WWww.aging-us.com AGING 2019, Vol. 11, No.11

Research Paper

Investigation of bidirectional longitudinal associations between
advanced epigenetic age and peripheral biomarkers of inflammation
and metabolic syndrome

Filomene G. Morrison’?, Mark W. Logue'?3, Rachel Guettal, Hannah Maniates!, Annjanette
Stone*, Steven A. Schichman?, Regina E. McGlinchey®>?, William P. Milberg>®, Mark W. Miller?,
Erika J. Wolf'2

!National Center for PTSD at VA Boston Healthcare System, Boston, MA 02130, USA
2Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
3Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118, USA

“Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little
Rock, AR 72205, USA

SGeriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders,
VA Boston Healthcare System, Boston, MA 02130, USA

5Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA

Correspondence to: Erika J. Wolf; email: Erika.Wolf@va.gov

Keywords: epigenetic age, DNA methylation age, longitudinal, C-reactive protein, metabolic syndrome
Received: March 12, 2019 Accepted: May 20, 2019 Published: June 7, 2019

Copyright: Morrison et al. This is an open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

ABSTRACT

Epigenetic age estimations based on DNA methylation (DNAm) can predict human chronological age with a high
level of accuracy. These DNAm age algorithms can also be used to index advanced cellular age, when estimated
DNAm age exceeds chronological age. Advanced DNAm age has been associated with several diseases and
metabolic and inflammatory pathology, but the causal direction of this association is unclear. The goal of this
study was to examine potential bidirectional associations between advanced epigenetic age and metabolic and
inflammatory markers over time in a longitudinal cohort of 179 veterans with a high prevalence of posttraumatic
stress disorder (PTSD) who were assessed over the course of two years. Analyses focused on two commonly
investigated metrics of advanced DNAm age derived from the Horvath (developed across multiple tissue types)
and Hannum (developed in whole blood) DNAm age algorithms. Results of cross-lagged panel models revealed
that advanced Hannum DNAm age at Time 1 (T1) was associated with increased (i.e., accounting for T1 levels)
metabolic syndrome (MetS) severity at Time 2 (T2; p = < 0.001). This association was specific to worsening lipid
panels and indicators of abdominal obesity (p = 0.001). In contrast, no baseline measures of inflammation or
metabolic pathology were associated with changes in advanced epigenetic age over time. No associations
emerged between advanced Horvath DNAm age and any of the examined biological parameters. Results suggest
that advanced epigenetic age, when measured using an algorithm developed in whole blood, may be a prognostic
marker of pathological metabolic processes. This carries implications for understanding pathways linking
advanced epigenetic age to morbidity and mortality.
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INTRODUCTION

Recent advances demonstrate that DNA methylation
(DNAm) levels at a subset of CpG loci in the genome can
be used to construct “DNAm age” scores that predict
chronological age with great accuracy [1-4]. In
particular, the Horvath and Hannum algorithms use
methylation status from 353 CpGs and 89 CpGs
(Hannum DNAm age derived from the “all data”
algorithm [1]), respectively, to determine DNAm
informed estimates of chronological age. These estimates
indicate advanced epigenetic age when DNAm age is
over-estimated relative to chronological age. The
Horvath algorithm is a multi-tissue predictor [2] while
the Hannum metric was developed in whole blood [1];
both show approximately equivalent associations with
chronological age and are highly correlated with each
other [5]. However, they seem to capture different
aspects of advanced epigenetic age given that metrics of
over or under-estimated DNAm age relative to
chronological age are only modestly correlated with each
other (» = 0.44 to » = 0.56) [5-7]. Using these metrics,
advanced DNAm age has been associated with increased
risk for premature death [8-12], early onset of age-related
disease [13, 14], changes in physical and cognitive
fitness [10], and cancer [12].

Several studies have also shown associations between
advanced DNAm age and factors that contribute to age-
related diseases, including metabolic pathology, such as
obesity [15], body mass index (BMI) [16, 17]; lipid
levels, and inflammation [18]. For example, in a cross-
sectional study, Irvin et al. [18] investigated epigenetic
age via both Horvath and Hannum algorithms and found
that advanced Horvath DNAm age was associated with
lower interleukin 2 receptor subunit alpha, increased
postprandial high-density lipoprotein (HDL), and
increased postprandial total cholesterol, whereas
advanced Hannum DNAm age was associated with lower
C-reactive protein (CRP), lower TNF-alpha, lower
fasting HDL, and increased postprandial triglycerides
(TG). These results suggest that advanced epigenetic age
may be associated with a more pathological response to
high-fat food consumption, which could contribute to the
link between advanced epigenetic age and premature
onset of cardiometabolic disorders. In another recent
study, Quach et al. [17] investigated associations
between lifestyle factors and multiple metrics of
advanced epigenetic age in blood in postmenopausal
women and in a second cohort of women and men. This
study found that advanced DNAm age was cross-
sectionally associated with reduced poultry intake and
increased BMI. In addition, a second metric of DNAm
age that incorporated immune markers into the algorithm
was cross-sectionally associated with dietary fish intake,
moderate alcohol consumption, education, BMI, blood

carotenoid levels, and CRP levels. These results suggest
that health-related behaviors are associated with markers
of advanced epigenetic age and that advanced epigenetic
age is associated with metabolic pathology. However,
the causal direction of these associations is unclear as the
majority of studies have focused on cross-sectional
designs, and it is not evident if advanced epigenetic age
gives rise to increasing metabolic pathology and
inflammation or if metabolic pathology and
inflammation contribute to advanced epigenetic age, or
both.

