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ABSTRACT 
 
The human pan-tissue epigenetic clock is widely used for estimating age across the entire lifespan, but it does 
not lend itself well to estimating gestational age (GA) based on placental DNAm methylation (DNAm) data. We 
replicate previous findings demonstrating a strong correlation between GA and genome-wide DNAm changes. 
Using substantially more DNAm arrays (n=1,102 in the training set) than a previous study, we present three 
new placental epigenetic clocks: 1) a robust placental clock (RPC) which is unaffected by common pregnancy 
complications (e.g., gestational diabetes, preeclampsia), 2) a control placental clock (CPC) constructed using 
placental samples from pregnancies without known placental pathology, and 3) a refined RPC for 
uncomplicated term pregnancies. These placental clocks are highly accurate estimators of GA based on 
placental tissue; e.g., predicted GA based on RPC is highly correlated with actual GA (r>0.95 in test data, median 
error less than one week). We show that epigenetic clocks derived from cord blood or other tissues do not 
accurately estimate GA in placental samples. While fundamentally different from Horvath’s pan-tissue epigenetic 
clock, placental clocks closely track fetal age during development and may have interesting applications.  
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INTRODUCTION 
 
Gestational age (GA) of the fetus is used to forecast the 
date of delivery, optimize prenatal care, and monitor the 
growth and development of the fetus relative to other 
pregnancies. Short GA at delivery impacts neonatal 
morbidity and mortality [1-3], as well as brain 
development [4-6]. Thus, accurate classification of the 
fetus may help predict neonatal risk. In this regard, the 
World Health Organization defined extremely preterm 
(<28 weeks of gestation), very preterm (28-32 weeks of 
gestation) and moderate or late preterm (32-37 weeks of 
gestation) birth to reflect the newborn’s developmental 
stage [7].  
 
Traditional methods for estimating GA include early 
obstetric ultrasound measures or calculations based on 
the last menstrual period (LMP) [8]. The early ultrasound 
method estimates GA based on the visible fetal size (e.g., 
crown-rump length during the first trimester [9-11] or 
biparietal diameter after the second trimester [12-15]). 
The LMP method calculates GA based on the time 
elapsed since the known first day of the LMP. The early 
ultrasound method is widely accepted as the gold 
standard due to its higher accuracy [16] but is not 
routinely available in low and middle-income countries. 
More accurate classification of GA at birth may help 
predict neonatal risk for adverse outcomes and measure 
GA more accurately than through the assessment of 
physical and neurological features of the newborn, 
especially when early ultrasound measures are lacking, 
or the infant is growth-restricted but not preterm. 
 
Here, we aim to develop a new molecular estimator of 
GA based on placental tissue samples that is more 
accurate than the previous clock [17]. Earlier studies 
have revealed profound molecular changes in placental 
chorionic villi, the placental structures that project into 
maternal decidua and are bathed in maternal blood, 
during gestation [18-22]. We focus on placental DNA 
methylation (DNAm) data, because prior work 
demonstrated that accurate estimators of chronological 
age (epigenetic clocks) can be developed based on 
DNAm levels from a variety of tissues [23], that one 
can estimate GA based on DNAm data derived from 
umbilical cord blood samples [24, 25], and most 
pertinently that one can estimate GA based on placental 
methylation data (Mayne et al. 2017) [17]. Our study 
provides more accurate placenta-based GA estimators 
(i.e., placental epigenetic clocks) than those developed 
previously, because we use a substantially larger sample 
for our training set (more than six times larger than that 
of Mayne et al. 2017). We aim to develop three 
different placental epigenetic clocks: 1) a “robust 
placental clock” (RPC) that is largely unaffected by 
pregnancy conditions (e.g., preeclampsia, gestational 

diabetes, and trisomy), 2) a “control placental clock” 
(CPC), tailor-made for measuring GA in normal 
pregnancies, and 3) a “refined RPC”, trained for 
uncomplicated term (GA>36) pregnancies. For the 
RPC, we purposely included placental samples from a 
variety of pregnancy complications in the training data 
(e.g., hypertension or diabetes) as well as congenital 
abnormalities (e.g., trisomy 13, 18 and 21). 
 
