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ABSTRACT

S-klotho, the shed form of a-klotho, is thought to be an ageing suppressor with functions related to the
physiology of energy metabolism. However, it remains unknown whether ageing biomarkers such as S-klotho
and/or chronological ageing are associated in any way with basal metabolic rate (BMR) and fuel oxidation in
basal conditions and during exercise. The present work investigates the association of BMR and fuel oxidation
in basal conditions and during exercise, with plasma S-klotho in middle-aged, sedentary adults. BMR was
measured by indirect calorimetry in 74 such subjects (53% women; age 53.715.1 years) following standard
procedures, and their fuel oxidation estimated via stoichiometric equations. The maximal fat oxidation during
exercise (MFO) and the intensity of exercise that elicits MFO (Fatmax) were determined using a walking graded
exercise test. No relationship was seen between BMR and plasma S-klotho (P>0.1), although both basal fat
oxidation and MFO showed positive associations with this protein (both P<0.001); these relationships persisted
after controlling for age, sex and fat mass. However, no significant associations were seen between BMR, basal
fat oxidation or MFO and chronological age (all P>0.1). The present findings suggest that basal fat oxidation and
MFO are strongly associated with plasma S-klotho in middle-aged sedentary adults. These results support the
idea that metabolic flexibility is a powerful predictor of biological ageing.

INTRODUCTION years of suffering chronic disease, particularly
metabolic illnesses such us obesity and diabetes

Life expectancy in Europe has generally increased in
recent decades. In 2012, 17% of the European Union
population was aged 65 years or older, a percentage
expected to rise to 25% by 2035, and to 30% in 2060
[1]. However, a longer life expectancy does not
necessarily mean healthy ageing; it can mean extra

mellitus type II [1,2].

Ageing is characterized by a progressive decline in
one's metabolic and physiological functions [3], the
associated dysregulation of nutrient sensitivity,
mitochondrial dysfunction and cellular apoptosis
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eventually becoming harmful [4] Ageing is associated
with a progressive decline in the basal metabolic rate
(BMR), meal-induced thermogenesis and physical
activity [5], resulting in a reduced total energy
expenditure. In part, this is responsible for the gradual
weight increase and the deposition of visceral adipose
tissue seen during ageing, which places people at
greater risk of cardiometabolic disease and all-cause
mortality [6].

Over the last decade, numerous studies have examined
the association between basal fuel oxidation and ageing-
related diseases, and a potential role for this oxidation
has been proposed in the pathogenesis of subclinical
atherosclerosis, hypertriglyceridaemia, liver steatosis
and ventricular cardiac remodelling [7-9]. Ageing is
positively associated with visceral adiposity, but in a
study involving a large and heterogeneous adult
population, no relationship was observed between basal
substrate oxidation and chronological age [3]. Recent
studies have suggested that chronological age is but a

Table 1. Study participant characteristics.

crude indicator of ageing. Specific ageing biomarkers
provide a more accurate picture; indeed, they provide a
reliable tool for understanding and assessing ageing
[10].

The o-klotho gene is thought to suppress ageing,
extending life expectancy when it is overexpressed and
inducing premature ageing when it is defective [11,12].
It is mainly expressed in the kidney, the parathyroid
glands and the brain; its product is a type-1 single-pass
transmembrane glycoprotein, the ectodomain of which
is shed and released into the systemic circulation in
soluble form (S-klotho) [13]. S-klotho has several
functions related to the physiology of energy
metabolism [14], including the regulation of glucose
uptake, the enhancement of insulin sensitivity, the
attenuation of cellular oxidative stress, and the
suppression of chronic inflammation [15-17], which
together are thought to invest it with anti-ageing
properties. A recent study showed that plasma S-klotho
is lower in individuals with diabetes mellitus type 1I,