A small number of studies have investigated associations
between advanced DNAm age and biological processes
in longitudinal cohorts. This is important because cross-
sectional associations cannot provide information
concerning the correlates of accelerated DNAm age (i.e.,
the pace of epigenetic aging over time); rather, cross-
sectional studies can more accurately be thought of as
identifying correlates of advanced epigenetic age (i.e., a
snapshot of cellular age at one time point). Grant et al.
[16] examined a small cohort (N=43) of women and
found that epigenetic age acceleration over a 16-year
time period was positively associated with subsequent
BMI, and nominally associated with glucose levels,
however, examination in a larger cohort across a three-
year time period did not replicate these findings.
Longitudinal data spanning an average of 2.7 years was
available in a subset (#=239) of the Quach et al. [17]
cohort described in the preceding paragraph, and
analyses in that data suggested that changes in BMI over
time were associated with changes in metrics of
advanced DNAm age over time (e.g., correlated change),
however, baseline BMI did not predict change in
methylation age acceleration over time and the
longitudinal correlates of advanced baseline epigenetic
age were not investigated. Given this paucity of
longitudinal data and the conflicting nature of the reports
from longitudinal studies, the causal direction of
association between metabolic and inflammatory
pathology and epigenetic age remains unclear.

The primary goal of this study was to evaluate potential
bidirectional associations between advanced epigenetic
age and metabolic and inflammatory markers over time.
Furthermore, as we have previously shown that
symptoms of posttraumatic stress disorder (PTSD) are
cross-sectionally [5-7] and longitudinally [19] associated
with advanced DNAm age and that PTSD is associated
with metabolic [20-22] and inflammatory pathology
[23], we also included PTSD (which is highly prevalent
in our veteran sample) as a predictor in our models. This
allowed us to differentiate effects attributable to
advanced DNAm age from those associated with PTSD,
and provided new information regarding PTSD-related
changes in metabolic and inflammatory markers over
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time. We evaluated this in a longitudinal cohort of 179
military veterans in which we have previously shown that
psychiatric conditions and symptoms (including
posttraumatic stress disorder [PTSD] and alcohol-use
disorders) are associated with an increasing pace of
epigenetic age over time [19].

RESULTS
Cross-lagged models: Hannum DNAm age residuals

The MetS CFA fit the data well at both T1 and T2 with
all indicators loading significantly on their respective
latent variables at the p < 0.003 level (details available
from corresponding author). At both time points, the
Lipid/Obesity factor showed the strongest loading on the
higher-order MetS factor (Bs = 0.92 — 0.96) followed by
the Blood Pressure factor (Bs = 0.48 — 0.53), and the
Blood Sugars factor (s = 0.23 — 0.48). The cross-lagged
panel analysis examining bidirectional longitudinal
associations between DNAm age residuals and MetS
severity revealed significant autoregressive effects
between each variable and itself over time as well as a
significant cross-lagged association. Advanced DNAmM
age at T1 predicted increases in MetS severity at T2
(standardized B = 0.17, p < 0.001), accounting for
baseline levels of MetS (Figure 1A). T1 MetS and T1
DNAm age residuals were correlated with each other (r
=0.20, p = 0.006). Notably, the competing cross-lagged
path (from T1 MetS to T2 DNAm age residuals) was not
significant (standardized B = -0.05, p = 0.32). We
examined potential confounds of the T1 DNAm age to
worsening T2 MetS association and found that this
association remained significant when additionally
controlling for demographic factors (race, education),
psychiatric factors (cigarette use, major depression,
alcohol abuse/dependence), medication use (including
psychotropic and metabolic-related medications), and
time between assessments (see Supplementary
Materials). Of note, in these follow-up analyses, major
depressive diagnoses at T1 also predicted increasing
MetS severity over time (standardized B = 0.28, p =
0.035). To further ensure no influence of additional PCs
on the reported results, we also ran secondary analyses
investigating the potential effects of all 20 estimated
ancestry PCs (see Supplementary Materials).

There were no other cross-lagged effects between any of
the other peripheral biomarkers and Hannum DNAm age
residuals (see Figure S1), however associations between
T1 DNAm age residuals and T2 CRP (standardized § =
0.13, p=10.053) and T2 WBCs (standardized f = 0.10, p
= 0.068) just missed the threshold for statistical
significance (Figure S1 A, B). When we re-analyzed
these associations in follow-up models using DNAm age
residuals that did not account for estimated WBCs (i.e.,

only age, sex, and the first two PCs were regressed out of
DNAm age estimates), we found that results for
measured WBCs were unchanged, but results for CRP
were nominally significant, though they missed our a
priori corrected p-value threshold (B = 0.15, p = 0.031;
Figure S4). A significant association between T1 PTSD
symptom severity and worsening CD4/CD8 t-cell
profiles (e.g., controlling for baseline CD4/CDS)
emerged in that model (standardized p=-0.11, p =0.013;
Figure S1C).

Given that the MetS factor scores were derived from a
higher-order CFA, we wondered if the association
between advanced DNAm age at T1 and increasing MetS
at T2 would be evident in each of the lower-order factors
that comprise MetS. Therefore, we conducted additional
cross-lagged models in which each of the lower-order
metabolic factor scores (Lipids/Obesity, Blood Sugars,
Blood Pressure) was included in the model in place of
MetS, again residualized for age and sex. Results
revealed associations only between T1 DNAm age
residuals and increasing Lipid/Obesity factor scores at
T2 (standardized p = 0.16, p = 0.001), controlling for the
significant baseline effects of the Lipid/Obesity factor
scores (standardized = 0.75, p < 0.001; Figure 1B; see
Supplementary materials for results pertaining to
individual indicators of this latent variable). A TI
correlation between advanced DNAm age and
Lipid/Obesity factor scores was also evident (» = 0.21, p
= 0.003). No cross-lagged effects emerged with the
Blood Pressure or Blood Sugar factor scores (Figure S2).

