20844) (Supplementary Table 1). Among them, 3 
were predicted targets of miR-320a by minimum free 
energy (MFE) (≤ -25 kcal/mol) calculation and 
conversation among species, while only MafB was 
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obviously downregulated in diabetic kidney (Figure 4A 
and 4B, Supplementary Figure 3). MafB played an 
important role in renal diseases as reported previously  
[14]. Multiple sequence alignment of hsa-miR-320a 
indicated a highly conserved binding site of miR-320a 
within the 3′ UTR of MafB gene among different species 
(Figure 4B). To validate whether MafB was a functional 
target of miR-320a in DN, we immunoprecipitated 
Argonaute 2 (Ago2), an important element of RNA-
induced silencing complex (RISC), from HG-treated 
podocyte cell lysates. The results showed that Ago2 was 
specifically isolated with the anti-Ago2 antibody not with 
nonspecific IgG (Figure 4C). Meanwhile, Ago2 showed 
increased association with the MafB mRNA after miR-
320a mimics transfection (Figure 4D). Moreover, 

luciferase reporter assays were performed to identify the 
specific binding site of miR-320a in MafB 3′ UTR 
(Figure 4E). When co-transfected with miR-320a 
mimics, the relative luciferase activity of MafB 3′ UTR 
reporter was obviously suppressed compared with the 
transfection of miR-con as well as with empty vector or 
the mutant reporter. (Figure 4F). 
 
Overexpression of miR-320a down-regulated MafB 
in vitro and in vivo 
 
The analysis of real-time PCR and Western blots 
showed that comparing with control db/db mice, mRNA 
and protein levels of MafB were both further reduced in 
rAAV-miR-320a treated db/db mice, while rAAV-miR- 

 

 
 

Figure 3. Overexpression of miR-320a enhanced hyperglycemia induced podocytes injury in vitro. (A) Relative miR-320a expression in 
cultured podocyte cells exposed to normal glucose (NG, 5 mM) and high glucose (HG, 30 mM). (B) In vitro permeability of FITC-labeled BSA through 
podocyte monolayers. (C) Representative photomicrographs of immunofluorescence labeling with F-actin in cultured podocyte cells. Effects of miR-
320a mimics on apoptosis (D) and ROS (E) were determined by Annexin V/PI flow cytometric analysis and DHE in cultured podocyte cells. Data are 
representative of three experiments. Data are expressed as mean ± SEM, n=3, *P<0.05 versus NG, #P<0.05 versus HG + miR-con, &P<0.05 versus 
HG + inhibitor-con.  
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320a TuDs treatment showed opposite effects (Figure 
5A and 5B).  
 
To investigate whether the effects of miR-320a on 
MafB expression was related with podocyte loss in 
glomeruli, we additionally performed a two-week-study 
in normal C57BL/Ks mice using the rAAV system. 
Results showed that the value of blood glucose, body 
weight, urinary ACR, serum CR and BUN did not 
change among different groups (Supplementary Figure 
4A–4F). Meanwhile, rAAV-miR-320a increased the 
level of miR-320a but slightly down-regulated MafB in 
the kidney (Supplementary Figure 4G–4I). More 
important, the unchanged WT1 staining among normal 
C57BL/Ks mice with different treatments indicated that 
the number of podocytes in the glomeruli was not 
affected by miR-320a (Supplementary Figure 4J). 

Together, these data indicated that miR-320a directly 
inhibited the expression of MafB. 
 
To further explore the role of miR-320a/MafB signal in 
podocytes injury, the downstream signals genes of 
MafB were detected, for example, Nephrin and Gpx3, 
which were produced by podocytes in the glomeruli 
[32, 33]. Our results showed that mRNA and protein 
levels of Nephrin and Gpx3 both decreased in miR-320a 
overexpressed db/db mice, compared with control db/db 
mice (Figure 5C and 5D). 
 