RESULTS 
 
Placental DNA methylation data 
 
We downloaded publicly available DNAm data from 
Gene Expression Omnibus (GEO, https://www.ncbi. 
nlm.nih.gov/geo/; Table 1) that assessed DNAm levels in 
placental tissues. Eighteen datasets used the Illumina 
HumanMethylation 450K BeadChip (450K) platform 
and one used the more recent Illumina Methylation 
EPIC BeadChip (EPIC) array. Our analyses focused on 
the 441,870 autosomal CpG probes that are shared 
between the two Illumina platforms such that the 
resulting GA estimators (RPC and CPC) would be 
applicable to data from both platforms. 
 
Robust placental clock (RPC) 
 
An overview of our analysis is presented in Figure 1. 
We developed the RPC using several placental DNAm 
datasets (training n=1,102, Table 1, Figure 1). We 
regressed GA (dependent variable) on DNAm levels of 
CpG sites using a penalized regression model (elastic 
net regression [26]). The elastic net regression model 
automatically selected 558 CpG sites for the RPC model 
(Supplementary File 1). Predicted GA is a weighted 
average of DNAm levels at these 558 CpGs, where the 
weights are the regression coefficients. 
 
Figure 2 shows the results of a comparison between the 
RPC and the placental clock from Mayne et al. (2017) 
in independent test data (test n=187, Table 1). The 
predictive accuracy of the placental clocks was 
quantified using the median absolute error (MAE, 
defined as the median absolute deviation between 
predicted GA and observed GA), and the degree of the 
linear association between predicted GA and observed 
GA was measured using the Pearson correlation 
coefficient (r). According to both measures, the RPC 
(MAE=0.96 weeks; 95% confidence interval (CI) [0.88, 
1.19], r=0.99; 95% CI [0.98, 0.99]) outperformed 
Mayne’s placental clock (MAE=2.63 weeks; 95% CI 
[2.17, 3.01], r=0.94; 95% CI [0.92, 0.96]). Note that 
Mayne’s placental clock underestimated GA in two data 
sets: GSE73375 (green dots) and GSE75196 (blue dots), 
and overestimated GA in two other data sets: 
GSE66210 (black) and GSE70453 (red). 
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Table 1. Description of the publicly available placental DNAm data. 
GEO 
Number 

Placental tissue type GEO submitter N Platform Normalization 
method 

Probe exclusion 
criteria11 

GA 
range 
(weeks) 

Training data       
 GSE71678 Fetal side, near the cord 

insertion 
Marsit et al. 343 450K2 funNorm4 SC, CH, SNP, DP 30-42 

 GSE75248 Fetal side  Marsit et al. 334 450K2 funNorm4 SC, CH, SNP, DP 37-42 
 GSE71719 Fetal side, near the cord 

insertion 
Marsit et al. 44 450K2 noob5 SC, CH, SNP, DP 37-41 

 RL1 Fetal side, chorionic villi  - 121 450K2 funNorm4 SC 14-42 
 GSE100197 Fetal side, chorionic villi  Robinson et al. 16 450K2 SWAN6 SC, SNP, DP, MB 26-39 
 GSE108567 Fetal side, chorionic villi  Robinson et al. 7 450K2 SWAN6 SC, CH, SNP, DP, BR 29-38 
 GSE69502 Fetal side, chorionic villi  Robinson et al. 7 450K2 SWAN6 SC, CH, SNP, DP, BR 16-24 
 GSE74738 Fetal side, chorionic villi  Robinson et al. 8 450K2 SWAN6 SC, CH, SNP, DP, BR 6-13 
 GSE115508 Fetal side, chorionic villi  Robinson et al. 44 EPIC3 funNorm4 SC, CH, SNP, DP, BR 28-37 
 GSE44667 Fetal side, chorionic villi  Robinson et al. 27 450K2 SWAN6 SC, SNP, DP, MB 25-37 
 GSE49343 Fetal side, chorionic villi  Robinson et al. 13 450K2 SWAN6 SC, SNP, DP 5-39 
 GSE42409 Fetal side, chorionic villi  Robinson et al. 4 450K2 SWAN6 SC, SNP, DP 26-33 
 GSE120250 Fetal side, near the cord 

insertion 
Weksberg et al. 86 450K2 GenomeStudioNorm7 SC, SNP, DP 35-41 

 GSE98224 Fetal side  Cox et al. 48 450K2 SWAN6 SC, SNP, DP, MB 27-41 
Test data        
  GSE70453 Maternal side, decidua 