Cross-lagged models: Horvath DNAm age residuals

We found no significant cross-lagged associations
between Horvath DNAm age residuals and any of the
peripheral biomarkers evaluated (Figure S3). There were
also no significant concurrent correlations between
Horvath DNAm age residuals and any of the peripheral
biomarkers (Figure S3). As in the model with the
Hannum DNAm age residuals, PTSD severity was
associated with worsening CD4/CD8 T-cell profiles
(Figure S3).

DISCUSSION

This is the first study to examine potential bidirectional
longitudinal associations (over the course of two years)
between two measures of epigenetic age acceleration
(Hannum and Horvath) and changes in peripheral
metabolic and inflammatory markers in a well-assessed
longitudinal cohort. A goal of the study was to
understand the biological consequences of advanced
epigenetic age, given that accelerated cellular age has
previously demonstrated associations with a variety of
diseases and early death [5, 8, 10-12]. We evaluated
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Figure 1. The Figure shows the results of cross-lagged models examining longitudinal associations between Hannum DNAm age residuals

and metabolic syndrome (MetS) severity factor scores (A), and Lipids/Obesity factor scores (B).

Measures of each marker were

residualized on age and sex (applicable to A and B). (***p < 0.005, **p < 0.01, **p < 0.05).

potential bidirectional longitudinal associations, given
untested assumptions in prior cross-sectional studies that
inflammatory and metabolic parameters are causative in
accelerating epigenetic age. We found that advanced
Hannum DNAm age was strongly associated with
increased MetS-related pathology approximately two
years later (Figure 1A). Follow-up investigations
revealed that the observed effect on MetS was specific to
increased (more pathological) scores on the
Lipid/Obesity factor (defined by BMI, waist/hip ratio,
HDL, and TG (Figure 1B), suggesting that advanced
DNAm age may lead to, or serve as a useful prognostic
indicator of, increasing obesity and pathological lipid
profiles, a risk factor for many age-related diseases [20,
24]. In contrast, there was no evidence for the reverse
direction of association (competing cross-lagged path);
neither MetS nor Lipid/Obesity factor scores at T1, nor
any other biological parameters investigated, predicted
changes in DNAm age residuals at T2.

Our findings are consistent with recent studies that have
observed significant  cross-sectional associations
between DNAm age acceleration and BMI [15-17] lipid
levels [18] and acute increases in triglyceride levels
following a high-fat food challenge [18]. Quach et al.
[17] also found that increases in BMI across a two-year
period (but not initial BMI) were associated with
increased epigenetic age at the follow-up two-year time
point. Our results are, to our knowledge, the first to
demonstrate that advanced epigenetic age at a baseline
assessment is associated with increasing lipid and
obesity-related parameters over time. The longitudinal
nature of our study allowed us to untangle the temporal
relationship between these parameters and lends support
for a unidirectional association. These findings add to a
broader literature demonstrating that MetS is an
important clinical correlate of accelerated aging; MetS

has also been associated with other markers of
accelerated aging, including shorter telomere length [25]
though in those studies, obesity predicted decreased
telomere length over time, and this was found to be
driven by insulin resistance [26]. Our results highlight
MetS, and specifically Lipid/Obesity-related factors, as:
1) a critical correlate of advanced cellular aging that may
be indicative of a state of biochemical stress fueling
negative health outcomes [27] and 2) a potential target
for therapeutic intervention to reverse cellular aging.
Notably, dietary and caloric restriction has been strongly
associated with lifespan extension, changes in DNAm,
and is one of the most robust predictors of slowed aging
[28-30]. Further, our results emphasize that advanced
DNAm age at baseline predicts worsening MetS
pathology over and above the effects of baseline MetS,
highlighting the potential clinical utility of DNAm age
estimates.

Our results also raised the possibility that advanced
DNAm age may be associated with increased
inflammatory responses, given that associations between
advanced Hannum DNAm age and increasing CRP and
WBC levels just missed the threshold for statistical
significance (Figure S1 A, B). These results were
essentially unchanged regardless of whether estimated
WBC types were accounted for in the DNAm age
residuals and highlight the need for additional research to
further examine this association. An association between
advanced epigenetic age and CRP would be consistent
with existing research; for example, Quach et al. [17]
found that advanced DNAm age was associated with
greater CRP levels in a cross-sectional study, and Irvin et
al. [18] found that advanced Hannum DNAm age was
associated with elevated levels of the inflammatory
markers CRP, IL2sRa, TNFa, and MCP1. Higher WBC
and CRP levels have been previously associated with
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age-related chronic diseases [31]. Aging has been
associated with decreased innate immune system
responding (i.e., immunosenescence [32-35]), as
evidenced by poorer vaccine responses and loss of
acquired immunity to pathogens, and with increased
chronic inflammation, as evidenced by elevated pro-
inflammatory markers. “Inflamm-aging” refers to this
chronic and heightened pro-inflammatory profile [36,
37]. Increased epigenetic age has consistently been
linked to adverse health outcomes, and additional
research in larger samples is needed to further evaluate if
advanced DNAm age leads to reduced integrity of the
immune and inflammatory systems (and not the reverse
direction).

