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INTRODUCTION 
 
Intracranial aneurysm (IA) occurs in 1%–2% of the 
general population [1]. IA rupture is a major contributing 
factor of hemorrhagic stroke [2]. Both environmental and 
genetic factors are related to the onset and development of 
IA [3, 4]. Smoking, sex and blood pressure can be 
considered as the most relevant environmental factors for  

 

the rupture of IA [5]. A family history of IA is frequently 
observed, and this is indicated that genetics may be a 
major risk factor for IA [6]. Despite this, how 
environmental and genetic factors lead to IA? This 
problem needs to be further study. 
 
There are some new findings of IA. Hemodynamic 
factors, such as irregular shear stress and oscillatory shear 
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ABSTRACT 
 
Intracranial aneurysm (IA) incidence is about 1~2%. However, the specific mechanisms of IA onset and 
development need further study. Our objective was to discover novel IA-related genes to determine possible 
etiologies further. We performed next-generation sequencing on nineteen Chinese patients with familial IA and 
one patient with sporadic IA. We obtained mRNA expression data of 129 samples from Gene Expression 
Omnibus (GEO) and made statistical computing to discover differentially expressed genes (DEGs). The screened 
IA-related gene NOTCH3 was determined by bioinformatic data mining. We verified the IA-related indicators of 
NOTCH3. Association was found between IA and the NOTCH3 SNPs rs779314594, rs200504060 and rs2285981. 
Levels of NOTCH3 mRNA were lower in IA tissue than in control tissue, but higher in peripheral blood 
neutrophils from IA patients than in neutrophils from controls. Levels of NOTCH3 protein were lower in IA 
tissue than in cerebral artery tissue. NOTCH3 also decreased the expression of angiogenesis factors in human 
umbilical vein endothelial cells. Variation in NOTCH3 and alteration of its expression in cerebral artery or 
neutrophils may contribute to IA. Our findings also describe a bioinformatic-experimental approach that may 
prove useful for probing the pathophysiology of other complex diseases. 
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index, may contribute to the development and rupture of 
IA [7, 8]. Single-nucleotide polymorphisms (SNPs) 
related to IA overlap with the regulatory region of genes 
expressed in the circle of Willis, which is the location 
with the highest incidence of aneurysms [9]. The circle of 
Willis shows anomalies more often among patients with 
ruptured IA than among those with unruptured IA [10]. 
Inflammatory cells and factors also play a role in IA 
onset, growth, and rupture [3, 11–13]. Recently, a case-
control study demonstrated that IA-associated mRNA 
expression was elevated in the peripheral blood neutrophil 
of aneurysm patients [14, 15]. IA has been associated with 
some inflammatory factors such as IL-1β, IL-6, TNF-α, 
MMP9, MMP2, NF-κB, MCP-1, and VCAM1 [8, 11–13, 
16–20]. However, we do not know exactly which genetic 
abnormality is responsible for intracranial aneurysms, and 
this is also what we should study and explore at present.  
 
IA is associated with many hereditary diseases, and many 
genes have been associated with IA [21]. Build on these 
latest IA-related findings, here we used next-generation 
sequencing, transcriptome sequencing, comprehensive 
data mining, and studies with human umbilical vein 
endothelial cells (HUVECs) to screen for genes associated 
with IA. We discovered that NOTCH3 is associated with 
the disease, first from in silico analyses, followed by 
verification using immunohistochemistry of IA and 
cerebral artery tissue. 
 
RESULTS 
 
Preliminary screening of high-throughput data for 
IA-related genes 
 
We preliminarily screened IA-related genes from high 
throughput genomic and transcriptome data. In order to 
screen IA-related mutant genes, we performed high-
throughput genome sequencing for 20 Chinese subjects 
(19 were familial cases, while 1 was a sporadic case) 
with IA as a discovery cohort (Figure 1A and 1B). A total 
of 6649 deleterious SNPs in 4906 genes was discovered 
from profiling our next-generation sequencing data, 
which was annotated and filtered based on functional 
changes by SAMtools, ANNOVAR, PolyPhen-2 and 
SIFT software (Figure 1C). Transcriptome sequencing 
data from GEO database revealed 1422 DEGs, of which 
147 were upregulated and 1275 were downregulated in 
IA compared to healthy cerebral artery (Supplementary 
Table 1). The screened DEGs are shown in the volcano 
plot (Figure 2A). 
 
