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ABSTRACT

Recently, competing endogenous RNAs (ceRNAs) hypothesis has gained a great interest in the study of molecular
biological mechanisms of cancer occurrence and progression. However, studies on leukemia are limited, and there
is still a lack of comprehensive analysis of IncRNA-miRNA-mRNA ceRNA regulatory network of AML based on high-
throughput sequencing and large-scale sample size. We obtained RNA-Seq data and compared the expression
profiles between 407 normal whole blood (GTEx) and 151 bone marrows of AML (TCGA). The similarity between
two sets of genes with trait in the network was analyzed by weighted correlation network analysis (WGCNA).
MiRcode, starBase, miRTarBase, miRDB and TargetScan was used to predict interactions between IncRNAs,
miRNAs and target mRNAs. At last, we identified 108 IncRNAs, 10 miRNAs and 8 mRNAs to construct a IncRNA-
miRNA-mRNA ceRNA network, which might act as prognostic biomarkers of AML. Among the network, a survival
model with 8 target mRNAs (HOXA9+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE1+ZNF711) was set up by univariate
and multivariate cox proportional hazard regression analysis, of which the AUC was 0.831, indicating its sensitivity
and specificity in AML prognostic prediction. CeRNA networks could provide further insight into the study on gene
regulation and AML prognosis.

INTRODUCTION

Acute myeloid leukemia (AML), characterized by
abnormal proliferation and differentiation of myeloid
progenitor cells, is an aggressive hematological malig-
nancy. Hematopoietic transformation leads to modification
in numbers of key transcriptional targets during myelo-
poiesis. Alterations occur in genes with important roles in
regulation of hematopoietic progenitors, contribute to
hematological pathogenesis, and could represent attractive
targets for AML treatment [1]. In recent years, numbers of
reports of the competing endogenous RNAs (ceRNAs)
network has emerged in the study of AML development
and therapy [2, 3].

The hypothesis of ceRNAs states the pool of long non-
coding RNAs (IncRNAs), pseudogenes, circular RNAs
(circRNAs) and messenger RNAs (mRNAs), compete
and bind to microRNAs (miRNAs), regulating their
activity [4, 5]. Among the ceRNA, IncRNAs have
attracted much attention, as accumulating evidence has
revealed that IncRNAs are involved in a wide range of
biological processes. MiRNAs regulate the expression
of the target genes by binding to the miRNA response
elements (MREs) on the target mRNAs. And, IncRNAs
act as molecular sponges to attract miRNAs, contri-
buting to various human diseases process [6]. At
present, the ceRNA hypothesis has been proven to be
implicated in the development of different kinds of
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tumors, such as liver, gastric, breast, colon, pancreatic
and bladder cancer.

In chronic myeloid leukemia (CML), IncRNA SNHGS5
promoted imatinib resistance via acting as a ceRNA
against miR-205-5p [7]. LncRNA UCA1l was also
identified as an important modulator of MDR1 to promote
imatinib resistance through completely binding miR-16
[8]. In AML, IncRNA NEAT1 modulated cell proliferation
and apoptosis by regulating miR-23a-3p/SMCI1A [9].
LncRNA UCAI1 contributed to the chemoresistance,
through activating glycolysis by the miR-125a/HK2
pathway [10]. In addition, aberrant upregulation of
CCAT1 was detected in French-American-British (FAB)
M4 and M5 subtypes of AML patients. CCAT1 repressed
monocytic differentiation and promoted cell growth by up-
regulating c-Myc via its ceRNA activity on miR-155 [11].
Sen et al. explored the major cross-talking edges of
ceRNA networks in CML and AML utilizing patient
sample data, which shed light on progression and
prognosis of leukemia [12]. Therefore, studies have
showed that the IncRNA-miRNA-mRNA ceRNA
regulatory network is implicated in the leukemia
development. However, studies on leukemia are limited,
and there is still a lack of comprehensive analysis of
IncRNAs, miRNAs and mRNAs related to AML based on
high-throughput sequencing and large-scale sample size.