N All N Men N Women
Age (years) 74 53.7 (5.1) 35 544 (5.3) 39 53.0 (5.0
S-Klotho plasma levels (pg/ml) 73 7753 (363.7) 34 814.1 (452.2) 39 7414 (265.6)
Anthropometry and body composition
Weight (kg) 74 75.7 (15.0) 35 874 (11.0) 39 653 (9.3)*
Height (cm) 74 167.8 (9.8) 35 175.8 (6.5) 39 160.7 (6.1)*
Body mass index (kg/m?) 74 26.7 (3.8) 35 283 (3.6) 39 253 (3.3)*
Fat mass (kg) 74 30.0 (8.4) 35 309 (9.8) 39 29.2 (7.1)
Fat mass (%) 74 399 (9.1) 35 34.7 (8.0) 39 445 (7.4)*
Fat mass index (kg/m?) 74 10.7 (3.1) 35 10.0 (3.2) 39 114 (2.9
Visceral adipose tissue (g) 74 789.7 (387.1) 35 972.4 (392.0) 39 625.8 (303.4)*
Lean mass (kg) 74 43.5 (11.7) 35 539 (6.5) 39 341 (5.8)*
Lean mass index (kg/m?) 74 152 (2.9 35 17.5 (20.0) 39 132 (1.8)*
Basal metabolic rate and fuel oxidation under post-fast baseline conditions
BMR (kcal/day) 71 15084 (364.5) 34  1805.5 (244.8) 37 12355 (208.4)*
BMR_yy (kcal/kgieanmass/day) 71 352 (7.2) 34 33.6 (5.3) 37 36.7 (8.4)
BFox (g/min) 71 0.053 (0.040) 34 0.064 (0.050) 37  0.042 (0.025)*
BFox (% BMR) 71 45.6 (30.0) 34 456 (32.7) 37 45.6 (27.7)
BCHox (g/min) 71 0.112 (0.096) 34 0.138 (0.115) 37  0.089 (0.069)*
BCHox (% BMR) 71 41.8 (3200 34 44.0 (347 37 39.8  (29.0)
Fuel oxidation during exercise
MFO (g/min) 71 0.29 (0.09) 34 0.35 (0.09) 37 023 (0.04)*
MFOuum (g/kgieanmass/min) 71 6.72 (l.61) 34 643 (1.49) 37 6.99 (1.70)
Fatpax (% VO max) 71 43.0 (104) 34 41.6  (10.3) 37 44.3  (10.6)
Cardiorespiratory fitness
VOomax (ml/min) 71 23392 (657.2) 34 29154 (373.2) 37 1809.7 (332.5)*
VOomax (ml/kg/min) 71 30.5 (5.6) 34 333 (4.5 37 279 (5.3)*

Data are presented as means (standard deviation). *Significant differences between sexes obtained via the T-Student
unpaired-samples test (P<0.05). Abbreviations: BMR; Basal Metabolic Rate, BMRy; Basal Metabolic Rate relative to Lean
Mass, BFox; Basal Fat Oxidation, BCHox; Basal Carbohydrate Oxidation, MFO; Maximal Fat Oxidation, MFO_y; Maximal Fat
Oxidation relative to Lean Mass, Fatn.x; Intensity of exercise that elicits MFO, VO,max; Maximum Oxygen Uptake.
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Figure 1. Association between basal metabolic rate (BMR) (A, B), basal fat oxidation (BFox) (C, D) and basal carbohydrate oxidation
(BCHox) (E, F) with plasma S-klotho levels. B (unstandardized regression coefficient), R?, and P are from simple linear regression
analysis. Abbreviations: BMRy; Basal Metabolic Rate relative to lean mass.
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and therefore a potential biomarker of this disease [18].
It thus seems plausible that individuals with a reduced A
BMR and an altered fuel oxidation in basal conditions

and during exercise may have lower plasma S-klotho. p i104.7
The literature contains no studies on how BMR and fuel 2500- ;{:B%(;T
oxidation in basal conditions and during exercise may
be related to chronological ageing, or whether they have = 2000- o
any relationship with ageing biomarkers such as S- % o
klotho. The aim of the present work was to investigate & 15007 . -
the relationship of BMR and fuel oxidation in basal = 10004 ‘s ,*"*
conditions and during exercise, with plasma S-klotho. 5 W/'
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Table 1 summarises the descriptive characteristics of