Determining key IA-related gene(s) 
 
There were 369 genes shared between the mutant genes 
identified in our next-generation sequencing and the 
DEGs identified from GEO transcriptome sequencing 

data (Figure 2B and 2C) [22]. These shared genes were 
classified based on their functionality according to GO 
categories tool BiNGO (Figure 3A) [23]. Next, we 
screened the most relevant GO classifications. As 
previously published work, IA onset and development 
can be promoted due to abnormal hemodynamic stress, 
immune response, or cerebrovascular hypoplasia [7–10, 
24]. Considering this, we focused on four GO categories 
that seemed to be IA-related: response to stress (FDR-
adjusted P-value = 6.93×10-3), immune system process 
(FDR-adjusted P-value = 3.57×10-2), anatomical 
structure development (FDR-adjusted P-value = 
3.97×10-2), and nervous system development (FDR-
adjusted P-value = 1.49×10-2) (Table 1). From the 
intersection of the genes of their GO categories, we 
further narrowed our focus to three genes (TACC3, 
TRPM2, and NOTCH3) that were shared across all four 
groups (Figure 3B).  However, we found that only 
NOTCH3 of these screened three genes was associated 
with cerebral artery disease in previous work [25]. 
Therefore, we hypothesized that NOTCH3 might be the 
key IA-related gene. Indeed, mRNA expression data 
from the GEO database showed NOTCH3 to be 
significantly downregulated in IA tissue compared to 
cerebral artery tissue (Figure 3C). 
 
Association of IA with NOTCH3 SNPs  
 
Our analysis identified three low-frequency NOTCH3 
SNPs related to IA in our discovery cohort: allele T of 
rs779314594, allele A of rs200504060, and allele T of 
rs2285981. Bioinformatic software tools predicted that 
allele T of rs779314594, allele A of rs200504060, and 
allele T of rs2285981 lead to loss-of-function. Allele T of 
rs779314594 and allele A of rs200504060, both in the 
conserved domain of NOTCH3, were predicted to alter 
an amino acid residue and therefore potentially the 
protein structure (Figure 4) [26]. These SNPs was 
predicted be deleterious by bioinformatics tools GERP++ 
[47], SIFT [46], CADD [48], PolyPhen-2 [49], and 
MutationTaster [29] (Table 2). All three risk alleles were 
enrichment in the IA cases of our discovery cohort 
compared to the different populations of large genetic 
variant databases (Genome Aggregation Database, 
gnomAD) (http://gnomad.broadinstitute.org/) (Table 3) 
[27]. When we used the gnomAD data as controls, 
statistical analyses confirmed that IA was associated with 
allele T of rs779314594 (P = 0.001), allele A of 
rs200504060 (P = 0.004), and allele T of rs2285981 (P = 
0.004). However, no significant enrichment was detected 
in the sporadic IA cases (Supplementary Table 2). 
 
NOTCH3 expression in IA and healthy cerebral artery 
 
We tested NOTCH3 expression in the IA and cerebral 
artery by immunohistochemistry. Staining showed 

http://gnomad.broadinstitute.org/)
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Figure 1. (A) Pedigrees of the 20 cases with intracranial aneurysm (IA). (B)  IA reconstruction from digital subtraction angiography, magnetic 
resonance angiography, and computed tomography angiography. The red arrows indicate the location of the aneurysm. (C) Workflow for 
filtering deleterious single-nucleotide polymorphisms (SNPs). 
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Figure 2. (A) Volcano plot of significantly up-regulated (red) and down-regulated (green) DEGs. (B) Venn diagram showing the number of genes 
from next-generation sequencing (NGS) that were considered mutant (mutagenesis), the number of genes from transcriptome sequencing data 
in the GEO database considered differentially expressed genes (DEGs), and the number of genes common to the NGS and transcriptome 
sequencing datasets. (C) Heat map showing expression of genes overlapping between the NGS and transcriptome sequencing datasets. 

 

 
 

Figure 3. (A) Schematic showing enrichment of functions from intersections of filtered mutant genes and DEGs. The color of the node 
indicates the significance of gene representation, and its size corresponds to the number of genes in that gene ontology (GO) category. The 
IA-related GO-terms that were carried forward are indicated by green arrows. (B) Diagram showing unique and shared genes from the 
selected IA-related GO terms. (C) NOTCH3 mRNA expression data from IA and cerebral artery (CA) tissue, as deposited in the GEO database. 
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Table 1. Genes classified under Gene Ontology (GO) terms related to intracranial aneurysm. 

GO-ID and 
GO-terms 

p-value  

unadjusted False discovery 
rate-adjusted Genes in intracranial aneurysm-related GO-terms 

6950 
response to 
stress 

2.14E-05 6.93E-03 

SLC23A2,AVIL,HFE,BRCA1,TRH,CXCL16,CHAF1A,CDH3,DMBT1,
CREB3L4,EXO1,ADORA3,KYNU,GTSE1,IKBKE,TNFRSF4,AP3B1,N
RG1,AVPR1A,DGKZ,TLR1,ATRN,CCKBR,SMO,RTN4RL1,ADAM9,
MASP2,TLR4,SCG2,PPARD,NOTCH3,PNKP,PROZ,AGER,C2,CYP27
B1,TRPM2,LMAN1,CLN3,ADAMTS13,APOL1,NGFR,POLQ,GCKR,V
DR,F12,XRCC3,HPS1,LY86,XRCC1,USP28,DEF6,SYT7,CRYGD,RA
D51,NEDD4,TRPV4,POLE2,TACC3,FOXA3,FOXA2 