In this study, we obtained RNA-Seq data and compared
the expression profiles between 151 bone marrows (BMs)
of AML (The Cancer Genome Atlas, TCGA) [13] and
407 normal whole blood (Genotype-Tissue Expression,
GTEx) [14, 15]. Following, mRNAs and IncRNAs
between the normal samples and AML patients were
applied to weighted correlation network analysis
(WGCNA) to enrich modules which were most related
with AML [16]. And, miRNA database was used to
predict target mRNA. Finally, we identified 108
IncRNAs, 10 miRNAs and 8 mRNAs to construct a
IncRNA-miRNA-mRNA ceRNA network. Among the
network, a survival model with 8 target mRNAs (HOXA9
+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE1+ZNF7
11) was set up for predicting AML prognosis.

RESULTS

Different gene expression from data between TCGA
and GTEx is analyzed

The expression levels of RNAs in 151 bone marrow
samples with AML and 407 normal whole blood
samples were explored. The clinicopathological and
molecular characteristics of AML patients were shown
in Table 1 and Table 2. All gene read counts were
normalized to the trimmed mean of M values (TMM)
by edgeR. We found that 2667 significantly up-

regulated mRNAs and 2456 down-regulated mRNAs
were identified. Figure 1A showed the distribution of
all the significantly different expressed mRNAs on the
two dimensions of -logl0 (false discovery rate, FDR)
and log2 (fold change, FC) through a volcano map.
The gene modules in the network are often enriched
with specific functions, which are of biological sig-
nificance. To test the biological function of the
identified genes, information from differentially
expressed genes was applied to Gene Ontology (GO)
analysis. Up-regulated mRNAs were enriched in
organelle fission, nuclear division and pattern
specification process in biological process (BP) (Figure
1B). Figure 1C showed the gene symbols and their
interactions in BP of up-regulated mRNAs. Moreover,
cell cycle, fanconi anemia pathway and homologous
recombination related genes were up-regulated while
hematopoietic cell lineage, natural killer cell mediated
cytotoxicity, necroptosis and NOD-like receptor
signaling pathways were downregulated by Kyoto
Encyclopedia of Genes and Genomes (KEGG)-Gene
Set Enrichment Analysis (GSEA) (Figure 1D).

WGCNA is applied to analyze gene modules

Gene modules were analyzed using the WGCNA among
the first 40% mRNAs by variance comparison. As shown
in Figure 2A, softpower 7 and module size cut-off 25
were chosen as the threshold to identify coexpressed gene
modules. 19 gene color modules were identified and the
heatmap plot of topological overlap matrix (TOM) was
shown in Figure 2B. Then, genes in the 19 color modules
were continuously used to analyze the module-trait (AML
and normal) coexpression similarity and adjacency. Cyan
module and turquoise module showed high relationship
with AML, which included 1659 mRNAs (Figure 2C).
These 1659 mRNAs were further used to GO-GSEA to
display the gene enrichment, gene symbols and their
interactions in BP, as shown in Figure 2D and 2E. The
genes were most related to embryo development,
reproductive process and reproduction. In addition, genes
were highly enriched in cell cycle, transcriptional mis-
regulation in cancer, ubiquitin mediated proteolysis and
RNA transport by KEGG analysis (Figure 2F).

LncRNAs modules are analyzed by WGCNA

Next, we continued to investigate coexpression network
of IncRNAs. LncRNA modules were analyzed by
WGCNA among the first 60% IncRNAs by variance
comparison. As shown in Figure 3A, softpower 6 was
chosen as the threshold and we identified 8 coexpressed
IncRNA modules. Correlation analysis showed that
turquoise module displayed highest relationship with
AML (Figure 3B and 3C; r=0.98). The numbers of
IncRNAs in every module were shown in Figure 3D. The
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Table 1. The clinicopathological characteristics of AML patients.

Alive(n=54) Dead(n=97) Total(n=151)
Gender
FEMALE 24(44.4%) 44(45.4%) 68(45.0%)
MALE 30(55.6%) 53(54.6%) 83 (55.0%)
Age
Mean(SD) 474(142) 58(15.9) 542(16.1)
Median[MIN, MAX] 50[21,74] 62[21,38] 56[21,88]
FAB classification
MO 5(9.3%) 10(10.3%) 15(9.9%)
M1 11(20.4%) 24(24.7%) 35(232%)
M2 14(25.9%) 24(24.7%) 38(252%)
M3 11(20.4%) 4(4.1%) 15(9.9%)
M4 8(14.8%) 21(21.6%) 29(19.2%)
M5 5(9.3%) 10(10.3%) 15(9.9%)
M6 2(2.1%) 2(1.3%)
M7 1(1.0%) 1(0.7%)
Not Classified 1(1.0%) 1(0.7%)
Table 2. The cytogenetic risk, immunophenotype and mutation of AML patients.
Cytogenetic Risk Group — no.(%)
Favorable 31 20.5
Intermediate 82 54.3
Poor 36 23.8
Missing data 2 1.3
Immunophenotype — no.(%)
CD33+ 124 82.1
CD34+ 99 65.6
CD117+ 134 88.7
Mutation — no.(%)
DNMT3A 18 12.6
FLT3 45 30.6
NPM1 33 22.0
RAS 8 53
IDH1 26 17.2