We also found that PTSD symptom severity at T1
predicted decreasing (i.e., worsening) CD4/CD8 T-cell
ratios at T2 (Figure S1C, S3C). The ratio of CD4 to CDS§
T-cells has been consistently used as a marker of
dysregulated immune function and immunosenescence.
A low ratio of CD4 to CD8 T-cells is indicative of
decreases in naive T-cells and increases in differentiated
memory T-cells, which indicate a senescent T-cell
phenotype [38, 39]. CD4/CDS8 T-cell ratios have been
associated with increased morbidity and mortality [40],
and low CD4/CDS8 T-cell ratios have been shown to
predict mortality over a four-year time period [39]. Our
findings are consistent with a cross-sectional study
demonstrating significantly reduced CD4/CDS ratios in
individuals with PTSD [41], and further suggest that
PTSD contributes to pathological changes in basic
immune parameters over time. Trauma exposure and
PTSD have been associated with increased risk for
autoimmune and inflammatory diseases [41, 42], and our
results raise the possibility that alterations in CD4/CDS8
ratio are a factor linking PTSD with these health
conditions.

We observed significant longitudinal associations
between advanced epigenetic age and peripheral
biomarkers as measured via the Hannum algorithm;
however, there were no effects of Horvath DNAm age
residuals on biological parameters at T2. A primary
difference between the two DNAm age algorithms is that
the Hannum metric was developed in whole blood
whereas the Horvath metric was designed to be a multi-
tissue age predictor. The Hannum metric may be more
sensitive to pathological changes in blood, potentially
accounting for the variability in results across the two
metrics. Other studies, including those from our group,
have observed differing results across DNAm age
predictors and have previously suggested that they may
each be sensitive to different underlying biological
processes [3, 19].

Results carry implications for those seeking to identify
subtle yet important shifts in an individual’s underlying

biology that may be a marker for increasing metabolic
pathology over time. More specifically, the findings
reported here were observed while including MetS at T1
in the model, suggesting that advanced DNAm age can
provide unique and additional information regarding
individuals at risk for worsening MetS pathology,
beyond what is evident from baseline MetS parameters.
Our longitudinal results also raise the possibility that the
Hannum DNAm age index will be wvaluable for
monitoring meaningful biological outcomes and tracking
responses to interventions across time. Early detection
and identification of individuals with high risk could
allow for earlier targeted interventions focused on
metabolic health.

Study limitations

Results from this study should be interpreted with several
limitations in mind. First, the study cohort was composed
primarily of white male veterans. Future work is needed
to establish that these results generalize to populations
with more diverse compositions of ancestry and sex.
Second, other biological variables that were not
interrogated here may also play an important role. For
example, unmeasured third variables (e.g. physical
health diagnoses) could account for the predictive effects
of either DNAm age residuals or PTSD on biological
changes at T2. That said, this was a young adult cohort
and individuals with neurological diseases and diabetes
were excluded, which attenuates this concern. It remains
to be seen if DNAm age residuals at T1 play a causative
or etiological role in predicting negative health outcomes
at T2, or if they are simply a marker for an underlying
biological process. Third, though longitudinal, our study
only covered a two-year period; our results should be
interpreted with this in mind, as some associations of
epigenetic aging and biological markers may not be
detectable across this relatively short period. However,
the unreliability in DNAm age estimates would be
expected to be more impactful when examining change
in DNAm age estimates over a relatively short compared
to long period of time. Furthermore, DNAm age for
individuals in the sample increased, on average,
approximately one year for every chronological year,
providing greater confidence that changes in DNAm age
and DNAm age residuals over time are meaningful and
not a function of error. Finally, our study was limited to
analysis of DNAm and biological parameters in blood,
we did not investigate tissue-specific cellular aging in the
brain or other organs.

CONCLUSION

This study provides a longitudinal investigation of the
bidirectional association between cellular age as assessed
by DNAm age, and key peripheral metabolic and
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inflammatory biomarkers. We found that DNAm age is
associated with increasing MetS two years later, and
furthermore, that this association is specific to increasing
markers of Lipids/Obesity (Figure 1). Importantly, the
longitudinal study design allowed us to show that while
advanced epigenetic age predicts increasing metabolic
pathology, there were no significant contributions of
metabolic (or inflammatory) pathology to accelerated
epigenetic age over time. These results could inform
targeted lifestyle interventions that make use of DNAm
age as a way to identify individuals at risk for worsening
metabolic pathology and track their responses to health-
promoting interventions. Altogether, our results suggest
that metabolic and inflammatory processes may be key
biological mechanisms by which advanced epigenetic
age is associated with age-related health outcomes and
problems.

METHODS
Participants

Participants were previously described in Wolf et al.
[19]. They were U.S. military veterans (post-9/11
conflicts) who enrolled in the Translational Research
Center for TBI and Stress Disorders (TRACTS)
longitudinal study at the US Department of Veterans
Affairs (VA) Rehabilitation Research and Development
Traumatic Brain Injury Center of Excellence at VA
Boston Healthcare System. The TRACTS longitudinal
study has been described in detail previously [43]. In
brief, it is an ongoing research protocol evaluating
traumatic stress, traumatic brain injury (TBI), health, and
neural and cognitive factors among returning veterans.
Exclusion criteria for the study included the following:
history of seizures unrelated to head injury, severe or
unstable psychological diagnosis preventing participa-
tion, acute psychotic or bipolar disorder, neurological
illness, acute homicidal and/or suicidal ideation with
intent to act, and cognitive disorder due to general
medical condition not related to TBI. As in Wolf et al.
[19], the cohort investigated in this study was based on a
subset of 179 TRACTS participants with DNAm data
from two time points, Time 1 (T1) and Time 2 (T2), at
the time of the second data freeze when DNA was
processed. The clinical and sociodemographic
characteristics of the study cohort are shown in Table 1.