near the cord  
Binder et al. 82 450K2 BMIQ8 SC, CR, SNP 35-42 

  GSE73375 Fetal side Fry et al. 36 450K2 quanNorm9 DP 22-41 
  GSE75196 Fetal side Chiu et al. 24 450K2 dasen10 SC, SNP, DP, BR 32-40 
  GSE76641 Fetal side, chorionic villi Slieker et al. 4 450K2 funNorm4 SC, SNP, DP, BR 9-22 
  GSE66210 Fetal side, chorionic villi Bojesen et al.  41 450K2 GenomeStudioNorm7 - 11-15 
1 Placental DNAm data generated from the Robinson laboratory at the University of British Columbia (Vancouver, BC, Canada); 
 The data for which is publicly available as part of the GEO data sets listed below. 
2 450K: Illumina Infinium HumanMethylation450 BeadChip 
3 EPIC: Infinium MethylationEPIC BeadChip 
4 funNorm: Functional normalization [27]  
5 noob: Normal-exponential out-of-band [29] 
6 SWAN: Subset-quantile within array normalization [28] 
7 GenomeStudioNorm: Genome Studio normalization  
  (details available in the GenomeStudio Methylation Module v1.8 User Guide, https://www.illumina.com/content/dam/illumina-
support/documents/documentation/software_documentation/genomestudio/genomestudio-2011-1/genomestudio-methylation-v1-8-
user-guide-11319130-b.pdf) 
8 BMIQ: Beta-mixture quantile dilation [30] 
9 quanNorm: Quantile normalization [31, 32] 
10 dasen: Data-driven separate normalization [33] 
11 Probe exclusion criteria 
 SC: Sex chromosome, CH: Cross-hybridizing, SNP: Single nucleotide polymorphism, DP: Detection P-value < 0.01, MB: Missing beta > 5%, 
and BR: Bead replicates < 3. 
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The advantage of the RPC is particularly pronounced in 
later gestation, e.g., when restricting the analysis to 
placental samples with GA > 25 weeks, the RPC 
(MAE=0.89 [0.73, 1.02], r=0.82 [0.76, 0.87]) greatly 
outperforms Mayne's clock (MAE=2.25 [1.9, 2.63], 
r=0.61 [0.05,0.71], Figure 2C and 2D).  
 
As expected by its construction, the RPC predicted GA 
accurately even in placental samples with adverse 
pregnancy conditions such as preeclampsia, gestational 
diabetes, and trisomy 13, 18 or 21 (Supplementary 
Figure S1). However, Mayne’s placental clock 
underestimated GA in placental samples from pre-
eclampsia cases and overestimated GA in cases of 
gestational diabetes and trisomy (Supplementary Figure 
S1). In case of trisomy, the RPC (MAE=2.26 [1.63, 
2.88], r=0.12 [-0.25, 0.46]) was more accurate than 
Mayne’s clock (MAE=3.99 [3.35, 5.4], r=0.02 [-0.34, 
0.39]) but still showed a slight overestimation. The 
RPC's GA estimate was not associated with fetal sex 
(Supplementary Figure S2). We could not evaluate the 
effect of ethnicity because our test data did not include 
ethnic information except for GSE73375 (n=36, 
Supplementary Figure S3).  
 
The training data used in the construction of the RPC 
employed several different normalization methods:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
functional normalization (funNorm, [27]), subset-
quantiles within arrays (SWAN, [28]) and the normal- 
exponential out-of-band (noob, [29]) approach. This 
lack of uniformity in normalization methods in the 
training data has a statistical advantage: it makes it 
more likely that the RPC will be robust with respect to 
different normalization methods. In support of this, we 
found that the RPC validated in test data that were 
normalized using various methods: beta-mixture 
quantile dilation (BMIQ, [30]), quantile normalization 
(quanNorm, [31, 32]), data-driven separate normaliza-
tion (dasen, [33]) as detailed in Table 1.  
 
Control placental clock (CPC) 
 
We trained the CPC on placental samples (training 
n=963, Table 1) that had been designated as "control" 
samples. Hence, placental samples with higher GA were 
probably from relatively normal pregnancies. However, 
placental samples with lower GA might contain samples 
that would be considered abnormal (i.e., premature 
rupture of membranes, spontaneous premature labor) 
but minimal placental pathology relative to pre-
eclampsia cases. The analysis flow was identical as for 
the RPC, except for the composition of the training and 
test sets (Supplementary Figure S4). The elastic net 
regression model used for the CPC automatically 
selected 546 CpG sites (Supplementary File 1).  

