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INTRODUCTION 
 
One of the biggest challenges in ageing research is the 
means of measuring age independently of time. This 
need becomes particularly clear when we wish to 
evaluate the effects of drugs or compounds on ageing, 
where the use of time as a measure of age is clearly 
inappropriate. In recent years, several age-estimators 
known as epigenetic clocks have been developed, which 
are based on methylation states of specific CpGs, some 
of which become increasingly methylated, while others 
decreasingly so with age [1]. Age estimated by these 
clocks is referred to as epigenetic age or more precisely, 
DNA methylation age (DNAm age). The “ticking” of 
these clocks is  constituted  by  methylation changes that 

 

occur at specific CpGs of the genome. Significantly, the 
increased rate by which these specific methylation 
changes occur is associated with many age-related 
health conditions [1-9], indicating that epigenetic 
clocks, capture biological ageing (epigenetic ageing) at 
least to some extent. The numerous epigenetic clocks 
that have been independently developed [10-16] differ 
in accuracy, biological interpretation and applicability, 
whereby some epigenetic clocks are compatible only to 
some tissues such as blood. In this regard, the pan-tissue 
epigenetic clock [2] stands out because it is applicable 
to virtually all tissues of the body, with the exception of 
sperm. It estimates the same epigenetic age for different 
post-mortem tissues (except the cerebellum and female 
breast) from the same individual [2, 8]. Although the 
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ABSTRACT 
 
The advent of epigenetic clocks has prompted questions about the place of epigenetic ageing within the current 
understanding of ageing biology. It was hitherto unclear whether epigenetic ageing represents a distinct mode 
of ageing or a manifestation of a known characteristic of ageing. We report here that epigenetic ageing is not 
affected by replicative senescence, telomere length, somatic cell differentiation, cellular proliferation rate or 
frequency. It is instead retarded by rapamycin, the potent inhibitor of the mTOR complex which governs many 
pathways relating to cellular metabolism. Rapamycin however, is also an effective inhibitor of cellular 
senescence. Hence cellular metabolism underlies two independent arms of ageing – cellular senescence and 
epigenetic ageing. The demonstration that a compound that targets metabolism can slow epigenetic ageing 
provides a long-awaited point-of-entry into elucidating the molecular pathways that underpin the latter. Lastly, 
we report here an in vitro assay, validated in humans, that recapitulates human epigenetic ageing that can be 
used to investigate and identify potential interventions that can inhibit or retard it. 
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pan-tissue epigenetic clock performs extremely well 
with in vivo cell samples, its accuracy was not as good 
with fibroblasts and other in vitro cell samples. We 
addressed this recently by developing an even more 
accurate multi-tissue age estimator, which we refer to as 
skin & blood clock [3], which is applicable for in vivo 
as well as in vitro samples of human fibroblasts, 
keratinocytes, buccal cells, blood cells, saliva and 
endothelial cells. In vitro human cell culture systems 
offer many advantages including tight control of growth 
conditions, nutrients, cell proliferation rates, detailed 
morphological analyses and genetic manipulation, all of 
which are impractical or inappropriate in human cohort 
studies. Hence the availability of an in vivo epigenetic 
clock, such as the skin & blood clock that can also be 
used for in vitro experiments is an important and 
significant step towards uncovering the molecular 
mechanisms that underpin epigenetic ageing. 
 
Although the molecular mechanisms of epigenetic 
ageing remain largely uncharacterised, the cellular 
aspects however, have been explored to a greater albeit 
limited degree. The similar epigenetic ages detected 
amongst different tissue of the same body [2, 8] 
suggests that epigenetic age is not a measure of cellular 
proliferation since the rate and frequency of pro-
liferation differ greatly between different tissues such as 
blood, which is highly proliferative and heart cells, 
which are post-mitotic. It is intuitive to make a 
connection between epigenetic ageing and senescent 
cells, which increases in number with age and which 
mediates phenotypic ageing [8, 17]. This attractive link 
however, was discounted by previous reports which 
clearly excluded DNA damage, telomere attrition and 
cellular senescence as drivers of epigenetic aging [18].  
 