Procedure

Participants provided written informed consent, and then
completed a comprehensive interview and self-report-
based psychological assessment. All diagnostic
interviews were administered by doctoral-level
psychology professionals. A team of psychologists
reviewed each interview to determine consensus ratings

of presence or absence of psychological diagnoses. For
each time point (T1 and T2), blood was drawn for DNA
extraction and metabolic assays. T1 and T2 assessments
were conducted an average of 1.89 years apart (Table 1).
The study was approved by the VA Boston Healthcare
System IRB. All T1 and T2 samples were processed
using the [llumina EPIC chip.

Measures

The Clinician Administered PTSD Scale for DSM-IV
(CAPS, [44]), a well-validated diagnostic interview, was
used to assess PTSD status and symptom severity. The
CAPS was administered by doctoral-level psychologists.
Additional information regarding the administration and
rating of interviews is provided in the Supplementary
Materials. In this manuscript, our analyses focused on a
dimensional index of current PTSD symptom severity at
T1. Additional measures that were included in supple-
mentary analyses are described in the Supplementary
Materials.

DNA extraction, genotyping, and ancestry-based
principal components analysis

Full details on genotyping protocols, techniques, and
data cleaning procedures are detailed in Logue et al. [45],
and are also summarized here. DNA extraction was
performed using a Qiagen AutoPure instrument with
Qiagen reagents. DNA concentrations were normalized
using the Quant-iT™ PicoGreen dsDNA fluorescent
assay (Invitrogen). To determine DNA quality and quan-
tity, TagMan RNase P Detection assay was used
(Applied Biosystems Assay, Life Technologies, Carls-
bad, CA) with fluorescence detection on a 7900 Fast Real
Time PCR Instrument (Applied Biosystems, Life Tech-
nologies, Carlsbad, CA). DNA was then whole-genome
amplified, fragmented, precipitated, resuspended, and
was then hybridized on [llumina HumanOmni2.5-8 bead-
chips for 20 hours at 48°C according to manufacturer’s
instructions (Illumina, San Diego, CA), followed by a
single-base extension and multi-layered staining process.
Beadchips were imaged using the [llumina iScan System,
and results were processed with the Illumina Ge-
nomeStudio v2011.1 software and the Genotyping v1.9.4
module. Genotypes were then used to develop principal
components (PCs) to model ancestry: PCs were deter-
mined using 100,000 randomly chosen common (minor
allele frequency >5%) single nucleotide polymorphisms
(SNPs) in PLINK version 1.9 [46]; PCs were used as an-
cestry covariates in subsequent analyses.

Methylation

DNA was hybridized to the Infinium MethylationEPIC
BeadChip per manufacturer’s instructions. T1 and T2
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Table 1. Demographic and clinical characteristics of the longitudinal sample.

Variable T1 Mean (SD) T2 Mean (SD) % (n)
Chronological age (years) 33.31 (9.25) 35.20 (9.19)

Years between T1 and T2 1.89 (0.65)

Sex (male) 88.3 (158)
Race

White 74.9 (134)
Black 9.6 (17)
Latino/a 12.4 (22)
Asian 1.7 (3)
American Indian 0.6 (1)
Education

High school grad or less 31.8(57)
Some college or completed college 68.2 (122)
Beyond college 0.0 (0)
Cigarette smoking (Yes) 42.0 (23.5)
Current PTSD symptom severity 47.40 (28.42) 45.57 (30.30)

Measured White blood cell counts 6.27 (1.63) 6.50 (1.78)

Estimated CD4/CD8 2.50 (1.83) 2.90 (2.76)

CRP? 0.219(0.416) 0.317 (0.549)

Metabolic syndrome (MetS)P -0.025(0.049) 0.000023 (0.047)

Blood pressure (mm Hg)*

Systolic 116.4 (12.4) 121.85(12.2)

Diastolic 76.55 (9.55) 79.13 (9.75)

Lipid/obesity?

HDL Cholesterol (mg/dL) 47.7 (11.1) 48.4 (12.8)

Waist-to-hip ratio 0.881 (0.074) 0.890 (0.078)

BMIf 28.0 (4.31) 28.8 (4.60)

Triglycerides (mg/dL)® 138.0 (129.5) 138.6 (95.7)

Blood sugar®

Fasting glucose (mg/dL)’ 85.6 (11.7) 92.4(9.54)

Aic (% of hemoglobin) 5.36 (0.273) 5.42 (0.326)