Consistently, in cultured podocytes, miR-320a mimic 
transfection significantly reduced MafB level, and miR-
320a inhibitor increased MafB level (Figure 5E and 5F). 
Moreover, the mRNA and protein expression of Nehrin 
and Gpx3 were further decreased in HG-treated  

 

 
 

Figure 4. MafB is a target of miR-320a. (A) MafB protein levels detected by western blot in C57BLKS and db/db mice. (B) miR-320a and the 3’-
UTR of MafB among three species. (C) Ago2 protein levels in co-immunoprecipitated products detected by Western blot. IgGHC, IgG heavy chain; 
IgGLC, IgG light chain. (D) Relative expression of MafB in the whole RNA (left) and RNA of the nonspecific IgG or anti-Ago2 co-IP (right) from the HG-
treated podocyte cell lysates. #P<0.05 versus miR-con + input, *P<0.05 versus miR-con + IgG IP. (E) Schematic diagram of the luciferase reporter 
plasmids of pMIR-MafB 3’-UTR and pMIR-MafB 3’-UTR mut, and the potential target site of miR-320a on the 3’-UTR of MafB. (F) Regulation of miR-
320a on 3’-UTR of MafB in HEK293 cells by luciferase reporter assay. *P<0.05 versus MafB 3’-UTR + miR-con.  
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compared with the transfection of miRNA control 
(Figure 5G and 5H). 
 
MafB restoration attenuated miR-320a induced 
kidney injury in diabetes 
 
To verify the role of miR-320a/MafB signal in DN, we 
re-expressed MafB in rAAV-miR-320a-treated db/db 
mice using rAAV system. The results showed that 
rAAV-miR-320a significantly increased the level of 
miR-320a in the kidney of db/db mice (Figure 6A). 
Moreover, mice treated with rAAV-miR-320a exhi-
bited increased blood glucose and weight gain than the 
control group, while rAAV-MafB showed no effects in 
db/db mice (Figure 6B and 6C). Verified by real-time 

PCR and Western blots, rAAV-MafB restored MafB 
expression in rAAV-miR-320a-treated db/db mice 
(Figure 6D and 6E). Consistently, restoration of MafB 
increased the levels of Nephrin and Gpx3 (Figure 6D 
and 6E), and reversed the miR-320a induced injury in 
diabetic kidney, as determined by 24h urine volume, 
urinary ACR, serum CR, BUN, glomerular PAS 
staining and immunostaining of Desmin (Figure 6F–
6K). Meanwhile, rAAV-MafB mitigated the loss of 
WT1-positive podocytes, decreased Nephrin and 
effaced podocyte foot pro-cesses in miR-320a treated 
db/db mice (Figure 6L–6N). In addition, miR-320a 
increased the ROS level and apoptosis of podocytes, 
while restored MafB attenuated these effects (Figure 
6O and 6P).  

 

 
 

Figure 5. Overexpression of miR-320a down-regulated MafB in vitro and in vivo. Relative MafB (A) mRNA and (B) protein levels in 
differently treated db/db mice. Relative Nephrin and Gpx3 (C) mRNA and (D) protein expression in differently treated db/db mice. Data are 
expressed as mean ± SEM, n=8, *P<0.05 versus C57BL/Ks, #P<0.05 versus db/db control, &P<0.05 versus db/db control. Relative MafB (E) mRNA 
and (F) protein levels in cultured podocyte cells. Relative Nephrin and Gpx3 expression measured by (G) real-time PCR and detected by (H) western 
blot. Data are expressed as mean ± SEM, n=3, *P<0.05 versus NG, #P<0.05 versus HG + miR-con, &P<0.05 versus HG + inhibitor-con.  
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Figure 6. MafB restoration attenuated miR-320a induced kidney injury in diabetes. (A) Relative miR-320a expression in renal cortex 
measured by real-time PCR. (B) Blood glucose was detected every 2 weeks. (C) Body weight was measured once per month. Relative mRNA (D) and 
protein (E) levels of Mafb, Nephrin and Gpx3. (F) 24h urine volume and (G) urinary ACR was determined every four weeks since the age of 8 weeks. 
(H) Serum creatinine and (I) BUN were detected at the age of 24 weeks. (J) Representative images of PAS staining of kidneys from C57BL/Ks and 
differently treated db/db mice. Scale bar, 50 μm. (K) Representative images of immunohistochemical staining of Desmin. Scale bar, 50 μm. (L) 
Typical images of WT1-stained glomeruli and average number of WT1-stained nuclei calculated per glomerular sections. Scale bar, 50 μm. (M) 
Representative images of immunofluorescence staining for Nephrin. Scale bar, 50 μm. (N) Representative electron microscopic image of the 
glomeruli staining from kidney sections. Scale bar, 1 μm. (O) Representative images of ROS detected by DHE probe in frozen kidney sections. Scale 
bar, 200 μm. (P) Typical images of apoptotic glomerular cells in diabetic glomeruli. Green, TUNEL; Red, WT1; Blue, Hoechst. Scale bar, 50 μm. Data 
are expressed as mean ± SEM, n=8, *P<0.05 versus C57BL/Ks, #P<0.05 versus db/db control, &P<0.05 versus db/db control. 
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DISCUSSION 
 
In the present study, we showed that miR-320a 
aggravated kidney dysfunction in DN by suppressing 
MafB in podocytes. MiR-320a induced podocyte injury, 
which in turn led to the destraction of podocyte 
architectural integrity and mesangial expansion, and 
finally aggravated kidney dysfunction in diabetes.  
 