‘ MFO (g/min)
the study subjects. BMR and BMRim showed no
significant association with plasma S-klotho (Figure 1A
and 1B; P>0.1), a result that persisted after controlling B
for age, sex and percentage fat mass (Table 2; P>0.05). B=-32.796
A significant, negative association was detected R?=0 021

between BCHox (expressed in g/min, and in % BMR) 2500- P=0.234

and plasma S-klotho (1E and 1F; all P<0.001), while a
significant positive association was seen between BFox 2 2000+ .
(expressed in g/min, and in % BMR) and plasma S- B o . ]
klotho (Figure 1C, and 1D; all P<0.001). These b . .0 .
associations persisted after controlling for age, sex, and < 1000- e . O ®
percentage fat mass (Table 2; P<0.01). & op e ) o
4 s00{ v %, 8" :
MFO was significantly associated with plasma S-klotho ¢ ..' "
(Figure 2A; P=0.034, B=1104.7) even after controlling 0 4 6 8 10 12
for age, sex, and percentage fat mass (Table 2; P<0.04). MFO 51 (2/KE e ammass/min)
Neither MFOrm nor Fatmax showed any relationship
with plasma S-klotho (Figure 2B and 2C; all P>0.1), a
finding that persisted after adjusting for age, sex, and C
percentage fat mass (Table 2; P>0.08). B=-6.883
R’=0.037
Neither BMR, BMR1v, BFox, BCHox, MFO, MFOrm 2500- P=0.109
nor Fatmax showed an association with chronological age
(Figure 3 and Figure 4; all P>0.1); these findings z 20004 °
persisted after adjusting for sex and percentage fat mass e °
2 15004 o
(Table 2). g .. o« o o
ERTIIE R CRA S
All of the above-mentioned analyses were also run & e o ¥ e
adjusting for visceral adipose tissue, VOymax, @500+ r H -‘3-' °
objectively measured moderate-vigorous physical 0 o
activity, and total energy intake, and all findings 20 40 60 30
persisted (Supplementary Table S1) Fat,,, (%VO,max)
DISCUSSION
Figure 2. Association between maximal fat oxidation (MFO) (A,
The main findings of the present study are that the B), and the intensity of exercise that elicits MFO (Fatmax) (C)
capacity to oxidase fat in basal conditions and during with plasma S-klotho. B (unstandardized regression
exercise (i.e., MFO), are positively associated with coefficient), R? and P are from simple linear regression
plasma S-klotho, while BCHox is inversely associated analysis. Abbreviations: MFO; Maximal Fat Oxidation, MFOpy;
with the latter, in middle-aged sedentary adults. Neither Maximal Fat Oxidation relative to lean mass, Fatmax; Intensity

BMR nor fuel oxidation showed any association with of exercise that elicits MFO, VO,max; Maximal Oxygen Uptake.
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Table 2. Association of basal metabolic rate, basal fat oxidation, basal carbohydrate oxidation, maximal fat oxidation and the intensity of exercise that
elicits maximal fat oxidation (Fatmax) with plasma S-klotho concentration and chronological age, adjusted for age (Model 1), sex (Model 2), percentage fat
mass (Model 3) and age, sex and percentage of fat mass (Model 4 / Model 4*: adjusted for sex and percentage of fat mass).