Note. SD = standard deviation; T1 = time point 1; T2 = time point 2; PTSD = posttraumatic stress disorder; CRP = C-reactive
protein; HDL = high-density lipoprotein; BMI = body mass index. Missing observations: Current PTSD symptom severity
(T2) (n=1), measured WBC counts (T1) (n=3), measured WBC counts (T2) (n=5), estimated CD4/CD8 (T1) (n=6), estimated
C4/CD8 (T2) (n=6), CRP (T1) (n=5), CRP (T2) (n=6), MetS (T1) (n=1), MetS (T2) (n=2), systolic blood pressure (T2) (n=5),
diastolic blood pressure (T2) (n=5), HDL cholesterol (T1) (n=7), HDL cholesterol (T2) (n=7), waist-to-hip ratio (T1) (n=6),
waist-to-hip ratio (T2) (n=6), BMI (T2) (n=7), triglycerides (T1) (n=5), triglycerides (T2) (n=4), fasting glucose (T1) (n=4),
fasting glucose (T2) (n=6), A1c (T1) (n=2).2CRP values reported above are raw values. logCRP values were used in reported
analyses. "Metabolic syndrome (MetS) severity was determined using confirmatory factor analysis (CFA) of raw laboratory
values and physiologic measurements. The lower order factors represented: (a) blood pressure (indicated by two diastolic
and systolic readings), (b) lipids/obesity (indicated by waist-to-hip ratio, body mass index [BMI], high density lipoprotein,
and triglycerides); and (c) blood sugars (indicated by fasting glucose and glycated hemoglobin Alc levels). These three
factors were specified to load together (i.e., to be accounted by) a higher-order factor representing overall MetS severity.
°Blood pressure, Ylipids, and "sugar are reported above as raw values. Indicators of these variables were used for the MetS
CFA.
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samples were run together on the same chip, balancing
the presence of cases and controls across chips and chip
positions in order to reduce systematic bias. We utilized
the processing pipeline established by the Psychiatric
Genetics Consortium (PGC) PTSD Epigenetics
workgroup [47] for the Illumina HumanMethylation450
BeadChip updated to apply to the EPIC chip. We used
GenomeStudio to derive individual-level background-
corrected probe data and idat files, and cleaned DNAm
data using the CpGassoc package [48] and the ChAMP
package [49] in R (R Development Core Team, 2008).
Individual methylation values that did not meet a
detection p < 0.001 were set to missing, and probes with
>10% missing values were dropped. One chip had 7 out
of 8 failed samples based on a criteria of >5% missing
values; data for this chip were discarded and samples
were rerun on a new chip. Subsequently no samples had
>5% missing data, and all were retained for analysis. No
samples had intensity <50% of the experiment-wide
mean or with intensity <2,000 arbitrary units (AU). Cross
hybridizing probes [50] and “underperforming” EPIC
probes according to Illumina Product Quality
Notification PQN0223 04/19/2017 were also excluded. R
v. 3.1.0 was used for data cleaning.

Epigenetic age calculation

For Hannum DNAm age estimates, data were normalized
using the beta mixture quantile dilation (BMIQ) method
in the wateRmelon R package [51] as previously
described [5, 7, 19] and batch correction was performed
using an empirical Bayes method implemented in
COMBAT [52]. Horvath DNAm age estimates were
determined following an R script based on 335 probes
assessed on the EPIC chip that passed quality control
(QC). We have previously shown that DNAm age
estimate correlations with chronological age are similar
across the EPIC and 450K chips [7, 53]. The association
between Hannum DNAm age estimates derived from the
EPIC chip in this cohort and chronological age was r =
0.88 (p <0.001) and r = 0.85 (p < 0.001) at T1 and T2,
respectively, and for the Horvath algorithm, the
association was r = 0.90 (p < 0.001) and r = 0.91 (p <
0.001) at T1 and T2, respectively [7]. Hannum and
Horvath DNAm age estimates were correlated with each
other at both time points (T1, »=0.88, p <0.001; T2, r=
0.87, p < 0.001), as were Hannum and Horvath DNAm
age residuals (» = 0.44, p < 0.001, for both T1 and T2)
[19].

MetS (lipid/obesity, blood pressure, sugar levels)

Height, weight, and waist-to-hip ratio were measured
along with two standing and two seated blood pressure
readings (taken at 1-minute intervals). Blood samples
were obtained, processed immediately upon collection,

and shipped the same day to a commercial laboratory
(Quest Diagnostics, Cambridge, MA). This laboratory
assessed HDL cholesterol, triglycerides, and glucose
(fasting glucose and glycated hemoglobin Alc levels).
These metabolic measures were included in an overall
index of Metabolic Syndrome (MetS) severity using
confirmatory factor analysis (CFA) as described in the
analysis section below. Total white blood cell counts
were also measured via complete blood chemistry.

Estimated white blood cell count and CD4/CD8 ratio

Specific white blood cell (WBC) type proportions at T1
and T2 were not available from the Quest metrics and
instead were estimated based on the methylation data. In
brief, CD4 and CDS8 T-cells, natural killer cells, b-cells,
and monocytes were estimated based on the methylation
data using the R minifi package [54] according to
procedures described by Houseman et al. [55], Jaffe and
Irizarry [56], and Fortin et al. [57]. CD4 and CDS8 T-cell
estimates were used to calculate a ratio of CD4 to CD8
T-cells, which has previously been shown to be an index
of immunosenescence (see also: Holbrook et al. [58]).

C-reactive protein (CRP) serum levels

Serum CRP was assessed in blood samples as previously
described in Miller et al. [23]. Serum CRP levels were
measured in a commercial laboratory (Quest
Diagnostics, Cambridge, MA) using a nephelometric
assay with CRP monoclonal antibodies (analytical
sensitivity = 0.10 mg/dL). Laboratory assay procedures
were standardized to CRP reference preparations
(International Federation of Clinical Chemistry and
Laboratory Medicine/Bureau Communautaire de
Reference/College of American Pathologists). The
sample mean at T1 was 0.19 mg/dl (SD=1.13; range:
0.09-0.69 mg/dl), and at T2 was 0.29 mg/dl (SD=0.37,
range: 0.09-2.34 mg/dl). Data were log-transformed for
analysis (referred to as “CRP log” due to the distribution
of raw CRP values being positively-skewed as in Miller
et al. [23]. Two outliers were removed (one from each
time point) as their CRP estimates were 12 SDs above
the mean.