With deficiency of leptin receptor expression, db/db 
mice from C57BL/KsJ background exhibit progressive 
obese, hyperglycemia and hyperinsulinemia from a very 
young age, which make them an eligible obese and type 
2 diabetic mouse model [34]. Because of consistent and 
seriously elevated albuminuria and mesangial expansion 
in kidney, db/db mice most closely simulate the natural 
progression of human DN, comparing with various 
diabetic mouse models [35]. Therefore, in the current 
study, db/db mice were used as animal model of DN, 
which manifested progressive proteinuria, poor renal 
function, and apparent mesangial expansion. 
 
Epidemiologic studies revealed that the increase of 
miR-320a in patients or animal models with diabetes 
was correlated with poor progression [26–28]. It was 
found that miR-320a promoted insulin resistance in 
high glucose treated adipocytes [29], and impaired 
myocardial microvascular angiogenesis of type 2 
diabetic Goto-Kakizaki rats [28]. Our previous studies 
also showed that the levels of circulating miR-320a was 
elevated in patients with coronary artery disease (CAD) 
and high-risk individuals of CAD, including persons 
with diabetes [30]. All these suggested that miR-320a 
may participate in the multiple end organ damages of 
diabetes, but the biologic role of the miR-320a in DN 
remained unclear. In the current study, expression of 
miR-320a increased in both HG-treated podocyte cells 
and kidney of db/db mice. Moreover, overexpression of 
miR-320a in db/db mice presented more aggressive 
albuminuria, worse renal dysfunction and mesangial 
expansion than those untreated control db/db mice, 
while these changes were alleviated by rAVV-miR-
320a TuDs. 
 
To verify whether the resulting dysfunctions are also 
detectable in the normoglycemic mice, we performed 
the same experiments in normal C57BL/Ks mice. We 
found that overexpression of miR-320a did not cause 
damage to podocytes under normal circumstances, 
indicating that miR-320a-related podocyte injury and 
kidney dysfunction were specific to the diabetic 
animals. 
 
Previously, VEGFA was described as a target gene 
down-regulated by miR-320a in the heart  [36]. It is 
well known that VEGFA is highly expressed in 

podocytes from the glomeruli  [37] and provides 
essential signals to maintain the function of glomerular 
endothelial cells including survival, regeneration  [38], 
fenestrations  [39] and ultrafiltration coefficient   
[40, 41]. It has been reported that blockade of VEGFA 
in some experimental animal models reduced vascular 
permeability  [42, 43], including proteinuria in DN  [44, 
45]. Moreover clinical inhibition of VEGFA with anti-
VEGFA antibodies  [46] could cause proteinuria and 
hypertension in human  [47], confirming that certain 
amount of VEGFA is necessary for endothelial 
maintenance. We have detected the level of VEGFA in 
the kidney of db/db mice with different treatments via 
western blot. The results showed that VEGFA was 
downregulated in db/db control mice compared with 
C57BL/Ks mice, while rAAV-miR-320a didn’t enhance 
the decrease of VEGFA in db/db mice (Supplementary 
Figure 5). It is also well known that one certain miRNA 
may target different molecular under various conditions, 
while one molecular maybe targeted by different 
miRNAs under various conditions. For example, miR-
21 has been reported to aggravate glomerulosclerosis in 
diabetic nephropathy by inhibiting matrix 
metalloproteinases (MMP)-9  [48]. While both miR-21  
[49] and MMP-9  [50] were increased in the heart, 
which promoted cardiac dysfunction and fibroblast in 
cardiac hypotrophy mouse model, suggesting that 
MMP-9 was not regulated by miR-21 in this model. 
Therefore, VEGFA may not account for the miR-320a 
related-glomerular dysfunction in the current study. 
 