Abbreviations: DNMT3A data were available among 143 patients (data from Simple Nucleotide Variation-Masked Somatic
Mutation of TCGA). The data of FLT3, NPM1, RAS and IDH1 were available among 147, 150, 150 and 151 patients

respectively.

turquoise module contained the highest numbers (2662) of
IncRNAs. We then used miRcode to predict the miRNAs
sponged by 2662 IncRNAs to obtain IncRNAs-miRcode-
miRNAs relationship. Meanwhile, we used TCGA
miRNA-Seq to analyze the first 400 miRNA with highest
expression. Then the overlapped miRNAs between 400
miRNAs and IncRNAs-miRcode-miRNAs (155) were
selected to obtain IncRNAs-miRNAs (47). We further
explored and obtained 1710 predicted target mRNAs by
starBase, miRDB, miRTarBase and Targetscan dataset,

which might be bound by 47 miRNAs (Figure 3E).
Importantly, as shown in Figure 3F, we chose the
overlapped target mRNAs by analyzing the predicted
target mRNAs (1710), WGCNA-turquoise-cyan mRNAs
(1659), as well as the significant differentially up-
regulated mRNAs (2667) and down-regulated mRNAs
(2456) by edgeR. Lastly, we got 111 up-regulated
mRNAs and 9 down-regulated mRNAs (Supplementary
Table 1). The expression of these 120 genes in 558
samples was shown in Figure 3G by heatmap.
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Figure 1. Different gene expression from data between TCGA and GTEx is analyzed. (A) Volcano map of significantly different
expression of mMRNAs. Red spots represent up-regulated genes, and blue spots represent down-regulated genes. (B) Information from up-
regulated genes was applied to GO analysis in BP, CC and MF. (C) Gene symbols and interaction of the significantly up-regulated mRNAs in BP
were shown. (D) KEGG-GSEA was applied for signaling pathway analysis.
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Table 3. Multivariate cox proportional hazard regression analysis of 22 genes.

Univariate Multivariate

Gene

HR(95%CI) P HR P
INSR 0.603 (0.47-0.77) 0.0001 0.759 0.040 *
MYB 0.618 (0.48-0.79) 0.0002 0.625 0.022 *
HOXA9 1.112 (1.05-1.18) 0.0002 1.097 0.002 **
HOXA10 1.124 (1.05-1.2) 0.0004
KRIT1 0.455(0.29-0.71) 0.0004 0.678 0.131
RREBI1 0.364 (0.21-0.64) 0.0005
REV3L 0.559(0.39-0.81) 0.0018
RABS5B 0.543 (0.37-0.8) 0.0023
CLOCK 0.605 (0.43-0.85) 0.0038
MEIS1 1.087 (1.02-1.15) 0.0063
PTPN14 0.876 (0.8-0.96) 0.0069
CDK6 0.753 (0.61-0.93) 0.0102
MEF2C 1.230 (1.05-1.44) 0.0110
KIT 0.869 (0.78-0.97) 0.0118
SPRY2 0.888 (0.81-0.98) 0.0152 0.892 0.074
ZNF460 0.749 (0.59-0.95) 0.0168
ZNF711 0.930(0.87-0.99) 0.0229 0.940 0.100
WEE1 1.394 (1.04-1.87) 0.0280 1.757 0.002**
MEST 0.896 (0.81-0.99) 0.0344
RCN2 0.657(0.44-0.97) 0.0369
UBE2V1 0.591 (0.36-0.97) 0.0373 0.500 0.009%**
EREG 1.061 (1-1.12) 0.0454