Plasma S-klotho concentration

Model 1 Model 2 Model 3 Model 4
P value B P value B P value B P value B
BMR (kcal/day) 0.209 0.184 0.203 0.247 0.670 0.051 0.497 0.089
BMRyym (keal/ kgieanmass/day) 0.150 10.495 0.091 15.868 0.490 9.180 0.329 4.611
BFox (g/min) <0.001 3340.712 <0.001 5380.689 <0.001 4701.526 <0.001 2829.975
BFox (% BMR) 0.001 3.536 <0.001 6.434 <0.001 5.895 0.002 3.211
BCHox (g/min) 0.010 -887.501 <0.001 -2038.484 <0.001 -1723.932 <0.001 -1057.784
BCHox (% BMR) 0.002 -3.204 <0.001 -6.145 <0.001 -5.580 0.002 -3.034
MFO (g/min) <0.001 1312915 0.036 1429.228 0.009 715.126 0.003 1298.556
MFOLm (g/kg1eanmass/min) 0.956 1.120 0.294 -29.664 0.891 3.964 0.181 35.482
Fatyax (% VO;max) 0.724 1.108 0.133 -6.349 0.078 -6.886 0.081 31.824
Chronological age
Model 2 Model 3 Model 4*
P value B P value B P value B
BMR (kcal/day) 0.132 -0.004 0.627 0.001 0.075 -0.005
BMRLum (kcal/ kgieanmass/day) 0.071 0.150 0.312 0.098 0.386 0.082
BFox (g/min) 0.453 -55.185 0.370 -44.989 0.418 -50.895
BFox (% BMR) 0.186 -1.426 0.505 0.042 0.106 0.118
BCHox (g/min) 0.676 -0.471 0.301 0.065 0.114 0.128
BCHox (% BMR) 0.279 -1.163 0.459 0.046 0.117 0.115
MFO (g/min) 0.326 -8.231 0.678 2.874 0.315 -8.199
MFOLwm (g/Kgicanmass/min) 0.089 0.627 0.282 0.426 0.298 0.401
Fatpax (% VO max) 0.106 -1.835 0.188 0.085 0.094 0.137

P value of multiple-regression analysis. B (unstandardized regression coefficient). Abbreviations: BMR; Basal Metabolic Rate, BMRLM; Basal Metabolic Rate relative to
lean mass, BFox; Basal Fat Oxidation, BCHox; Basal Carbohydrate Oxidation, MFO; Maximal Fat Oxidation, MFOLM; Maximal Fat Oxidation relative to lean mass,
Fatmax; Intensity of exercise that elicits MFO, VO2max; Maximum Oxygen Uptake.
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Figure 3. Association between basal metabolic rate (BMR) (A, B), basal fat oxidation (BFox) (C, D) and carbohydrate oxidation
(BCHox) (E, F) with age. B (unstandardized regression coefficient), R? and P are from a simple linear regression analysis. Abbreviations:
BMRyv; Basal Metabolic Rate relative to lean mass.
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chronological age, either in basal conditions or during
exercise.

BMR accounts for ~70% of total energy expenditure,
and is largely responsible for overall energy
homeostasis [19]. BMR falls by 1-2% per decade after
20 years of age, and is closely linked to the progressive
reduction in lean mass seen with ageing [20]. Our group
recently reported a strong association between lean
mass and plasma S-klotho [21] but, paradoxically, no
association was seen between BMR and plasma S-
klotho in the present work. This might be explained in
that the age of the present subjects was quite
homogeneous, and because factors (in addition to the
lean mass) such us energy flux rates, mitochondrial
proton leakage, protein turnover, and Na+—K+-ATPase
activity can influence the BMR during ageing [22].
Future studies with larger sample sizes and with a wide
range of subject ages are needed to confirm these
findings, and to examine whether changes in BMR are
associated with changes in plasma S-klotho.