A way to further characterise epigenetic ageing is 
through the evaluation of validated anti-aging 
interventions on it. Such an intervention is the nutrient 
response pathway regulated by the mammalian target of 
rapamycin (mTOR) [19-21]. Although originally 
developed as an immunosuppressant, rapamycin has 
emerged as one of the most impressive life-extending 
compounds [22]. It has been repeatedly shown to extend 
the lives of different animal species including those of 
yeast [23], flies [24] and mice [25, 26]. The structure of 
rapamycin presents two major sites for potential 
interactions. The binding of one site to FKBP12 protein, 
allows its other site to bind and inhibit the mTOR 
kinase [27]. This kinase is part of a complex that 
promotes cell growth, proliferation and cell survival 
[28, 29]. This may be why mTOR activity is often 
elevated in cancer cells; the rationale behind its use as 
an anti-cancer drug  [30]. By inhibiting mTOR activity, 
rapamycin also recapitulates to some extent, the effect 
of calorie-restriction, which has also been repeatedly 

shown to prolong the lives of many different animal 
species [31]. As such, rapamycin is widely considered 
to be a promising anti-ageing intervention. Here we 
characterise epigenetic aging in primary human kera-
tinocytes from multiple donors by testing their 
sensitivities to rapamycin and we observed that it can 
indeed mitigate epigenetic ageing independently of 
cellular senescence, proliferation, differentiation and 
telomere elongation. 
 
RESULTS 
 
Opposing effects of Rapamycin and ROCK inhibitor 
on keratinocyte proliferation 
 
The availability of an epigenetic clock, such as the skin 
& blood clock, which is applicable to cultured cells, 
allows epigenetic ageing to be studied beyond the 
purely descriptive nature afforded by epidemiological 
analyses alone. Towards this end, we have established 
in vitro epigenetic ageing systems using primary human 
cells. One of this is based on primary keratinocytes that 
are derived from healthy human skins. As previously 
reported by others, we observed that the proliferation 
rate of these cells, which is defined as the number of 
population doublings per unit of time, can be sig-
nificantly altered by different compounds. Rapamycin, 
which is the primary focus of this investigation reduces 
cellular proliferation rate, while Y-27632, which 
inhibits Rho kinase (ROCK inhibitor) increases it, and a 
mixture of both modestly alleviates the repressive effect 
of rapamycin (Figure 1 and Table 1). The opposing 
effects of these compounds on keratinocyte proliferation 
present us with the opportunity to test whether cellular 
proliferation rate impacts epigenetic ageing while 
carrying out our primary aim of interrogating the effects 
of rapamycin on epigenetic ageing. 
 
Effects of Rapamycin and Y-27632 on epigenetic 
ageing 
 
Primary keratinocytes were isolated from human 
neonatal foreskins from three donors (Donor A, B and 
C) and were put in culture with standard media or media 
supplemented with rapamycin, Y-27632 or a cocktail of 
both of these compounds (methods). The cells were 
passaged continually and population doublings at each 
passage recorded. In time all cells, regardless of donor 
or treatment underwent replicative senescence, where 
they ceased to increase their numbers after at least 2 
weeks in culture with regular replenishment of media. 
Interestingly, two of the three donor cells treated with 
rapamycin underwent further proliferation before 
replicative senescence, indicating that their proliferative 
capacity was increased (Figure 1 and Table 2). This was 
also observed with Y-27632-treated cells. DNA 
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methylation profiles from a selection of passages of 
these cells were obtained and analysed with the skin & 
blood clock. It is clear from Figure 2 that while Y-
27632 did not impose any appreciable effect, rapamycin 
retarded epigenetic ageing of these cells.  This is evident  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

even when Y-27632 was present with rapamycin. These 
empirical observations demonstrate three fundamental 
features of epigenetic ageing. First, increased cellular 
proliferation rate, as instigated by Y-27632 (Figure 1 
and Table 1) does not affect epigenetic ageing. This  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Effects of rapamycin and Y-27632 on the proliferation of keratinocytes from Donors A, B and C that were 
used in the subsequent experiments. Cells from Donors A, B and C were cultured in the continued presence of the indicated 
compounds. Population doubling at every cell passage was ascertained until replicative senescence, and plotted against time. 
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echoes the conclusion derived from analyses of in vivo 
tissues, using the pan-tissue age estimator [2] and 
confirmed by Yang et al. [32] who specifically derived 
a  DNA methylation-based mitotic clock to be able to 
measure cellular proliferation, as epigenetic ageing 
clocks were not able to do so. Second, increased 
proliferative capacity (the number of times cells 
proliferate before replicative senescence) is not 
inextricably linked with retardation of epigenetic ageing 
since rapamycin and Y-27632 can both instigate the 
former, but only rapamycin-treated cells exhibited 
retardation of epi-genetic ageing. Third, epigenetic 
ageing is not a measure of replicative senescence since 
all rapamycin-treated cells eventually underwent 
replicative senescence and yet remained younger than 
the un-treated control cells; an observation that would 
not be made were epigenetic age a measure of senescent 
cells. 
 