The adeno-associated virus (AAV) appears to be the 
most advantageous for its efficient transduction, long-
term gene expression, low immunogenicity and lack of 
apparent cytotoxicity in tissues [51, 52]. Moreover, 
rAAV9 is reported as an efficacious serotype for kidney 
gene transfer [53]. In our study, rAVV9 was applied 
intravenously to manipulate miR-320a signaling 
expression in renal microenvironments. Interestingly, 
the blood glucose and weight gain were increased in 
db/db mice treated with rAAV-miR-320a comparing to 
control db/db mice, while restoration of MafB alleviated 
miR-320a induced podocyte injury and renal 
dysfunction without affecting blood glucose and body 
weight. In addition, it has been reported that miR-320a 
was presented in exosome [54]. As we also detected an 
increase of circulating miR-320a in db/db mice 
(Supplementary Figure 6), it was possible that 
circulating miR-320a may exert distant effects. In the 
current study, we mainly focused on the local effects of 
miR-320a in the kidney. We will explore the distant 
effects of miR-320a using co-culture in vitro and 
transplantation in vivo in the future.  
 
Loss of podocytes contributes to the progression of 
diabetic nephropathy [55]. It was reported that 
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podocytes were susceptible to oxidative stress, which 
may lead to podocyte deletion, in part, by apoptosis. On 
the other hand, oxidative stress was identified as a key 
initiator of the pathogenesis of DN [56, 57]. In addition, 
antioxidant showed potential beneficial effects in 
experimental diabetic nephropathy [57–59]. Our data 
showed that overexpression of miR-320a promoted the 
diabetes induced ROS production and podocyte 
apoptosis in diabetic kidney. 
 
It was reported that MafB was essential for 
differentiation and foot process formation of podocytes 
[14]. In our study, miR-320 suppressed the expression of 
MafB, which led to podocyte loss and kidney dysfunction 
in db/db mice. Moreover, the kidbey function was even 
worsened in the miR-320a overexpressed db/db mice 
with rAAV-miR-320a intravenous injection, featured 
with aggravated mesangial expansion and increased 
proteinuria, serum creatinine, and BUN levels. In 
contrary, both knockdown of miR-320a and re-
expression of MafB alleviated podocyte injury as well as 
renal dysfunction in DN. Therefore, our data suggest that 
the miR-320a/MafB plays an adverse role via promoting 
hyperglycemia-induced podocyte loss and kidney 
dysfunction in DN. 
 
A recent study indicated that Gpx3, an antioxidative 
stress enzyme, was produced by glomerular epithelial 
cell and interacted with podocin in kidney [60]. 
Moreover, Maf (c-Maf), a homolog of MafB, was a 
transcriptional regulator of Gpx3, which modulated the 
antioxidative pathway in the renal proximal tubule [61]. 
In the current study, we found that both the mRNA and 
protein expressions of Gpx3 was significantly reduced 
in diabetic glomeruli, which was further decreased by 
miR-320a overexpressed in db/db mice. Our data also 
showed that restoration of Mafb expression in db/db 
mice and downregulation of miR-320a in cultured HG-
treated podocytes could increase the level of Gpx3 and 
ameliorate podocyte loss. Collectively, miR-320a/MafB 
suppressed the expression of Gpx3 in DN.  
 
Expressed on the membrane of podocytes, Nephrin is 
the key composition of the glomerular slit diaphragm 
and critical in preventing proteinuria [6, 62]. 
Hyperglycemia resulted in the loss of Nephrin and may 
cause proteinuria in human DN and STZ-induced 
diabetic kidney dysfunction rats [60]. Moreover, it was 
reported that MafB stimulated Nephrin transcription 
through binding to the MARE within the proximal 
promoter of the Nephrin gene [19]. Our data showed 
that the loss of MafB suppressed Nephrin expression in 
podocytes of DN in vivo. In addition, upregulation of 
MafB by miR-320a inhibitor increased the level of 
Nephrin in HG-treated podocyte cells. Thus, miR-
320a/MafB inhibited the expression of Nephrin in DN.  

In summary, here we showed that miR-320a played a 
detrimental role in diabetic nephropathy. This effect 
was induced by suppressing slit-diaphragm proteins and 
antioxidative enzymes via inhibiting MafB in 
podocytes. Moreover, miR-320a could be a therapeutic 
target in diabetic nephropathy.  
 