Figure 1. Flow chart of the RPC development. 
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To assess whether adverse pregnancy conditions 
influence the epigenetic GA estimate, we applied the 
CPC to placental samples associated with chromosomal 
abnormalities (confined placental mosaicism, diandric 
triploidy, trisomy 13, 16, 18 and 21), neural tube defects 
(anencephaly and spinal bifida), intrauterine growth 
restriction, maternal complications (gestational diabetes 
and preeclampsia), and chorioamnionitis (test, n=326). 
Interestingly, the CPC accurately predicted the GA of 
fetuses with the above-mentioned conditions 
(MAE=1.02, r=0.98, Figure 3A) even though the CPC 
was constructed using unaffected control samples only.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To test whether pregnancy conditions are associated 
with faster/slower epigenetic aging, we used epigenetic 
measures of GA acceleration that were formally defined 
as raw residuals resulting from regressing the DNAm 
GA estimate on observed GA. By definition, this 
residual-based measure of GA acceleration is not 
correlated with true GA (r=0). GA acceleration did not 
significantly deviate from zero for any pregnancy 
conditions mentioned above (Figure 3B), but we 
acknowledge the small sample sizes for diandric 
triploidy (n=3) and trisomy 16 (n=3). When restricting 
the analysis to placental samples from the first 

Figure 2. Gestational age estimation of the RPC and Mayne et al. (2017)’s placental clock. (A) Scatter plot between 
observed GA and DNAm-predicted GA (RPC) across all trimesters. (B) Scatter plot between observed GA and DNAm-predicted GA 
(Mayne et al. 2017) across all trimesters. (C) Zoom-in on panel A restricting GA > 25 weeks. (D) Zoom-in on panel B restricting GA 
> 25 weeks. 
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trimester (weeks 1 to 12), we found the CPC’s GA 
estimates to be slightly inaccurate, which was due to 
the small training set (only n=7 fetuses with GA < 12 
weeks).  
 
Refined robust placental clock for uncomplicated 
term pregnancies 
 
For researchers who are particularly interested in 
uncomplicated term pregnancies, we also developed a 
second version of the RPC using placental samples from 
"uncomplicated term” pregnancies  (defined as GA > 36  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

weeks) without any known pregnancy condition.  
 
Toward this end, we selected "uncomplicated" term 
placental samples (n=733) from the training set used for 
the original RPC. Further, we restricted the penalized 
regression model analysis to the 558 CpGs that make up 
the original RPC. The penalized regression model 
automatically selected 395 CpG sites out of the 558 
sites (Supplementary File 1). We find that the "refined" 
RPC for uncomplicated term pregnancies leads to 
highly accurate GA estimates (MAE=1.49, r=0.98, 
Figure 4A) in the RPC’s test set (n=187). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Effect of pregnancy condition on the GA estimate by CPC. (A) Scatter plot between GA and DNAm-predicted 
GA (CPC) across all trimesters. (B) Violin plot of GA acceleration (standardized residual) for each pregnancy condition. 
 

Figure 4. Gestational age estimation by the refined RPC and the RPC. (A) Scatter plot between observed GA and DNAm-
predicted GA (by the refined RPC) – all samples from the RPC’s test data (n=187). (B) Scatter plot between observed GA and DNAm-
predicted GA (by the refined RPC) - uncomplicated term samples from the RPC’s test data (n=69). (C) Scatter plot between observed GA 
and DNAm-predicted GA (by the RPC) - uncomplicated term samples from the RPC’s test data (n=69). 
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Evaluating other epigenetic clocks  
 
Using RPC’s test data (n=187), we found that 
previously published epigenetic clocks derived from 
cord blood samples or other tissues do not apply to the 
estimation of GA based on placental samples. 
 
No significant correlation between GA and predicted 
DNAm age could be observed for clocks by Hannum 
(2013) [34], Horvath (2013) [23], Levine (2018) [35], 
and Horvath (2018) [36] (Supplementary Figure S5). 
However, the DNAm age estimate is close to zero for 
Horvath’s pan-tissue clock and the more recently 
developed Skin & Blood clock. Similarly, GA 
estimators for cord blood (Bohlin's cord blood clock 
[24], Knight’s cord blood clock [25]) failed to accu-
rately predict GA in placental samples (Supplementary 
Figure S6). Overall, these studies demonstrate that the 
placenta is quite distinct from other tissues  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

regarding the development and application of DNAm 
based age estimators. 
 