Somatic cell differentiation does not drive epigenetic 
ageing 
 
Having ruled out cellular proliferation rate and 
proliferation capacity, as well as replicative senescence 
as drivers of epigenetic ageing, we considered the 
possible role of somatic cell differentiation in this 
regard. We observed that healthy primary keratinocytes 
in culture are heterogeneous in size and shape, but those 
that were growing in the presence of rapamycin were 
much more regular in shape and have considerably 
fewer enlarged cells (Figure 3A). Staining with 
antibodies against p16; a marker of senescent cells [33],  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and involucrin; a marker of early keratinocyte  differen-
tiation [34], showed that the enlarged cells were a 
mixture of senescent cells and differentiating cells, with 
some cells exhibiting both markers (Figure 3B). As our 
previous investigations [18] and observations above 
have uncoupled cellular senescence from epigenetic 
ageing, we questioned whether cellular differentiation 
could instead be the driver and the ability of rapamycin 
to reduce spontaneous differentiation may be the way 
by which it retards epigenetic ageing. 
 
In the experiments described thus far, primary 
keratinocytes were grown in a culture condition where 
the medium used (CnT-07) was designed with the 
expressed purpose of encouraging the proliferation of 
progenitor keratinocytes, while restricting their 
spontaneous differentiation; evidently not eliminating it 
altogether. To test the hypothesis that cellular differen-
tiation drives epigenetic ageing, we opted to encourage 
spontaneous keratinocyte differentiation to see if this 
would cause a rise in their epigenetic age. To this end, 
we cultured human primary keratinocytes in a different 
medium, as reported by Rheinwald and Green [35], and 
with mouse 3T3 cells, which serve as feeder cells. 
Crucially, this culture condition which we term RG not 
only supports the proliferation of keratinocytes, it also 
permitted spontaneous differentiation to a much greater 
extent than does CnT media.  Figure 4A shows a typical 
keratinocyte colony grown in RG condition. The colony 
is constituted by small proliferating cells as well as 
considerable number of large cells in different stages of 
differentiation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Population doubling times (in hours) of primary neonatal foreskin 
keratinocytes from three donors (A, B and C) cultured in various conditions. 
Culture condition  Donor A Donor B Donor C 

Control  38.1 38.2 41.6 
Rapamycin 42.8 46.5 66.0 
Y‐27632 30.1 31.6 30.3 
Rapamycin + 
Y‐27632 

39.6 44.5 49.1 

 

Table 2. Cumulative population doubling of keratinocyte cultures from 
three donors (A, B and C) at the point of replicative senescence. 
Culture condition  Donor A  Donor B  Donor C 

Control  44 43 35 
Rapamycin 71 57 34 
Y‐27632 54 66 49 
Rapamycin + 
Y‐27632 

69 54 54 

 



www.aging-us.com 3242 AGING 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Primary keratinocytes from the same human donor 
(Donor D) were cultured in these two different conditions 
described above (CnT and RG). DNA methylation 
profiles from four passages of cells, with known number 
of population doubling were obtained and their ages were 
estimated by the skin & blood clock. Figure 4B shows 
that encouraging  greater  keratinocyte  differentiation  by  
culturing them in RG condition did not increase 
epigenetic  ageing,  demonstrating   that   contrary  to  the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hypothesis, epigenetic ageing is not increased by greater 
keratinocyte differentiation and therefore the retardation 
of epigenetic ageing by rapamycin is not mediated 
through its suppression of spontaneous somatic cell 
differentiation. Collectively, these experiments have 
demonstrated that rapamycin is an effective retardant of 
epigenetic ageing, and that this activity is mediated 
independently of its effects on replicative senescence 
and somatic cell differentiation.  