Cox regression analysis is conducted to clarify the
patients’ survival

Next, a univariate cox proportional hazard regression
analysis was conducted to clarify the association of the
expression levels of 120 genes with overall survival
(OS). 22 genes were obtained by the threshold of p
value <0.05 and gene ID <15000 (NCBI). The above
mentioned 22 genes were brought into further multi-
variate cox proportional hazard regression analysis
(Table 3). We then set up a survival model for 3-year
OS with 8 genes: HOXA9+INSR+KRIT1+MYB+
SPRY2+UBE2VI+WEEI+ZNF711. We showed that
HOXA9, INSR, KRIT1, MYB, SPRY2, WEE1 and
ZNF711 were up-regulated while UBE2V1 was down-
regulated in AML patients (Figure 4A). The cor-
relationship of each gene in the 8-genes model was
shown in Figure 4B and 4C. The patients from TCGA
were classified into predicted low and high risk groups

according to the multivariate cox score result in Figure
4D. Furthermore, the expression heatmap of the 8 genes
in high risk or low risk group was shown in Figure 4E.
We then estimated the accuracy of the 8-genes signature
on predicting survival. Kaplan-Meier survival curves
showed that patients with predicted high risk (n=75) had
significantly shorter OS than those with low risk (n=76,
p=0.00, Figure 4F). Receiver operating characteristic
(ROC) analysis to compare the sensitivity and
specificity of the survival prediction of our models was
performed. TCGA dataset revealed that the area under
receiver operating characteristic curve (AUC) of the 8-
genes signature was 0.831. Previous reports showed that
gene mutation was correlated with the prognosis of
AML [17]. Thus, we divided the patients into groups
according to gene mutations and we found that the 8-
genes signature worked well in DNMT3A, FLT3 or
RAS mutation, as well as NPM1 wildtype patient
subgroups (Supplementary Figure 1).
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A IncRNA-miRNA-mRNA ceRNA network is
constructed

In the following step, we showed the relation between the
8 target genes and their corresponding miRNAs. We found
that miR-106a, miR-150, miR-155, miR-17, miR-182,
miR-195, miR-21, miR-424, miR-454 and miR-497 could
target the 8 mRNAs respectively. For example, miR-195
targeted INSR, MYB, WEE1 and UBE2V1, while miR-
106a, miR-155, miR-17, miR-195, miR-424 and miR-497

regulated WEE1 (Figure 5A). Since TCGA and GTEx also
provided the data of IncRNAs, the differentially expressed
IncRNAs were also analyzed by edgeR. 2412 up-regulated
IncRNAs and 788 down-regulated IncRNAs were
identified. Then these 3200 IncRNAs were overlapped
with the IncRNAs (174) predicted from 10 miRNAs, and
we got 108 IncRNAs (Figure 5B). At last, a IncRNA-
miRNA-mRNA ceRNA network was constructed by 108
IncRNAs, 10 miRNAs and 8 mRNAs, as shown in Figure
5C.

B IncRNA-Predi

Si-Down

Figure 5. A IncRNA-miRNA-mRNA ceRNA network is constructed. (A) The relationship between the 8 target genes and their corresponding
miRNA was shown. (B) Overlapped IncRNAs were analyzed by the predicted IncRNAs, significantly up-regulated IncRNAs and down-regulated
IncRNAs. (C) A IncRNA-miRNA-mRNA ceRNA network was constructed by 108 IncRNAs, 10 miRNAs and 8 mRNAs for AML prognosis.
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DISCUSSION

Important advance in ceRNA network research developed
rapidly, suggesting that the involvement of ceRNA
network in human diseases, especially tumors, could be
far more prevalent. The disruption of the equilibrium of
ceRNA network was critical for tumorigenesis. Thus,
understanding the intricate interplay among diverse
ceRNA network will lead to significant insight into gene
regulatory networks and have implications in cancer
treatment [2]. Here, we identified 108 IncRNAs, 10
miRNAs and 8 mRNAs to construct a IncRNA-miRNA-
mRNA ceRNA network by database. Given the fact there
was no large-scale of public RNA-Seq database or studies
with normal BMs, further validation of normal BMs by
large cohorts are needed.

In lung cancer, IncRNA BARDI1 9'L, transcribed from
an alternative promoter in intron 9 of the BARD1 gene
and shared part of the 3'UTR with the protein coding
BARDI1 mRNAs, counteracted the effect of miR-203
and miR-101, to promote tumor development [18].
LncRNA HOTAIR, functioned as a ceRNA, sponging
miR-331-3p to derepress HER2, which was correlated
with advanced gastric cancers [19]. SNHG7, whose
high expression was correlated with poor prognosis,
acted as a target of miR-34a to increase GALNT?7 level
and regulate PI3K/Akt/mTOR pathway in colorectal
cancer progression [20]. Thus, ceRNA network dis-
played essential role in cancer progress and provided
potent targets for cancer therapy.