Fetal sex-classifier based on DNAm 
 
Several GEO datasets did not report fetal sex (e.g., 
GSE70453, GSE73375 and GSE76641) and CpGs 
present on sex chromosomes. Therefore, we developed 
a fetal sex-classifier based RPC’s training data 
(n=1,102) using CpGs that are present on autosomes. 
Toward this end, we regressed fetal sex (binary 
outcome) on 441,870 autosomal CpG sites using an 
elastic net implemented in the glmnet R package [37]. 
The elastic net automatically selected 220 autosomal 
CpG sites. The classification accuracy was 100% for the 
placental test data from GSE75196 (n=24). 
Interestingly, the placental sex classifier turns out to be 
highly accurate, when applied to blood-based DNAm 
data from adults (e.g., an accuracy of 96% in the data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Results of EWAS and potential confounding between DNA methylation and gestational age due to selection 
bias. (A) Scatter plots between Z scores from controls and Z scores from preeclampsia. (B) The depicted minimal causal diagram under 
the null hypothesis of no effect of GA on DNAm. Here, the pregnancy condition (preeclampsia) would induce a spurious association 
between DNAm and GA, because preeclampsia could prompt earlier delivery (shorter GA) and influence DNAm. Note that the association 
between GA and DNAm is not due to a direct causal relationship between DNAm and GA. Rather, the association is confounded by 
preeclampsia. If the selection criteria differ substantially across studies, the placental clock models may not perform well. (C) EWAS 
Manhattan plot of GA. 
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from the Framingham Heart Study, n=2,356). As the 
sex of the fetus is typically identical to the sex of its 
placenta (except for rare cases of chimerism or sex-
chromosome mosaicism), the sex-classifier was used to 
impute fetal sex in GSE66210, GSE70453, GSE73375 
and GSE76641. 
 
Epigenome-wide association studies of gestational 
age 
 
We briefly report the results from an epigenome-wide 
association study (EWAS) of GA to demonstrate the 
profound effect of GA on placental DNAm levels. To 
protect against confounding by preeclampsia, we 
conducted EWAS in two separate strata: first, for 
placental samples from control pregnancies (n=831); 
second, for placental samples from pregnancies with 
preeclampsia (n=70). We combined the summary 
statistics from the two EWAS using Stouffer's method 
for meta-analysis [38]. The two EWAS summary 
statistics presented consistent DNAm-GA correlations 
across 441,870 autosomal CpGs (Figure 5A). 
 
Strikingly, 10,827 CpG sites exhibit a genome-wide 
significant correlation with GA (P<1E-07; Figure 5C, 
Supplementary File 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Among these sites, 5,940 were in CpGs islands, 262 
were in the north shelf, 1,165 in the north shore, 241 in 
the south shelf, and 902 in the south shore. The top 
four genes with the largest number of significant CpG 
sites were MAD1L1 (17 CpGs), BRD2 (13 CpGs), 
INPP5A (12 CpGs) and RPTOR (9 CpGs). The top 25 
CpG sites and their nearest gene(s) are reported in 
Table 2.  
 
The RPC had 36 epigenome-wide significant (P<1E-07) 
CpG sites, the CPC had 39, and the refined RPC had 32.  
 
DISCUSSION 
 
Using the largest placental training set to date 
(n=1,102), we developed highly robust molecular 
estimators of GA. The robust placental epigenetic clock 
(RPC) is expected to perform well, even when applied 
to cases with adverse fetal outcomes or pregnancy 
complications. We developed this clock using a 
placenta-based training set that included several adverse 
conditions, including chromosomal abnormalities 
(trisomy and triploidy), neural tube defects (anen-
cephaly and spinal bifida), intrauterine growth 
restriction, maternal complications (gestational diabetes 
and preeclampsia), and chorioamnionitis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. The top 25 CpG sites associated with GA. 

CpG Gene Chr 

Relation to 
UCSC  

CpG Island 

UCSC 
RefGene 

Group 
Meta Z (P) 

(n=901) 

Z (P) of 
Control 
(n=831) 