METHODS 
 
Reagents 
 
Fetal bovine serum (FBS), DMEM and RPMI 1640 were 
purchased from GIBCO (Grand Island, NY). 
Lipofectamine 2000 (Lipo 2000) reagent was from 
Invitrogen (Carlsbad, CA). The primers of human miR-
320a and U6, human miR-320a mimics, human miR-
320a inhibitor and their controls were provided by 
RiboBio (Guangzhou, China). Real-time PCR Primers of 
mRNA were synthesized by BGI Tech (Shenzhen, 
China). Antibodies against GFP (Cat No: AE012) was 
from Abclonal (Wuhan, China). Anti-Gpx3 (Cat No: AF-
4199) and Nephrin (Cat No: AF3159) were from R&D 
System (Minneapolis, MN). Anti-GAPDH (Cat No: sc-
32233) and anti-Desmin (Cat No: sc-65983) were from 
Santa Cruz Biotech (Dallas, TX). Anti-WT1 (Cat No: sc-
7385) was from Santa Cruz Biotech (Dallas, TX). Anti-
Ago2 (Cat No: H00027161-M01) was from Novus 
Biologicals (Littleton, CO). Anti-podocin (Cat No: 
20384-1-AP) was from proteintech (Wuhan, China). 
Prestained protein markers, horseradish peroxidase 
(HRP)-conjugated secondary antibodies, Alexa Fluor 594 
donkey anti-rabbit IgG (H+L) antibody (Cat No: A-
21207), Alexa Fluor 594 donkey anti-mouse IgG (H+L) 
antibody (Cat No: A-21203) and enhanced 
chemiluminescence reagents were from Thermo Fisher 
Scientific (Rockford, IL). Polyvinylidene difluoride 
(PVDF) membranes were from Millipore (Darmstadt, 
Germany). FITC-phalloidin (Cat No: P5282) and other 
chemical reagents were purchased from Sigma-Aldrich 
Company (Shanghai, China).  
 
Preparation of recombinant adenoassociated virus 
(rAAV) 
 
To manipulate the expression of miR-320a and MafB in 
vivo, we employed the rAAV system (type 9) which was 
a kind gift from Dr. Xiao Xiao (University of North 
Carolina at Chapel Hill). For the expression of miR-320a 
and miR-320a TuDs, oligonucleotides were designed as 
miR-random, miR-320a, miR-320a TuDs according to 
the mature sequence of hsa-miR-320a provided by 
miRBase (Accession: MIMAT0000510, Supplementary 
Table 2). The sequence of miR-random was provided by 
RiboBio (Guangzhou, China). The rAAVs were 
packaged in human embryonic kidney 293 (HEK293) 
cells and purified as described previously [63]. 
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Animals 
 
The Institutional Animal Research Committee of Tongji 
Medical College approved all protocols. The 
investigation corresponded with the US National 
Institutes of Health guidelines for the Care and Use of 
Laboratory Animals. Male db/db mice and control mice, 
both of which were on C57BL/Ks, were supplied by 
Model Animal Research Center of Nanjing University 
(Nanjing, China).  
 
C57BL/Ks mice were randomly divided into following 
groups (control, rAAV-miR-Random, rAAV-miR-
320a, rAAV-miR-320a TuDs and rAAV-miR-320a + 
rAAV-MafB, n ≥ 8 for each group), and they were 
treated with corresponding rAAVs (1×1011 virions 
particles) via vein injection at the age of 8 weeks. 
Mice were sacrificed at the age of 10 weeks or 16 
weeks, and tissue samples were collected, snap frozen 
in liquid nitrogen and stored at 80°C or fixed with 
formalin for further experiments.  
 
Db/db mice were randomly divided into five groups 
(control, rAAV-miR-Random, rAAV-miR-320a, rAAV-
miR-320a TuDs and rAAV-miR-320a + rAAV-MafB, n 
≥ 8 for each group), and they were treated with 
corresponding rAAVs (1×1011 virions particles) via vein 
injection at the age of 8 weeks. Mice were sacrificed at 
the age of 24 weeks, and tissue samples were collected, 
snap frozen in liquid nitrogen and stored at 80°C or fixed 
with formalin for further experiments. 
 
Blood and urine biochemistry 
 
Fasting blood glucose was measured by Glucose 
LiquiColor Test (Stanbio Laboratory, Boerne, TX) 
every 2 weeks. 24-hour urine volume of each animal 
was collected using metabolic cage system every 4 
weeks. Serum creatinine was detected using the 
Creatinine Assay Kit (BioAssay System, CA) with an 
improved Jaffe method, while BUN was detected using 
the Urea Assay Kit (BioAssay System, CA) with an 
improved Jung method. Urine albumin was detected 
using the mouse albumin ELISA kit (Bethyl 
Laboratories, Montgomery, TX). 
 
Histology and immunohistochemical staining 
 
Paraffin-embedded mouse kidney tissues were cut into 
4-mm-thick sections and stained with PAS (Abcam, 
Shanghai, China) for histopathological examination 
under light microscopy. Paraffin-embedded sections 
were stained with anti-Desmin as described previously 
[64]. For immunofluorescence analysis, paraffin-
embedded sections were stained with anti-Nephrin, 
while MPC5 cells were stained with FITC-phalloidin. 