Importantly, IncRNA-miRNA-mRNA ceRNA network
can be predicted for disease prognosis. For example, in
the study of RNA-Seq data of breast cancer from
TCGA, a IncRNA-miRNA-mRNA ceRNA network was
established, which comprised of 8 miRNAs, 48
IncRNAs, and 10 mRNAs. A multivariate cox regres-
sion analysis demonstrated that 4 of those IncRNAs
(ADAMTS9-AS1, LINCO00536, AL391421.1 and
LINCO00491) had significant prognostic value [21]. In
pancreatic cancer, 11 IncRNAs, A2M-AS1, DLEU2,
LINCO01133, LINCO00675, MIRI55HG, SLC25A25-
AS1, LINCO01857, LOC642852 (LINC00205), ITGB2-
AS1, TSPOAP1-AS1 and PSMB8-AS1 were identified
and validated on a pancreatic ductal adenocarcinoma
expression dataset. Moreover, A2M-AS1, LINCO01133,
LINC00205 and TSPOAP1-AS1 were identified as
prognostic biomarkers [22]. In glioblastoma multi-
forme, lung cancer, ovarian cancer and prostate cancer,
based on the networks, only a fraction of sponge
IncRNA-mRNA regulatory relationships were shared by
the four cancers, suggesting that different cancers had
varied ceRNA networks [23]. In leukemia, CML and
AML ceRNA networks based on shared miRNAs and
MREs were constructed. Results showed that 6

(CDKN1A, ABL1, BTN2A1, ENPP1, CNST and
SYNM) and 2 (CLOCK and SUZ12) sub-ceRNA
networks for CML and AML respectively [12].
However, the detail of IncRNA-miRNA-mRNA ceRNA
network did not be presented in AML with prognosis.

In the present study, the significantly different expression
levels of mRNAs in AML were calculated (Figure 1).
Importantly, 120 overlapped genes were obtained from
the predicted target mRNAs, WGCNA-turquoise-cyan
mRNAs, as well as the significantly different up-regulated
mRNAs and down-regulated mRNAs (Figure 2 and 3).
To further investigate the relationships of these 120 genes
with prognosis, univariate and multivariate cox
proportional hazard regression analysis were applied.
Then a survival model for 3-year OS with 8 genes:
HOXAO9+INSR+KRIT1+MYB+SPRY2+UBE2V1+WEE
1+ZNF711, was set up (Figure 4). Finally, a ceRNA
network was constructed by 108 IncRNAs, 10 miRNAs
and 8 mRNAs (Figure 5), which could act as biomarkers
based on the patients’ prognosis.

Among the 8 target genes, HOXA9, WEE1 and MYB had
been demonstrated to be essential in leukemogenesis and
disease process. HOXA9 had an important role in
hematopoietic stem cell expansion, of which aberrant
expression was a prominent feature of AML driven by
diverse oncogenes. With continued study in HOXAO9-
mediated AML, there was a wealth of opportunity for
developing novel therapeutics applicable for AML with
HOXA9 overexpression [24]. MiR-182 was reported to
regulate percentage of myeloid and erythroid cells in
CML [25]. Thus, the relationship between HOXA9 and
miR-182 needed to be investigated in AML as predicted.
WEE1 kinase was crucial in the G2-M cell-cycle
checkpoint arrest for DNA repair before mitotic entry.
WEE1 was expressed at high levels in various cancer
types including leukemia and was a validated target of the
miR-17-92 cluster in leukemia [26], giving support to our
prediction of miR-17-WEEI axis in AML. MLL fusion
proteins negatively regulated miR-150 production, and
forced expression of miR-150 inhibited leukemic cell
growth and delayed MLL-fusion-mediated
leukemogenesis likely by targeting MYB, suggesting a
miR-150-regulated MYB signaling underlying the
pathogenesis of leukemia [27]. MiR-21 was considered to
be an important miRNA, which was frequently elevated in
all types of myeloid leukemia, while IncRNA MEG3
inhibited proliferation of CML cells by sponging MiR-21
[28]. Primary FLT3-ITD" AML clinical samples had
significantly higher miR-155 levels compared with FLT3
wild-type AML samples. MiR-155 collaborated with
FLT3-ITD to promote myeloid cell expansion in vivo
[29]. Besides, miR-106, miR-195, miR-424, miR-454 and
miR-497 were all involved in the disease process of
leukemia or solid tumors [30-34]. Therefore, many
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previous studies had given great experimental support to
our prediction of the ceRNA network. Pivotally, Kaplan-
Meier survival curves of our predicted model showed that
patients with predicted high risk had significantly shorter
OS time than those with low risk. Although the studies of
IncRNAs in AML were limited, these predicted IncRNAs
provided novel pathways or networks to study the
function of 8-genes survival model in AML development
and treatment.