Z (P) of 
Preeclampsia 

(n=70) 
cg23034799 CADM1 11 Island TSS200 -11.4 (7E-30) -10.3 (6E-23) -4.9 (2E-06) 
cg03418552 CADM1 11 Island TSS200 -10.1 (6E-24) -9.4 (8E-20) -3.9 (2E-04) 
cg21155609 FAM167B 1 N_Shore 1stExon 11. (3E-28) 10.2 (1E-22) 4.4 (2E-05) 
cg27339550 ZNF853 7 Island TSS1500 -10.9 (7E-28) -9.2 (4E-19) -5.9 (1E-08) 
cg20025003 TFCP2L1 2 Island TSS200 -10.8 (4E-27) -9.5 (6E-20) -5.2 (6E-07) 
cg02215898  6 Island  -10.6 (3E-26) -10.1 (2E-22) -3.7 (3E-04) 
cg11544721 CETN3 5 Island Body -10.5 (5E-26) -10. (4E-22) -3.7 (3E-04) 
cg01152986 SETD6;SETD6 16 Island TSS200 -10.5 (5E-26) -9.7 (7E-21) -4.2 (4E-05) 
cg08757742 RASGRF2 5 Island TSS200 -10.5 (6E-26) -9.2 (6E-19) -5.2 (6E-07) 
cg26662656  15 N_Shelf  10.5 (1E-25) 8.2 (1E-15) 6.7 (2E-10) 
cg13458335 BMP8B 1 Island TSS1500 -10.1 (6E-24) -9. (2E-18) -4.6 (8E-06) 
cg20630277 MRPL23 11 Island Body -10. (1E-23) -9. (2E-18) -4.4 (2E-05) 
cg21908248 PPP1R15B 1 Island 1stExon -10. (1E-23) -9. (4E-18) -4.5 (1E-05) 
cg26940573 ZNF566 19 Island 1stExon;5'UTR;TSS200 -10. (1E-23) -8.8 (9E-18) -4.7 (5E-06) 
cg13242525 FAM86C 11 Island TSS1500 -10. (1E-23) -8.2 (2E-15) -5.9 (2E-08) 
cg13512138 CHID1 11 Island 5'UTR -10. (2E-23) -8.8 (1E-17) -4.7 (4E-06) 
cg05569874 SEMA4B 15 Island 5'UTR;1stExon -10. (2E-23) -9.3 (2E-19) -3.8 (2E-04) 
cg21060796 LAYN 11 Island Body -10. (2E-23) -8.5 (1E-16) -5.2 (6E-07) 
cg01103597 RUNX3 1  Body 9.9 (3E-23) 8.5 (1E-16) 5.1 (7E-07) 
cg12799981 ASCC1;C10orf104 10 N_Shore 1stExon;5'UTR;TSS1500 -9.9 (7E-23) -9.4 (1E-19) -3.4 (7E-04) 
cg12888127 KNTC1;RSRC2 12 Island TSS1500;TSS200 -9.9 (7E-23) -9.2 (4E-19) -3.7 (3E-04) 
cg03366925 GLI3 7 Island TSS1500 -9.8 (1E-22) -8.5 (1E-16) -4.9 (2E-06) 
cg19599862 ZNF226 19  1stExon;5'UTR -9.8 (1E-22) -8.2 (1E-15) -5.4 (2E-07) 
cg16449659 TIGD4;ARFIP1 4 S_Shore TSS1500;5'UTR -9.7 (2E-22) -9.1 (1E-18) -3.7 (3E-04) 
cg27006129 ZNF114 19 N_Shore TSS1500 -9.7 (3E-22) -7.9 (1E-14) -5.7 (3E-08) 
 



www.aging-us.com 4246 AGING 

In contrast, the only other published placental clock by 
Mayne and colleagues was trained on a small training 
set (n=170). In our independent test set (n=187), 
Mayne’s clock under/overestimated GA according to 
pregnancy conditions. (Supplementary Figure S1). 
These systematic deviations from Mayne's clock might 
reflect interesting biological effects or technical artifacts 
(batch effects, normalization methods). Another 
potential limitation of Mayne’s clock is that the authors 
limited the eligible CpG sites to the approxi-mately 
18,437 autosomal sites on the 27K and 450K bead 
chips. This might explain why the Mayne’s clock uses 
only 62 CpG sites, whereas our RPC uses 558. 
 
To infer biological processes under the 558 and 546 
CpG sites, we conducted functional gene enrichment 
analyses using the Genomic Regions Enrichment of 
Annotation Tool (GREAT, v.3.0, [39]). However, we 
did not find any significant biological annotations 
associated with fetal aging. Elastic net regressions 
automatically select predictive CpG sites of gestational 
age (GA), but these CpG sites are not always bio-
logically meaningful. 
 
Our study had several limitations. First, the "observed" 
GA used for building these epigenetic clocks were 
estimated either by early pregnancy ultrasound or the 
LMP method. Although early pregnancy ultrasound 
based on fetal growth is the gold standard in a clinical 
setting, it is susceptible to variations in fetal size and 
leads to a systematic underestimation of GA in smaller 
fetuses [40-42]. 
 