Sections and cells were observed under the laser 
scanning confocal microscope (Olympus, FV500-IX71, 
Tokyo, Japan). 
 
Podocyte number counting 
 
Paraffin-embedded kidney sections were immune-
stained with a monoclonal antibody against WT1, and 
then detected by the avidin-biotin-peroxidase complex 
staining technique using a Histofine Kit (Nichirei, 
Tokyo, Japan). The number of WT1-positive cells was 
counted in 20 glomeruli of each section at × 400 
magnification, and the mean number was recorded as 
the podocyte number in each sample. 
 
Quantification of ROS production 
 
Dihydroethidium (DHE; Invitrogen, Carlsbad, CA) was 
applied to kidney frozen sections (6µm) at 40 µmol for 
30 minutes. Sections was detected under a Nikon 
DXM1200 fluorescence microscope, and fluorescence 
intensity were analyzed with the Image-Pro software 
(Media Cybernetics, Rockville, MD) 
 
Cell culture, transfection, and treatments 
 
Conditionally immortalized podocytes (MPC5), 
established by Peter Munde  [65], were purchased from 
Peking Union Medical College Basic Medical Sciences 
Cell Resource Center (Beijing, China). Undifferentiated 
MPC5 were cultured at 33°C in RPMI 1640 containing 
10% fetal bovine serum and 50 IU/ml of recombinant 
murine IFN-γ. The cells were transferred to 37°C in 
RPMI 1640 containing 5% FBS without IFN-γ for 10–
14 days to induce differentiation. These MPC5 cells 
were stained with podocyte markers, Nephrin, WT1 and 
podocin, by immunofluorescence assays to identify the 
characteristics of murine podocytes (Supplementary 
Figure 7). 
 
HEK293 cells were from American Type Tissue 
Collection and were cultured in DMEM with 10% FBS. 
Cells were grown in a 95% air, 5% CO2 atmosphere. 
Cells were transfected with human miR-320a mimics 
(100 nM, similarly hereinafter), human miR-320a 
inhibitor (100 nM) or their negative control (100 nM) 
respectively using Lipo 2000 reagent according the 
manufacturer’s protocol. After transfection, MPC5 cells 
were treated with normal glucose (NG, 5 mmol/L D-
glucose) or high glucose (HG, 30 mmol/L D-glucose) 
for 48 h and then collected. 
 
RNA isolation and detection 
 
We performed total RNA extraction from frozen tissues 
or cells and plasma using TRIzol Reagent (Invitrogen, 



www.aging-us.com 3068 AGING 

Carlsbad, CA) and TRIzol LS Reagent (Invitrogen, 
Carlsbad, CA), respectively, and quantified miRNA or 
mRNA expression levels by real-time PCR according to 
the manufacturer’s instructions with an ABI 7900HT 
Detection system (Applied Biosystems, Foster City, 
CA). Each sample has three replicates. GAPDH was 
used as endogenous control to mRNA, while U6 small 
nuclear RNA was used as endogenous control to 
miRNA. The primer sequences were listed in 
Supplementary Table 2. 
 
Western blot 
 
Protein samples from cell and mice kidney lysates (30 
µg) were quantified using the bicinochoninic acid 
assay kit (BOSTER, Wuhan, China). Then samples 
were resolved by SDS-PAGE, transferred to PVDF 
membranes, and incubated with primary and secondary 
antibodies. Amount of proteins was determined from 
the blot using ImageJ (National Institutes of Health 
Software, Bethesda, MD) and normalized to the 
GAPDH level. 
 
Target prediction of miRNA 
 
MiR-320a target prediction was performed with 
bioinformatic prediction web sites miRWalk 
(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/ 
miRretsys-self.html) and RNAhybrid (https://bibiserv. 
cebitec.uni-bielefeld.de/rnahybrid/).  
 
Co-immunoprecipitation with anti-Ago2 antibody 
 
Podocytes were lysed 24 hours after transfection with 
miR-320a mimics or control, and then immuno-
precipitated with anti-Ago2 antibody or anti-IgG as 
described previously [37, 66, 67]. Ago2 immuno-
complexes were extracted with TRIzol, and the levels of 
MafB mRNA were quantified by real-time PCR. 
Lysates of renal cortex from differently treated db/db 
mice were also analyzed. 
 