Figure 2. Ageing dynamics of keratinocytes of (A) Donor A, (B) Donor B and (C) Donor C in 
the presence or absence of rapamycin and Y-27632. Methylation profiles of DNA from selected 
passages of each cell population were analysed and their ages estimated with the skin and blood 
clock. The colour allocated to each culture condition is preserved throughout for ease of comparison. 
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DISCUSSION 
 
It is widely assumed that extension of lifespan is a result 
of retardation of ageing. While there is no counter-
evidence to challenge this highly intuitive association, 
supporting empirical evidence to confirm it is not easy 
to acquire.  As a case in point, improvement in public 
health in the past century has extended life-span, but 
there is no directly measurable evidence that this was 
accompanied by a reduction in the rate of ageing. The 
same question could be asked of any intervention that 
purports to extend life. The scarcity of empirical 
evidence is due in part to the lack of a good measure of 
age that is not based on time. In this regard, the 
relatively recent development of epigenetic clocks is of 
great interest [1]. Despite their impressive performance, 
almost nothing is known about the molecular com-
ponents and pathways that underpin them. At the 
cellular level however, more is known, but from the 
perspective of what epigenetic ageing is not, rather than 
what it is. The bringing together of rapamycin and the 
skin & blood clock in the experiments  above  have shed  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
light on both of them. This has been significantly 
enhanced by comparison with the effects, or not, of the 
Rho kinase inhibitor, Y-27632. As a case in point, the 
retardation of epigenetic ageing by rapamycin could 
have been erroneously ascribed to the retardation of the 
rate of keratinocyte proliferation, were it not for the fact 
that Y-27632 augments proliferation rate but does not 
increase epigenetic ageing. This precludes a simplistic 
and incorrect correlation between the rate of cellular 
proliferation and epigenetic ageing. Recently Yang et al 
demonstrated that epigenetic ageing clock tracks 
cellular proliferation very poorly compared to the 
purpose-built DNA methylation-based mitotic clock 
[32].     
 
The impulse to turn our attention and ascribe retardation 
of epigenetic ageing to reduced senescent cells is 
understandable since rapamycin does indeed reduce the 
emergence of these cells in cultures, as consistent with 
previous characterisation and description [36-41]. This 
notion however is inconsistent with our previous 
finding that the epigenetic age of a cellular population is 

Figure 3. Rapamycin suppresses the emergence of senescent cells and spontaneous keratinocyte 
differentiation. (A) Phase contrast picture of primary keratinocytes cultured in CnT-07 medium in the absence (left 
panel) or presence (right panel) of rapamycin. (B) The large keratinocytes seen in (A) were stained positive with 
antibodies against p16 (in green), involucrin (red) or both, p16 and involucrin (yellow). Nuclei were stained with DAPI. 
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not dependent on the presence of senescent cells [18], 
and this conclusion is further confirmed here, where all 
the rapamycin-treated cells eventually senesced, without 
any rise in their epigenetic age. Therefore, while 
rapamycin’s inhibition of senescence is not in doubt, 
this is not the means by which it retards the progression 
of epigenetic age of keratinocytes. 
 
To test whether somatic cell differentiation drives 
epigenetic ageing, we refrained from using chemical 
means to induce terminal differentiation of keratinocytes 
as  this could  introduce  DNA  methylation  changes  that  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