This study defines ceRNA network from multiple
dimensions, and provides possible prognostic markers
for predicting patient outcome, which will help to
increase our comprehension about ceRNA network-
mediated leukemogenesis. Via this study, a novel
perspective will be produced to make clear leukemia
mechanisms and suggest approaches to regulate ceRNA
networks for leukemia therapeutics.

METHODS
TCGA RNA sequence dataset

The RNA sequence data of 151 BMs with AML
(Hematopoietic and reticuloendothelial systems) were
retrieved from TCGA data repository
(https://portal.gdc.cancer.gov/), which were derived
from IlluminaHiSeq RNA-Seq platform. RNA-Seq data,
miRNA-Seq and clinical data such as patient survival
time and FAB classification information were obtained
from TCGA.

GTEx RNA sequence dataset

All data of normal tissue samples were obtained from
407 whole blood in GTEx V7 release version
(https://gtexportal.org/home/datasets). Complete desc-
ription of the donor genders, multiple ethnicity groups,
wide age range, the biospecimen procurement methods
and sample fixation were described in GTEx official
annotation.

Identification of differentially expressed genes

The ensemble ID of samples was converted by using
GENCODE Gene Set-11.2017 version. LncRNAs and
mRNAs ensemble ID that was not included in the
GENCODE database were excluded.

R package (edgeR) was used to identify significant
differentially expressed genes in AML and normal
samples. All q values use FDR to correct the
statistical significance of the multiple test. Absolute
log2FC 22 and FDR < 0.05 were considered
significant [35-37].

For the obtained differentially expressed mRNAs, we
generated volcano map using the ggplot2 packages in
the R platform.

Gene Ontology, Kyoto Encyclopedia of Genes and
Genomes, and Gene Set Enrichment Analysis

ClusterProfiler was used for GO, KEGG and GSEA
[38—40]. GO was used to describe gene functions along
three aspects: biological process (BP), cellular com-
ponent (CC) and molecular function (MF). The KEGG-
GSEA was searched for pathways at the significance
level set at p<0.05.

Weighted correlation network analysis

WGCNA was an algorithm used in gene coexpression
network identification by high-throughput expression
profiles mRNAs or IncRNAs with different traits.
Weighted coexpression relationship among all dataset
subjects in an adjacency matrix was assessed using the
pairwise Pearson correlation analysis. In this study,
WGCNA was used to analyze mRNAs and IncRNAs to
obtain the most related mRNAs or IncRNAs with AML
patients.

MiRNA regulatory network

MiRcode (http://www.mircode.org/) was used to
predict interactions between IncRNAs and miRNAs.
StarBase (http://starbase.sysu.edu.cn/), miRTarBase
(http://mirtarbase.mbc.nctu.edu.tw/), miRDB (http://
www.mirdb.org/) and TargetScan (http://www.
targetscan.org/) databases were used to explore target
mRNAs.

Cox regression analysis

A univariate cox proportional hazards regression
analysis was employed to identify the relationship
between the expression level of mRNAs and patient’s
OS. Thereafter, multivariate cox analysis was
employed to evaluate the contribution of the selected
genes. The analysis was conducted using the R
package of survival.
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SUPPLEMENTARY MATERIALS

Please browse Full Text version to see the data of Supplementary Table 1. Univariate cox proportional hazard
regression analysis of 120 genes.
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Supplementary Figure 1. Survival analysis of AML patients according to the gene mutation. Kaplan-Meier survival analysis of
the 8 genes was performed in patients with DNMT3A mutation (A), FIT3 mutation (B), NPM1 wildtype (C), RAS mutation (D) and IDH1
mutation (E).
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