There is also a concern that some of the training sets 
might be subject to systematic confounding due to 
adverse pregnancy conditions, as is the case for 
preeclampsia (Figure 5B). GA tends to be overestimated 
for placentas linked to preeclampsia, which is consistent 
with the associated pathology of advanced villous 
maturation, as well as previous reports of molecular 
signs of advanced aging [17, 43]. In this hypothetical 
example, preeclampsia confounds the association 
between placental DNAm and GA (Figure 5B, [44-46]). 
However, this type of confounding probably does not 
affect our placental clocks for the following reasons. 
First, the CPC for control samples and the refined RPC 
for uncomplicated term samples also accurately 
predicted GA even in pregnancies with known 
complications. Second, our EWAS of GA reveals pro-
found associations between GA and DNA methylation 
levels even after stratifying the analysis by pre-
eclampsia. 
 
Moreover, it is possible that the RPC and the CPC 
might not perform well in case of non-live births, 
because the proportion of non-live births was extremely 

small amongst the third trimester samples in the training 
datasets, while unavoidably all first and second 
trimester samples are non-live births. In addition, it has 
been suggested that gravidity or parity may change 
placental physiology (e.g., higher placental weight 
associated with higher parity [47]) and therefore might 
modify the relationship between the placental epi-
genome and GA. 
 
The clinical application of the RPC might be limited, 
because obtaining placental samples during pregnancy 
is highly invasive (e.g., chorionic villus sampling [48, 
49]). However, the existence of a predictive placental 
clock – the RPC – opens the possibility to develop 
another epigenetic clock based on cell-free fetal DNA 
(cffDNA). cffDNA is fragmented from placenta 
trophoblasts [50, 51], and circulates in maternal blood 
during pregnancy [52]. If the development of a cffDNA 
clock is successful, clinicians readily estimate GA 
simply by collecting and analyzing maternal blood 
anytime during pregnancy. 
 
METHODS 
 
Study population 
 
We collected publicly available data from Gene 
Expression Omnibus (GEO) using the GEOparse 
Python package (Python 3.6.5: Anaconda, Inc.). Table 1 
details each dataset. GSE71678 examined the 
correlation between placental DNAm and arsenic 
exposures in the New Hampshire Birth Cohort Study 
[53]. GSE75248 examined placental DNAm in relation 
to newborns’ neurobehavioral outcomes [54]. 
GSE71719 studied the association between DNA 
hydroxymethylation and gene expression using 
placental samples [55]. The Robinson laboratory (RL) 
at the University of British Columbia (Vancouver, BC, 
Canada) transferred placental DNAm data that are 
publicly available in the GEO database. GSE100197 
and GSE98224 were studies that aimed to find placental 
DNAm profiles for preeclampsia and intrauterine 
growth restriction in women recruited at the University 
of British Columbia Women’s and Children’s Hospital 
(Vancouver, Canada) and at Mount Sinai Hospital 
(Toronto, Canada), respectively [56]. GSE108567 
investigated batch effects in DNAm micro array data 
[57]. GSE69502 explored DNAm patterns in multi-
tissue samples (placental chorionic villi, kidney, spinal 
cord, brain, and muscle) from fetuses that were aborted 
due to neural tube defects [58]. GSE74738 aimed to 
identify differentially-methylated imprinted regions 
using a genome-wide approach [59]. GSE115508 
compared DNAm patterns in cases of placental 
inflammation (acute chorioamnionitis) with those in 
unaffected controls [60]. GSE44667 studied the 
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association between placental DNAm in gene enhancer 
regions and early-onset preeclampsia [61]. GSE49343 
investigated placental DNAm with trisomy and 
preeclampsia [62]. GSE42409 enhanced probe annota-
tion of Illumina HumanMethylation 450K BeadChip to 
facilitate biologically meaningful data interpretation 
[63]. GSE120250 examined the impact of assisted 
reproductive technology on the placental DNA methy-
lome [64]. GSE70453 conducted epigenome-wide and 
transcriptome-wide analyses of gestational diabetes 
[65]. GSE73375 examined DNAm in the preeclamptic 
placenta in relation to the transforming growth factor 
beta pathway [66]. GSE75196 studied different DNAm 
patterns in patients with preeclampsia and unaffected 
controls [67]. GSE76641 studied the transcriptional and 
DNAm trajectory of 21 organs during fetal development 
[68].  
 