Dual luciferase assay 
 
400 ng of pMIR-MafB 3′-UTR, pMIR- MafB 3′-UTR 
mutant, or the empty vector was transfected into 
HEK293 cells accompanied with 40 ng of pRL-TK 
plasmid (Promega, Madison, WI), respectively. 
Meanwhile, miR-320a mimics or control was  
co-transfected with those reporter plasmids at a  
final concentration of 100 nM. Forty-eight hours  
later, luciferase activity was detected using Dual-
Luciferase Reporter Assay System (Promega, Beijing, 
China) and normalized by measuring renilla luciferase 
activity. 

TUNEL assay 
 
Apoptotic cells were detected using in situ cell death 
detection kits (Roche Diagnostics GmbH, Mannheim, 
Germany) according to the manufacturer’s instructions. 
For identification of apoptotic podocytes, the kidney 
paraffin-embedded sections were co-stained with WT1 
antibody. For quantitative analysis, the degree of 
apoptosis was estimated by the mean number of 
TUNEL positive cells per 100 glomerular sections. 
 
Statistics 
 
Data was analyzed using a one-way ANOVA and a t-
test with Dunnett comparison using Prism (version 6; 
GraphPad Software, La Jolla, CA) and expressed as the 
Mean ± SEM. Values were considered significantly 
different if P<0.05. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary Figures 

 

 

 

 

Supplementary Figure 1. rAAV-GFP succesfully transfected in the murine kidney. Representative images of immunofluorescence 
staining for GFP in (A) kidney and (B) pancreas. Scale bar, 200 μm.   
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Supplementary Figure 2. Overexpression of miR-320a didn’t change renal function in normal C57BL/Ks mice. (A) Relative miR-
320a expression in renal cortex measured by real-time PCR. (B) Blood glucose was detected every 2 weeks. (C) Body weight, (D) 24h urine 
volume and (E) urinary ACR was determined every four weeks since the age of 8 weeks. (F) Serum creatinine and (G) BUN were detected at 
the age of 16 weeks. (H) Representative images of PAS staining of kidneys from differently treated C57BL/Ks mice. Scale bar, 50 μm. (I) 
Representative images of immunohistochemical staining of Desmin. Scale bar, 50 μm. (J) Typical images of WT1-stained glomeruli and 
average number of WT1-stained nuclei calculated per glomerular sections. Scale bar, 50 μm. Data are expressed as mean ± SEM, n=8,  
#P<0.05 versus control, &P<0.05 versus control. 
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                     Supplementary Figure 3. miR-320a and the 3′-UTR of predicted genes among three species. 
 

 

 

 

Supplementary Figure 4. (A) Blood glucose, (B) Body weight, (C) 24h urine volume and (D) urinary ACR, (E) Serum creatinine and (F) BUN 
were detected at the age of 10 weeks. Relative (G) miR-320a, MafB (H) mRNA and (I) protein levels in differently treated C57BL/Ks mice. (J) 
Typical images of WT1-stained glomeruli and average number of WT1-stained nuclei calculated per glomerular sections. Scale bar, 50 μm. 
Data are expressed as mean ± SEM, n=8,  #P<0.05 versus control, &P<0.05 versus control. 
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Supplementary Figure 5. The VEGFA protein level in differently treated db/db mice. VEGFA protein levels in the kidney of 
differently treated db/db mice detected by western blot. Data are expressed as mean ± SEM, n=8, *P<0.05 versus C57BL/Ks, #P<0.05 versus 
db/db control, &P<0.05 versus db/db control. 

 

 

 

 

 

 

Supplementary Figure 6. The circulating miR-320a levels in db/db mice. Relative circulating miR-320a levels in db/db mice 
measured by real-time PCR. Data are expressed as mean ± SEM, n=8, *P<0.05 versus C57BL/Ks, #P<0.05 versus db/db control, &P<0.05 
versus db/db control. 
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Supplementary Figure 7. MPC5 cells retain the characteristics of murine podocytes. Representative images of 
immunofluorescence staining for (A) Nephrin, (B) WT1 and (C) podocin. Scale bar, 25 μm.  
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Supplementary Tables 
 

Supplementary Table 1. Selectively up-regulated genes in glomeruli of diabetic mice determined by fold changes. 