Metabolic flexibility, defined as the ability to increase
fat oxidation upon increased fatty acid availability
(decreasing carbohydrate oxidation), and/or to switch
between fat and carbohydrate oxidation as the primary
fuel source [19], undergoes important changes during
the ageing process [20]. Ageing is characterized by a
progressive qualitative and quantitative decline in lean
mass, poor mitochondrial volume and efficiency, a
reduction in type II muscle fibre size, lower capillary
density, resistance to anabolic endocrine signals, and a
more pro-inflammatory environment [4]. Together,
these changes underlie the theoretical framework for the
appearance of metabolic inflexibility with ageing,
observed through an increased carbohydrate oxidation
in different situations. Conflicting results have been
reported over time regarding the relationship between
basal fuel oxidation and ageing. Initially, some studies
reported a reduced BFox in older individuals compared
to their younger counterparts [21,22]. However,
methodological issues may have influenced these
findings (e.g., small sample sizes, narrow and limiting
inclusion criteria, poorly defined age groups (young vs.
old), different data collection methods, and the method
of determining fuel oxidation, etc.). In response, Siervo
et al. [3], recently conducted an elegant study to
examine the association between BFox and
chronological age in a large cohort (3442 individuals
(2465 women) aged 18-81 years), using a ventilated-
hood indirect calorimetry system to determine fuel
oxidation. In agreement with the present findings, but
contrary to their own hypothesis, these authors found no
significant association between BFox and chronological
ageing [3]. They suggested this lack of association
might be explained by age-related changes in metabolic
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flexibility becoming more evident when the fuel
oxidation capacity becomes crucial in the regulation of
metabolic homeostasis (i.e., in the post-prandial state)
[3]. Although ageing has typically been understood in
terms of chronological age, several studies have
suggested that it is a crude yardstick given the
heterogeneity in individuals' physiology and health-
related outcomes; further, the influence of ageing is
different between individuals, and even at the
organ/tissue level of the same individual [10].
Measuring biological ageing biomarkers might
therefore provide a more valid and reliable tool for
assessing and examining the ageing process [10].

S-klotho is understood to be a powerful anti-ageing
biomarker. It functions as a human ageing-suppression
molecule and has pleiotropic activities that result in the
protection of tissues and organ [23,24] Indeed, previous
studies have reported a positive relationship between
plasma S-klotho and life span [25], and an inverse
association with coronary artery disease [26],
atherosclerosis [26], osteoporosis [27], calcinosis,
stroke [28], acute and chronic kidney diseases [29],
different cancers [30], salt-sensitive hypertension [31]
and all-cause mortality [31]. The transmembrane klotho
protein is an essential component of endocrine
fibroblast growth factor (FGF) receptor complexes,
which have a key role in the pathophysiology of
ageing-related disorders via the mediation of phosphate
and calcium homeostasis [24]. However, S-klotho
cannot function as a soluble receptor of FGF, and a
number of FGF-independent functions have been
described for it in the homeostasis of energy
metabolism [14,15,24]. The anti-ageing properties of S-
klotho have been thought partially owed to its specific
metabolic function: 1) It inhibits insulin and insulin-
like growth factor I (IGF-1) receptors, preventing their
phosphorylation by the modification of their glycans
[12]. Insulin induces transmembrane klotho shedding,
and the consequent increase in plasma S-klotho inhibits
insulin signalling in peripheral tissues and impedes the
prolonged action of insulin [15,24]. This partial
inhibition of insulin and IGF-1 is an evolutionarily
conserved mechanism for suppressing ageing via the
enhancement of insulin sensitivity [15,24]. 2) After
binding to different Wnt ligands, it inhibits Wnt
signalling and promotes stem cell proliferation and
survival [32]. 3) It increases resistance to oxidative
stress by inhibiting FOXO phosphorylation and
upregulating a number of antioxidant enzymes [33,34].