Data analysis

An overall index of MetS severity was calculated using
CFA of raw laboratory values and physiologic
measurements as previously described in Wolf et al. [20].
CFA is ideal for measuring the common metabolic
factors that underlie the covariation of various biological
assays because it models their relationship to a shared
latent (or common) variable. Factor scores on the latent
variable can then be generated to reflect the severity of
the metabolic pathology for each subject. This approach
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Figure 2. The Figure shows the cross-lagged model used to examine longitudinal associations between DNAm age residuals (Hannum
or Horvath) and biological variables of interest (MetS, lab-based WBC measurement, CRP levels, CD4/CD8 T-cell ratio). Measures of
each biological marker were residualized on age and sex for all analyses. DNAm age residuals at each time point were generated by
regressing raw DNAm age estimates on age, sex, estimated WBCs (CD4-T, CD8-T, NK, b cells, monocytes) from the respective time point,
and the top two ancestry PCs and saving the unstandardized residuals from this equation. For analyses predicting estimated CD4/CD8
ratios, DNAm age residuals were calculated by regressing raw DNAm age estimates on age, sex, and the top two ancestry PCs (but not

on estimated WBCs as these were the focus of this analysis).

avoids concerns about arbitrary diagnostic thresholds for
metabolic disease and instead models the severity and
comorbidity of the metabolic components dimensionally.
As in Wolfetal. [20], we developed a higher-order CFA.
The lower order factors represented: (a) Blood Pressure
(indicated by two seated diastolic and systolic readings);
(b) Lipid/Obesity (indicated by waist-to-hip ratio, body
mass index (BMI), high density lipoprotein, and
triglycerides); and (c) Blood Sugars (indicated by fasting
glucose and glycated hemoglobin Alc levels). The above
factors were specified to load together (i.e., to be
accounted by) on a higher-order factor representing
overall MetS severity. The model was tested separately
in the T1 and T2 data and factor scores on all latent
variables were saved for subsequent analyses. Of note,
insulin was not available for the majority (94%) of the
subjects at T1, as this test was added later to the protocol,
and thus insulin levels were not included in the MetS
CFA.

We conducted cross-lagged panel models (a form of path
analysis) to simultaneously evaluate bidirectional
longitudinal associations between advanced epigenetic
age and each peripheral biomarker of interest (Figure 2).
In this analysis, each variable measured at T2 is regressed
on the same variable at T1 (i.e., the auto-regressive
effect) and on the competing variable at T1 (i.e., the
cross-lagged effect). For example, in the model
examining MetS, T2 advanced epigenetic age (as defined
by DNAm age residuals) was regressed on T1 DNAm
age residuals and on T1 MetS factor scores while T2
MetS was simultaneously regressed on T1 MetS and T1
DNAm age residuals. The association between T1 PTSD

severity and both T2 variables was also modeled. The
concurrent correlations among the predictors at T1 and
the residual correlation among dependent variables at T2
were also evaluated. A significant cross-lagged path
would indicate, for example, that T1 Mets predicts
changes in T2 advanced epigenetic age, controlling for
T1 advanced epigenetic age. DNAm age residuals at each
time point were generated by regressing raw DNAm age
estimates on age, sex, estimated WBCs (CD4-T, CDS-T,
NK, b cells, monocytes) from the respective time point,
and the top two ancestry PCs and saving the
unstandardized residuals from this equation. For analyses
predicting estimated CD4/CDS8 ratios, DNAm age
residuals were calculated by regressing raw DNAm age
estimates on age, sex, and the top two ancestry PCs (but
not on estimated WBCs as these were the focus of this
analysis). In a similar set of analyses, we also
investigated measured WBCs and CRP phenotypes using
Horvath and Hannum DNAm age residuals that did not
take into account the estimated WBCs from DNAm age
(regressing raw Horvath and Hannum DNAm estimates
on age, sex, and the top two ancestry PCs, but not on
estimated WBCs).

For the sake of simplicity and consistency with the
DNAm age residuals, each peripheral biomarker was also
first regressed on age and sex and the residuals from this
equation saved for use in the path models. This approach
controls for variance in these demographic covariates by
removing them from both the T1 and T2 variables.

This cross-lagged panel approach was followed, in
separate analyses, for each peripheral biomarker of
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interest (MetS, lab-based WBC totals, CRP, and
estimated CD4/CD8 ratios) and for both the Horvath and
Hannum algorithms. For analyses with significant cross-
lagged associations, we conducted follow-up regressions
which included a series of potential confounding
variables to determine if they accounted for the
significant  cross-lagged  associations, including
demographic variables (education and self-reported
racial/ethnic  minority), psychological variables
(cigarette use, current major depressive diagnosis,
current alcohol abuse or dependence diagnosis),
medication variables (current use of anti-hypertensives,
cholesterol lowering medication, diabetes medication,
antidepressants, anti-epileptics, sedatives/hypnotics, and
pain medications; see Supplementary Materials), and
time between assessments.

As each analysis was executed twice (once for Horvath
and once for Hannum-based indices), we took into
account the correlation between the two advanced
epigenetic age metrics by adjusting for 1.8 tests and set
the p-value threshold for statistical significance for
individual parameters of interest (e.g., the association
between DNAm age residuals and the T2 biological
variable controlling for the same biological variable at
T1) in a model at p = 0.028. This p-value correction was
derived from a permutation testing procedure as
described in Miller et al. [23] and Wolf et al. [6]; based
on the » = 0.49 Horvarth/Hannum DNAm age residual
association in the larger cross-sectional dataset, the
adjusted p-value was found to represent 1.8 tests. There
was no multiple testing correction across analyses for
different biological variables of interest as these analyses
investigate distinct hypotheses across different families
of tests. All analyses were conducted with Mplus 8.0
statistical modeling software [59]. As all models were
just identified (i.e., fully saturated such that df = 0),
model fit will always be perfect and thus is not reported
here.
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SUPPLEMENTARY MATERIAL
Supplementary Methods
Supplementary Measures