Measurement of DNA methylation 
 
Either the Illumina Infinium HumanMethylation450 
BeadChip or the Infinium MethylationEPIC BeadChip 
was used to measure DNAm level at each CpG site. The 
DNAm level (𝛽𝛽-value) was the ratio of two fluores-
cence signals (methylated and unmethylated). The minfi 
R package [31] was used to preprocess all the DNAm 
datasets except for GS2E115508 and GSE120250 
(preprocessed by Illumina’s proprietary software, 
Genome Studio). The preprocessing methods and probe 
exclusion criteria differed across studies. For example, 
Marsit and colleagues, the largest GEO submitter, used 
the funNorm, whereas Robinson and colleagues mostly 
used the funNorm or the SWAN (Table 1). Other GEO 
submitters used the BMIQ, funNorm, quanNorm, dasen, 
or noob. Most GEO submitters excluded probes on sex-
chromosomes, near single nucleotide polymorphisms, 
with cross-hybridization or with a detection p-value > 
0.01. 
 
Pre-processing of DNA methylation data 
 
We ensured that all samples were included only one 
time in our training data. Some GEO datasets re-used 
the same samples or included technical replicates. For 
example, 154 samples were re-used in GSE100197, 
GSE108567, GSE69502, GSE74738, GSE44667, 
GSE49343 and RL data; and 15 technical replicates 
were found in GSE100197 and RL data. The sample 
size (N) in Table 1 refers to the counts after excluding 
the re-used samples and replicates. 
 
We detected and removed outliers using the following 
steps: 1) we defined a gold standard DNAm profile as 
the inter-sample median value. For each CpG, we 
computed the median beta value across all placental 
samples. 2) The gold standard was correlated with each 

placental sample to calculate the Pearson correlation 
coefficient. 3) Placental samples were excluded if their 
correlation with the gold standard profile was lower 
than 0.9. Overall, only four putative outliers were 
removed from the analysis.  
 
Missing DNAm levels were imputed with the gold 
standard DNAm levels. Thus, if the beta value of a CpG 
was missing, the missing value was imputed with the 
interpersonal median value across all samples. These 
imputations were only implemented in the training data.  
 
Elastic net regression of gestational age 
 
We fit a penalized regression model using the “glmnet” 
R package [37]. GA was regressed on 441,870 CpG 
sites that are shared between the 450K and the EPIC 
array. The glmnet mixing parameter alpha was set to 0.5 
(specifying elastic net regression), and the shrinkage 
parameter, lambda resulting in the minimum mean 
square error, was chosen using 10-fold cross-validation 
in the training data. The RPC automatically selected 
558 CpG sites (lambda=0.0936), the CPC did 546 CpG 
sites (lambda=0.0892), the refined RPC did 395 CpG 
sites (lambda=0.0116), and the fetal sex-classifier did 
220 CpGs (lambda=0.0073). The number of 
overlapping CpGs between the RPC and CPC was 199. 
Supplementary File 1 includes CpG sites and their 
corresponding coefficients for the RPC, CPC, refined 
RPC and fetal sex-classifier. 
 
Epigenome-wide association study of gestational age 
 
We used the R function "standardScreening-
NumericTrait" from the weighted gene co-expression 
network analysis R package (WGCNA; [69]) to carry 
out a robust correlation test (based on the biweight 
midcorrelation) between each CpG and GA. We 
conducted two separate EWAS of GA: one in control 
placental samples (n=831) and the other in placental 
samples from preeclampsia cases (n=70). We computed 
biweight midcorrelations between DNAm levels and 
GA, and the corresponding Z statistics and p-values in 
each stratum. The Z statistics of the two sets of EWAS 
were combined using the weighted Stouffer’s method 
[38] as: ∑𝑍𝑍𝑖𝑖𝑤𝑤𝑖𝑖/√∑𝑤𝑤𝑖𝑖2, where 𝑤𝑤𝑖𝑖 is the square root of 
the sample size in the 𝑖𝑖th stratum. The corresponding p-
values were computed as 2�1−Φ(|Zmeta|)�. The 
EWAS was limited on the 411,870 autosomal probes 
available on both the 450K and the EPIC array 
platform. 
 
Software availability 
 
The coefficient values of the placental clocks and the 
fetal sex classifier can be found in Supplementary File 1. 
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SUPPLEMENTARY MATERIAL 
 
Supplementary File 1 
 
This file includes CpG sites and their corresponding 
coefficients used for the RPC, CPC, refined RPC and 
fetal sex-classifier. 
 

Supplementary File 2 
 
This file includes part of summary statistics of EWAS 
of GA (the 10,827 CpG sites with meta P<1E-07). 
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