Recent studies have shown that S-klotho production is
downregulated in persons with diabetes mellitus type
II; such patients experience hyperglycaemia, insulin
resistance and an attenuated resistance to oxidative
stress [18]. The reduced presence of S-klotho in these

individuals who are metabolically inflexible in
response to different stressors [19] hints at metabolic
flexibility and plasma S-klotho levels being closely
associated - and the present work shows a strong
association between metabolic flexibility (both under
post-fast baseline conditions and during exercise) with
plasma S-klotho.

The present work suffers from a number of limitations.
Given its cross-sectional design, no causal
interpretation can be established; the sample size in
relatively small; and only sedentary adults aged 40-65
years were included. These findings may not be
extrapolatable to older, younger, and/or trained
individuals.

In summary, the present results suggest that BFox and
MFO are positively associated with the plasma S-
klotho concentration in middle-aged sedentary adults,
whereas a negative association was observed between
BCHox and plasma S-klotho concentration. However,
no relationship was observed between BFox, BCHox
and MFO with chronological age under either set of
test conditions. These results have clinical
implications, and support the idea that fat oxidation in
basal conditions and during exercise are powerful
predictors of biological ageing. Further studies are
needed to examine whether metabolic flexibility in
response to other stressors (e.g., the post-prandial
state, or after cold exposure) are associated with
plasma S-klotho. A longitudinal intervention aiming to
improve fat oxidation should be performed to
determine whether plasma S-klotho increases in
parallel.

MATERIALS AND METHODS
Study design and participants

This cross-sectional study was performed as part of the
FIT-AGEING project clinicaltrial.gov: ID:
NCTO03334357) [35]. Eighty-nine middle-aged,
sedentary adults were initially recruited, of whom 15
were excluded from analysis due to problems in data
collection or usage; the final number of study subjects
was therefore 74 (~52% women) (Supplementary
Figure S1). Subjects were recruited through
advertisements distributed in the form of leaflets and
via social networks and electronic media. The
inclusion criteria were: (i) age 40-65 years old, (ii)
practicing <20 min of physical activity on <3 days per
week (self-reported), (iii) to be taking no drug or long-
term medication, (iv) to be a non-smoker, (v) to have
no cardiometabolic illness, (vi) to not be pregnant,
(vii) and to have experienced no significant weight
change (<3 kg) in the past 12 weeks.
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All subjects gave their written, informed consent to be
included in accordance with the latest revision of the
Declaration of Helsinki (2013). The study was
approved by the Human Research Ethics Committee of
the Junta de Andalucia [0838-N-2017].

Procedures

All assessments were made at the Sport and Health
University Research Institute (iMUDS, Granada,
Spain) during September and October of 2016 and
2017. Subject weight and height were measured using
a Seca model 799 scale and stadiometer (Seca,
Hamburg, Germany), and the body mass index (BMI)
calculated as (weight [kg]/ height’ [m]). Fat mass,
visceral adipose tissue mass and lean mass were
determined using a Discovery Wi dual-energy X-ray
absorptiometer (Hologic, Inc., Bedford, MA, USA).
The fat mass index and the lean mass index were
calculated as (fat mass [kg]/ height’ [m]) and (lean
mass [kg]/ height2 [m]) respectively.

Subjects were told to arrive at the laboratory in a
motor vehicle, and to avoid any moderate/vigorous
physical activity in the previous 24 h/48 h
respectively; all were required to confirm that they had
met this condition. BMR was determined by indirect
calorimetry in a peaceful room at 22-24°C and 35-45%
humidity, at between 8 and 10 a.m. following a 12 h
fast, using an Ultima CardiO2 metabolic cart
(Medgraphics Corp, MN, USA) and employing a
neoprene face-mask with no external ventilation [36].
The evening meal consumed by subjects prior to
fasting was standardized: an egg omelette with fried
tomato and boiled rice. The Ultima CardiO2 metabolic
cart device assessed oxygen consumption (VO;) using
a galvanic fuel cell, and carbon dioxide production
(VCO2) via non-dispersive infrared analysis using a
breath-by-breath system [37]. Prior to the start of
BMR assessment, the subjects reclined on a bed for
~30 min in a comfortable supine position, covered by a
sheet [38,39]. Meanwhile, a gas calibration using two
standard gas concentrations, and a flow calibration
using a 3 L calibration syringe, were performed
following the manufacturer's instructions. BMR and
basal fuel oxidation were measured over a 30 min
period in which the participants were instructed to
breath normally, neither talking, fidgeting nor
sleeping. The first 5 min of each dataset were
discarded. The coefficient of variance (CV) for VO,
VCO,, the respiratory exchange ratio (RER), and
minute ventilation, were calculated for 5 min intervals
(i.e., from the 1st to the 5th min, from 2nd to 6th, from
3rd to 7th, etc). In accordance with previous studies
[40,41], the 5 min periods that met steady-state gas
exchange criteria (i.e., CV<10% in VO,, CO,, and