The CAPS was administered by doctoral-level
psychologists. The CAPS assesses the frequency and
intensity of 17 symptoms of PTSD, based on DSM-1V
criteria. The DSM-IV algorithm (e.g., requiring
endorsement of at least 1 reexperiencing symptom, 3
avoidance and numbing symptoms, and 2 hyperarousal
symptoms) was used to determine PTSD diagnoses;
symptoms were considered present if item frequency >
1 and intensity > 2. The Structured Clinical Interview
for DSM-IV Disorders [1] was administered to assess
for other psychiatric diagnoses, including major
depression and alcohol abuse/dependence. All
diagnoses were reviewed by an expert team that
included at least two psychologists to arrive at a
consensus diagnosis. A dichotomous index of current
cigarette use was obtained from the Fagerstrom Test for
Nicotine Dependence (FTND) [2]. Self-reported level
of education was categorized into the following groups
for analysis: “high school graduation or less,” “some
college or completed college,” or “beyond college” for
use as covariates.

Supplementary Results

Given the significant association between advanced
Hannum epigenetic age at T1 and increasing metabolic
syndrome severity factor scores at T2, we conducted
several additional analyses to examine potential
confounds of this association. We retained the same
model as that depicted in Figure 1 and added in the
following additional covariates of T2 metabolic
syndrome severity factor scores in four analyses:
potential ~ demographic  confounds (self-reported
racial/ethnic minority and education), psychiatric
conditions (cigarette use, major depression, alcohol
abuse/dependence), medication use (anti-hypertensives,
cholesterol-lowering medication, diabetes medication,
antidepressants, sedatives/hypnotics, anti-epileptics,
and pain-related medications), and time between
assessments.

Only one significant association between any of these
variables and T2 metabolic syndrome severity factor
scores emerged: major depressive disorder diagnoses at
T1 were associated with worsening metabolic syndrome
severity scores at T2, (standardized = 0.28, p = 0.035),
though Hannum DNAm age residuals were also still
significantly associated with worsening metabolic
syndrome scores in the same model (standardized B =
0.18, p < 0.001). In all other covariate models, the

covariates were not associated with T2 MetS while
Hannum DNAm age residuals remained significant (p <
0.001).

Across all analyses we have included the top two
principal components (PCs) to control for ancestry
within this cohort of white, non-Hispanic subjects. To
further ensure no influence of additional PCs on the
reported results, we first investigated all 20 PCs
predicting Hannum DNAm age at T1 and T2,
controlling for age, sex, and WBCs, and found that none
of the PCs were significantly associated with Hannum
DNAm age at either time point. We also retained the
same model as that depicted in Figure 1A using a new
Hannum DNAm age residual which was residualized
for all 20 PCs, age, sex, and WBCs for both time points.
Using this new Hannum DNAm age residual variable,
we re-analyzed the cross-lagged model and found no
change in the reported results; Hannum DNAm age at
T1 (residualized for all 20 PCs, age, sex, and WBCs)
significantly predicted MetS at T2 (controlling for MetS
at T1; standardized p = 0.15, p = 0.001).

To further investigate individual indicators of the lower-
order Lipid/Obesity latent variable, we residualized
each of the individual indicators (BMI, waist-to-hip
ratio [WHR], HDL cholesterol, and triglycerides) at
each time point on age and sex and re-analyzed the
cross-lagged models (retaining the same model as that
depicted in Figure 1A). Hannum DNAm age residuals
at Time 1 predicted increasing BMI (B = 0.14, p =
0.003), WHR (B =0.19, p <0.001), and triglycerides (
=0.13, p=0.026), and there was a trending, though non-
significant, effect for HDL (f = -0.10, p = 0.073) in the
expected direction. Thus, results suggested that multiple
obesity-related  metabolic = components  showed
worsening profiles over time as a function of advanced
DNAm age at time 1.
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Supplementary Figures
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Figure S1. The Figure shows the results of cross-lagged model models examining longitudinal associations between Hannum
DNAm age residuals and measured white blood cells (A), C-reactive protein (B), and CD4/CD8 t- cell ratios (C). Results for
metabolic syndrome severity factor scores can be found in Figure 1. Measures of metabolic and inflammatory markers were
residualized on age and sex (applicable to all figures). ***p < 0.005, **p < 0.01, **p < 0.05.
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Figure S2. The Figure shows the results of cross-lagged models examining longitudinal associations between Hannum DNAm
age residuals and Blood Pressure (A) and Blood Sugar (B) factor scores. Results for the Lipids/Obesity factor scores can be found
in Figure 1. ***p < 0.005, **p < 0.01, **p < 0.05.
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Figure S3. The Figure shows the results of cross-lagged model models examining longitudinal associations between Hannum DNAm
age residuals and measured white blood cells (A), C-reactive protein (B), CD4/CDS8 t- cell ratios (C), and metabolic syndrome severity
factor scores (D). ***p < 0.005, **p < 0.01, **p < 0.05.

.05

T1

Hannum
DNAm Age
Residuals!

3 PTSD
™ Severity
CRP (log)

T2

J6**+

Hannum
DNAm Age
Residuals!

-.06

CRP (log)

Figure S4. The Figure shows the results of cross-lagged model models examining longitudinal associations between Hannum DNAm
age residuals and C-reactive protein. lHannum DNAm age residuals for each time point were generated by regressing raw DNAm age
estimates on age, sex, and the top two ancestry PCs and saving the unstandardized residuals from this equation (estimated WBCs were
not included). ***p <0.005, **p < 0.01, **p < 0.05.
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