Gene symbol P Value Fold changes MFE* (kcal/mol) Conservation# 
Tap1 0.004701 0.104298 0  

Fgfbp1 0.001049 0.192311 0  

Inmt 0.000365 0.241215 -23.5  

Psmb8 0.004235 0.241593 -25 No 
Bdh2 0.009131 0.280667 -23.8  

Pcp4l1 0.000517 0.285062 0  

Cyp2s1 0.004148 0.29442 -21  

Tlr7 0.000789 0.305639 -18.6  

Il33 0.001501 0.350226 -16.3  

Fndc5 0.005792 0.352135 0  

Slc2a6 0.000943 0.355426 -28.9 Yes 
Ntf3 0.005003 0.364439 0  

Fxyd6 6.27E-05 0.366654 0  

Fam213b 0.002963 0.371535 -26 No 
Ctsh 0.006695 0.375822 -22.2  

Thrsp 0.00554 0.378472 0  

Cxcl12 0.000455 0.396373 -17.3  

Mafb 0.002585 0.397118 -26.7 Yes 
Bmpr1b 0.009987 0.398378 -17.7  

Dzank1 0.000798 0.413896 -26.4 No 
Idnk 0.002582 0.420367 -23.5  

Met 0.005306 0.42376 -23  

Stxbp6 0.002381 0.425538 -17.9  

Pik3ip1 0.005499 0.427406 -13.2  

Lbp 0.002778 0.432382 0  

Pgf 0.000209 0.432481 -15.6  

Lztfl1 0.006218 0.434302 -26.5 No 
Rtp4 0.00853 0.442181 0  

Dkk3 0.000816 0.442939 -21.2  

Tnfsf10 0.00253 0.442997 -19.5  

Folr1 0.007362 0.448012 0  

Itgb3bp 0.001552 0.453235 0  

Ptprr 0.000699 0.453238 -23.9  

Dgat2 0.003021 0.454399 -17.7  

Ssbp2 0.003343 0.45716 -20  

Uba7 0.007952 0.458067 -26.5 Yes 
Rrad 0.000098  0.461464 0  

Spon1 0.001218 0.464165 -19.4  

Enpp1 0.009829 0.464825 -24.3  

Cmbl 0.009802 0.472668 -25.9 No 
Fmod 0.005258 0.475254 -20.5  

Snrpd3 0.003166 0.479955 -32.2 No 
Kcnb1 0.000854 0.480044 -26.4 No 
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Sulf1 0.004135 0.481424 -27.3 No 
Usp15 0.002286 0.483005 -23  

Pdk2 0.005547 0.483049 -23.1  

Tesk2 0.004593 0.483682 -16.5  

Vdr 0.006662 0.485163 -19  

Mrps27 0.000217 0.485782 -15.8  

Cyp26b1 0.004756 0.487043 -19.9  

Adat2 0.003494 0.49244 -32.1 No 
Dhps 0.000819 0.496206 -24.6 No 

* MFE, minimum free energy of has-miR-320a and its target genes were evaluated using RNAhybrid. And the genes were 
selected when the mfe were less than or equal to -25.0 kcal/mol.  
# The conversation of sequence coding for the selected genes were analyzed among human, mouse and rat. 

 
 
 
Supplementary Table 2. The oligonucleotides sequences designed for the expression of miR-random, miR-320a and 
miR-320a TuDs. 

Oligonucleotides sequence 
miR-random 5′- GATCCTTTGTACTACACAAAAGTACTGTTCAAGAGACAG 

TACTTTTGTGTAGTACAAACCGC-3′ 
miR-320a 5′- AGCTTTCGCCCTCTCAACCCAGCTTTT TTCAAGAGAAAA 

AGCTGGGTTGAGAGGGCGACCGC-3′ 
miR-320aTuDs 5′- GACGGCGCTAGGATCATCAACTCGCCCTCTCAAATCTCC 

CAGCTTTTCAAGTATTCTGGTCACAGAATACAACTCGCCCTCTCAAATCTCCCAGCTTTT
CAAGATGATCCTAGCGCC 

GTCTTTTTT-3′ 
 
 
 

Supplementary Table 3. The primer sequences designed for real-time PCR. 

 Forward primers Reverse primers 
MafB 5′-TGAGCATGGGGCAAGAGCTG-3′ 5′-CCATCCAGTACAGGTCCTCG-3′ 
Nephrin 5′-GCCACCACCTTCACACTGAC-3′ 5′-AGACCACCAACCGCAAAGA-3′ 
Gpx3 5′-GATGTGAACGGGGAGAAAGA-3′ 5′-CCCACCAGGAACTTCTCAAA-3′ 
GAPDH 5′- GAGTGTTTCCTCGTCCCGTAG-3′ 5′- GAAGGGGTCGTTGATGGCAA-3′ 
 

 