minute ventilation, and CV<10% in RER) were then
selected, and the 5 min period with the lowest CV for
VO,, VCO,, RER, and minute ventilation chosen for
further analysis (excluding those subjects with a RER
of <0.7 or >1.0). Weir's abbreviated equation [42] was
used to estimate the BMR, and Frayn equations [43]
were used to estimate basal fat oxidation (BFox) and
basal carbohydrate oxidation (BCHox) expressed in
g/min. The BMR was also calculated with respect to
the lean mass (BMRpm). The BFox and BCHox were
also expressed as a percentage of the BMR.

Maximal fat oxidation during exercise (MFO), and the
intensity of exercise that elicits MFO (Fatmax), were
determined via a walking graded exercise test on a
H/P/Cosmos Pulsar treadmill (H/P/Cosmos Sports &
Medical GmbH, Nussdorf-Traunstein, Germany). The
maximum walking speed was assessed following the
methodology used in previous studies [44—46]. The
walking graded exercise test started with a warm-up at
3.5 km/h and a 0% gradient, and the speed then
increased by 1 km/h every 3 min until the maximum
walking speed was reached. The gradient was then
increased by 2% every 3 min until the RER was >1.0.
The subjects wore a Model 7400 face mask (Hans
Rudolph Inc, Kansas City, MO, USA) equipped with a
prevent™ metabolic flow sensor (Medgraphics Corp,
Minnesota, USA) connected to the Ultima CardiO,
metabolic cart for measuring gas exchange. Gas and
flow calibrations were performed following the
manufacturer's instructions. VO, and VCO, data were
averaged every 10 s using Breeze Suite software
v.8.1.0.54. Fat oxidation was calculated from the
respiratory quotients during the last 60 s of each stage
in the graded exercise test, using standard indirect
calorimetry equations [43]. As previously described,
MFO and Fatm,x were estimated via a 3rd polynomial
curve with fat oxidation as a function of VO;max
[3046]. The MFO was also determined with respect to
lean mass (MFOpLw).

Following the modified Balke protocol [47], a
maximal graded exercise test was used to determine
VOomax on another day (interval 3-7 days). Subjects
were asked: (i) to fast for 3 to 5 h, but eating a
complete meal just before, (ii) to avoid drugs and/or
stimulants at least 24 h before the test, and (iii) to
refrain from moderate and/or vigorous physical
activity for 24 h/48 h before the test respectively.
Briefly, the test began at a speed of 3.5 km/h (gradient
0%), increasing until reaching 5.3 km/h. The gradient
was then increased by 1% every minute, keeping the
treadmill speed constant until subject exhaustion. The
heart rate was continuously monitored and recorded
every 5 s using a Polar RS800 heart rate monitor
(Polar Electro Oy, Kempele, Finland).
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Blood samples were obtained from the antecubital vein
in the morning just before BMR assessment. Plasma S-
klotho was determined in ethylene diamine-acetic acid-
treated plasma using a solid-phase sandwich enzyme-
linked immunosorbent assay kit (Demeditec, Kiel,
Germany). Optical density was assessed at 450 nm + 2
nm. The intra- and inter-assay CV (3-10% each) was
determined using two different doses of pure S-klotho
protein.