might confound interpretation of the results. Instead, we 
exploited the propensity of keratinocytes to spon-
taneously differentiate, which they do significantly better 
in RG medium than in CnT-07 medium [42]. The 
hypothesis that differentiation drives epigenetic ageing 
was clearly refuted by these observations. While we still 
do not know what cellular feature is associated with 
epigenetic ageing, we can now remove somatic cell 
differentiation from the list of possibilities and place it 
with cellular senescence, proliferation and telomere 
length maintenance, which represent cellular features 
that are all not linked to epigenetic ageing.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Keratinocyte differentiation does not drive epigenetic ageing. (A) Phase contrast image of a primary keratinocyte 
colony grown in the presence of irradiated J2-3T3 feeder cells in RG medium. The keratinocyte colony is demarcated within the blue 
boarder and proliferating or differentiating keratinocytes are indicated. Cells external of the boarder are irradiated 3T3-J2 feeder 
cells. (B) Comparison of epigenetic aging between primary keratinocytes grown in CnT-07 media (CnT) and RG media (RG). 
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The ability of rapamycin to suppress the progression of 
epigenetic ageing is very encouraging for many reasons 
not least because it provides a valuable point-of-entry 
into molecular pathways that are potentially associated 
with it. Evidently, the target of rapamycin, the mTOR 
complex is of particular interest. It acts to promote 
many processes including, but not limited to protein 
synthesis, autophagy, lipid synthesis and glycolysis [29, 
43, 44]. The experiments above were not designed to 
identify the specific mTOR activity or activities that 
underpin epigenetic ageing, but they point to further 
experiments involving gene manipulation and drugs that 
could be brought to address this question. It is of great 
significance that we have previously identified through 
genome-wide association studies (GWAS), genetic 
variants near MLST8 coding region whose expression 
levels are positively correlated with epigenetic aging 
rates in human cerebellum [45]. MLST8 is a subunit of 
the mTORC1 and mTORC2 complexes, and its gene 
expression levels increase with chronological age in 
multiple brain regions [45]. It is pivotal for mTOR 
function as its deletion prevents the formation of 
mTORC1 and mTORC2 complexes [46]. The conver-
gence of the GWAS observation with the experimental 
system described here is a testament of the strength of 
the skin & blood clock in uncovering biological features 
that are consistent between the human level and cellular 
level. It lends weight to the emerging view that the 
mTOR pathway may be the underlying mechanism that 
supports epigenetic ageing.     
 
It is of interest to note that the experimental set-up 
above constitutes an in vitro ageing assay that is 
applicable not only to pure research but to screening 
and discovering other compounds and treatments that 
may mitigate or suppress epigenetic ageing. Most 
biological models of human diseases or conditions are 
derived from molecular, cellular or animal systems that 
rightly require rigorous validation in humans. In this 
regard, the epigenetic clock is distinct in being derived 
from, and validated at the human level. Hence in vitro 
experimental observations made with it carry a sig-
nificant level of relevance and can be readily compared 
with an already available collection of human data 
generated by the epigenetic clock – the MSLT8 
described above is an example in point. An added 
advantage of such a validated in vitro ageing system for 
human cells is the ability to test the efficacy of potential 
mitigators of ageing in a well-controlled manner, within 
a relatively short time, at a significantly low cost and 
with the ability to ascertain whether the effects are on 
life-span, ageing or both; all of which are not readily 
achieved with human cohort studies. 
 
We wish to acknowledge some limitations inherent in 
this investigation. First, we have not tested this activity 

of rapamycin on all cell types and we caution the reader 
that interventions against epigenetic aging can be cell-
type specific: for example, menopausal hormone thera-
py appears to slow epigenetic ageing of buccal cells 
(which are predominantly keratinocytes) but not that of 
blood [47]. Second, while we have used primary kera-
tinocytes derived from numerous donors, they were all 
from neonatal tissues. This is a necessary constrain at 
this early stage of the investigation in order to avoid 
confounding effects of age. It would be necessary to test 
the efficacy of rapamycin on adult donors across the 
entire age spectrum (0-100 years). Finally, it is 
important to note that it is inadvisable (actively 
discouraged) to directly extrapolate the studies here, 
especially in terms of the magnitude of age suppression, 
to potential effects of rapamycin on humans. 
 
In summary, the observations above represent the first 
biological connection between epigenetic ageing and 
rapamycin. These results for human cells add to the 
evidence that extension of life, at least by rapamycin, is 
indeed accompanied by retardation of ageing. These 
observations also suggest that the life-extending 
property of rapamycin may be a resultant of its multiple 
actions which include, but not necessarily limited to 
suppression of cellular senescence [36-38, 48] and 
epigenetic aging, with the possibility of augmentation of 
cellular proliferative potential.  
 