Statistical analysis

The normal distribution of all variables was confirmed
using the Shapiro-Wilk test, visual histograms, Q-Q
plots and box plots. The Student t test for unpaired
samples was used to examine differences in the results
of male and female subjects. Given the aim of the
study, and the lack of any significant interaction
between sex (all P>0.05), the appropriateness of fitting
models for men and women were combined including
sex as a covariable.

Simple linear regression models were first used to
examine the association of BMR, BMRpm, BFox,
BCHox, MFO, MFOpm, and Fatmax with plasma S-
klotho. Multiple linear regression analyses were then
conducted to study these associations while controlling
for potential confounders: (i) Model 1 was adjusted for
age; (i) Model 2 for sex; and (iii) Model 3 for
percentage fat mass. These potential confounders were
selected on the basis of theoretical considerations and
the results of stepwise regression. Simple linear
regression was also performed to examine the
association of BMR, BMRyy, BFox, BCHox, MFO,
MFOrm and Fatmex with chronological age. All
calculations were made using the Statistical Package for
the Social Sciences v.22.0 (IBM Corporation, Chicago,
IL, USA). GraphPad Prism 5 software (GraphPad
Software, San Diego, CA, USA) was used for graphical
plots. Significance was set at P<0.05
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SUPPLEMENTARY MATERIAL

Supplementary Table S1. Association between energy metabolism outcomes with S-Klotho protein and age
adjusted by visceral adipose tissue (Model 1), adjusted by VO,max (Model 2), adjusted by objectively measured
moderate-vigorous physical activity (Model 3), and by total energy intake (Model 4).

Plasma S-klotho concentration

Model 1 Model 2 Model 3 Model 4
BMR (kcal/day) 0.126 0.142 0.226 0.140
BMRLMm (kcal/ kgieanmass/day) 0.634 0.146 0.500 0.836
BFox (g/min) <0.001 <0.001 <0.001 <0.001
BFox (% BMR) <0.001 <0.001 <0.001 <0.001
BCHox (g/min) <0.001 <0.001 <0.001 <0.001
BCHox (% BMR) <0.001 <0.001 <0.001 <0.001
MFO (g/min) 0.024 0.014 0.032 0.023
MFOrm (g/kgieanmass/min) 0.232 0.409 0.254 0.253
Fatmax (% VO,max) 0.109 0.630 0.161 0.112

Chronological age

Model 1 Model 2 Model 3 Model 4
BMR (kcal/day) 0.828 0.287 0.758 0.983
BMRLum (kcal/ Kgieanmass/day) 0.153 0.206 0.128 0.139
BFox (g/min) 0.459 0.519 0.109 0.244
BFox (% BMR) 0.834 0.806 0.116 0.374
BCHox (g/min) 0.692 0.253 0.066 0.618
BCHox (% BMR) 0.975 0.629 0.110 0.407
MFO (g/min) 0.874 0.343 0.896 0.979
MFOrm (g/Kgleanmass/mMin) 0.155 0.168 0.147 0.132
Fatmax (% VOomax) 0.275 0.918 0.051 0.655

P value of multiple-regression analysis. Abbreviations: BMR: Basal Metabolic Rate; BMRu: Basal Metabolic Rate relative to
lean mass; BFox: Basal Fat Oxidation; BCHox: Basal Carbohydrate Oxidation; MFO: Maximal Fat Oxidation; MFOu: Maximal
Fat Oxidation relative to lean mass; Fatmax: Intensity of exercise that elicits MFO; VO,max: Maximum Oxygen Uptake.
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Supplementary Figure S1. Flow-chart showing recruitment of study subjects. BMI: body mass index, CDV: cardiovascular, ECG:
electrocardiogram.
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