MATERIALS AND METHODS 
 
In vitro cultured cell procedure  
 
Isolation and culture of primary keratinocytes 
Primary human neonatal fibroblasts were isolated from 
circumcised foreskins. Informed consent was obtained 
prior to collection of human skin samples with approval 
from the Oxford Research Ethics Committee; reference 
10/H0605/1. The tissue was cut into small pieces and 
digested overnight at 4 °C with 0.5 mg/ml Liberase DH 
in CnT-07 keratinocyte medium (CellnTech) supple-
mented with penicillin/streptomycin (Sigma) and 
gentamycin/amphotericin (Life Tech). Following diges-
tion, the epidermis was peeled off from the tissue pieces 
and placed in 1 millilitre (ml) of trypsin-versene. After 
approximately 5 minutes of physical desegregation with 
forceps, 4 ml of soybean trypsin inhibitor was added to 
the cell suspension and transferred into a tube for 
centrifugation at 1,200 revolutions per minute for 5 
minutes. The cell pellet was resuspended in CnT-07 
media and seeded into fibronectin/collagen-coated 
plates. Cells were grown at 37 °C, with 5% CO2 in a 
humidified incubator. Growth medium was changed 
every other day. Upon confluence, cells were tryp-
sinised, counted and 100,000 were seeded into fresh 
fibronectin/collagen-coated plates. Population doubling 
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was calculate using the following formula: 
[Log(number of harvested cells)- log(number of seeded 
cells)] X 3.32. Rapamycin was used at 25nM and Y-
27632 at 1μM concentrations and were present in the 
media of treated cells for the entire duration of the 
experiments. RG medium was prepared by mixing three 
parts of F12 medium with one part DMEM, supplemen-
ted with 5% foetal calf serum, 0.4ug/ml hydrocortisone, 
8.4ng/ml cholera toxin, 5ug/ml insulin, 24ug/ml adenine 
and 10ng/ml epidermal growth factor. 3T3-J2 cells were 
cultured in DMEM supplemented with 10% foetal calf 
serum. To prepare feeder cells, 3T3-J2 cells were 
irradiated at 60Gy and seeded onto fibronectin/collagen-
coated plates in RG medium at least 6 hours but no 
more than 24 hours prior to seeding of keratinocytes. To 
harvest keratinocytes grown in RG media, feeder cells 
were first removed with squirting of the monolayer with 
trypsin-versene for approximately 3 minutes, after 
which the monolayer was rinsed with 7ml of Phosphate 
Buffered Saline (PBS) followed by incubation of the 
monolayer with 0.5ml of trypsin-versene. When all the 
keratinocytes have lifted off the plate, 1ml of soybean 
trypsin inhibitor was added to the cell suspension. Cells 
were counted and 100,000 were seeded into fresh plates 
as described above. 
 
Immunofluorescence 
Cells were grown on glass coverslips that were pre-
coated with fibronectin-collagen. When ready, the cells 
were fixed with formalin for 10 minutes, followed by 
three rinses with Phosphate Buffered Saline (PBS). Cell 
membranes were permeabilised with 0.5% TritonX-100 
for 15 minutes followed by three 5 minute rinses with 
PBS. Primary antibodies diluted in 2% foetal calf serum 
in PBS were added to the cells. After 1 hour the anti-
bodies were removed followed by three 5 minute 
rinsing, after which secondary antibodies (diluted in 2% 
foetal calf serum in PBS) was added. After 30minutes, 
the antibodies were removed and the cells were rinsed 
five times with 1ml PBS each time for five minutes 
followed by a final rinse in 1 ml distilled water before 
mounting on glass slide with Vectastain. Cells were 
imaged using a fluorescence microscope. Antibodies 
used were as follows: Anti-Involucrin (Abcam 
ab53112) diluted at 1:1000 and Anti-p16 (Bethyl 
laboratories A303-930A-T) diluted at 1:500.  
 
DNA methylation studies and epigenetic clock 
DNA was extracted from cells using the Zymo Quick 
DNA mini-prep plus kit (D4069) according to the 
manufacturer’s instructions and DNA methylation 
levels were measured on Illumina 850 EPIC arrays 
according to the manufacturer’s instructions. The 
Illumina BeadChips (EPIC or 450K) measures bisulfite-
conversion-based, single-CpG resolution DNAm levels 
at different CpG sites in the human genome. These data 

were generated by following the standard protocol of 
Illumina methylation assays, which quantifies 
methylation levels by the β value using the ratio of 
intensities between methylated and un-methylated 
alleles. Specifically, the β value is calculated from the 
intensity of the methylated (M corresponding to signal 
A) and un-methylated (U corresponding to signal B) 
alleles, as the ratio of fluorescent signals β = 
Max(M,0)/[Max(M,0)+ Max(U,0)+100]. Thus, β values 
range from 0 (completely un-methylated) to 1 (com-
pletely methylated). We used the "noob" normalization 
method, which is implemented in the "minfi" R package 
[49, 50]. The mathematical algorithm and available 
software underlying the skin & blood clock (based on 
391 CpGs) is presented in Horvath et al., 2018 [3].  
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