7399 
nervous 
system 
development 

7.19E-05 1.49E-02 

RET, NOTCH3, LAMA1, AVIL, 
CPNE6,CHRD,SEMA3E,PPP1R9A,AGER,IGSF9,CELSR3,NPAS2, 
TRPM2,SALL1,SIX4,CHL1,SLIT1,GPC2, NKX6-
1,ZNF488,SH3GL1,NGFR,SEMA6A,EDN3,UNC5B,LRRN4,LIMK1,N
RG1,SEMA4F,MYO7A,AVPR1A,SYNJ2,SEMA4G,TAL2,SMO,DOK5,
RTN4RL1,NEDD4,KCNQ2,TACC3,EPHA2,PPARD,FOXA2 

2376 
immune 
system 
process 

4.14E-04 3.57E-02 
NOTCH3,FLT3,HFE,STXBP2,CTSW,TREM2,CD1B,CXCL14,RASGR
P4,C2,RELB,CXCL16,CYP27B1,TRPM2,DMBT1,SIX4,EXO1,KYNU,
APOL1,CD34,IKBKE,TNFRSF4,EDN3,VDR,F12,LY86,AP3B1,TLR1,P
C,TACC3,ADAM9,MASP2,TLR4,SCG2,BCAR1 

48856 
anatomical 
structure 
development 

4.79E-04 3.97E-02 

RET,FLT3,AVIL,TREH,CPNE6,PPP1R9A,CELSR3,TGM1,ADAMTS2,
CYP26B1,SALL1,DMBT1,SIX4,CHL1,EXO1,SALL4,TRPS1,COL10A
1,BTRC,ZNF488,SH3GL1,FOXD1,SEMA6A,EDN3,UNC5B,NRG1,MY
O7A,AVPR1A,COL2A1,SPINT1,TAL2,SMO,ANGPTL6,DOK5,RTN4R
L1,KCNQ2,MMP19,ADAM9,SCG2,EPHA2,PPARD,NOTCH3,TMPRS
S6,LAMA1,CHRD,SEMA3E,PPL,AGER,IGSF9,NPAS2,RASGRP4,RE
LB,CYP27B1,TRPM2,CHST11,RAB26,SLIT1,GPC2,NKX61,ARSE,NG
FR,CDSN,VDR,LRRN4,LIMK1,PCDH8,SEMA4F,SYNJ2,SEMA4G,AL
OX15B,DAB2,PC,NEDD4,ITGA11,TACC3,HOXD4,FOXA2 

 

 
 

 
Figure 4. Sequence query of NOTCH3 conserved domains. Reprinted from https://www.ncbi.nlm.nih.gov/Structure/cdd 
/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE=AAB91371.1. Data show allelic variants that result in amino acid changes and protein structure, 
as modeled by SWISS-MODEL (https://www.swissmodel.expasy.org/). 
 

https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE=AAB91371.1
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi?INPUT_TYPE=live&SEQUENCE=AAB91371.1
https://www.swissmodel.expasy.org/).
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Table 2. Functional annotation of variations at the NOTCH3 locus  

ID REF ALT Func ExonicFunc SIFTa MutationTasterb gerp++gt2c CADDd 
rs779314594 C T exonic missense SNV 0.183,T 1.000,D 3.92 16.94 
rs200504060 G A exonic missense SNV 0.006,D 1.000,N 2.93 16.86 
rs2285981 C T exonic missense SNV 0.002,D 1.000,D 4.41 15.22 

ALT, Sample genome base type; REF, Reference genome base type; SNV, single nucleotide variant. 
aSIFT score indicates whether the variation is likely to cause changes in protein structure or function: “D”, deleterious (sift ≤ 
0.05); “T”, tolerated (sift > 0.05). 
bMutationTaster represents the effect of the mutation on the protein sequence: “A”, “disease_causing_automatic”; “D”, 
“disease_causing”; “N”, “polymorphism”; “P”, “polymorphism_automatic”. 
cVariations with a gerp++gt2 score > 2 are considered conservative. 
dCADD score >15 means that the variation affects protein function. 
 

Table 3. Single-nucleotide polymorphisms in NOTCH3 that are associated with intracranial aneurysm 

ID Polymorphism our study (risk 
allele/ normal allele) 

GnomADa (risk 
allele/ normal allele) 

Fisher's 
Exact Test OR 

95% CI 
Lower Upper 

rs779314594 T T/C = 1/19 T/C = 14/223582 P<0.001 841 105 6715 

rs200504060 A A/G = 1/19 A/G = 237/245087 P<0.004 269 35 2048 

rs2285981 T T/C = 1/19 T/C = 48/245638 P<0.004 256 37 1765 

aGenome Aggregation Database (http://gnomad.broadinstitute.org/) 

 
significantly lower NOTCH3 expression in the IA 
(Figure 5A and 5C). The Imaging diagnosis of IA 
specimens was provided in Figure 5B.  The decreased 
mRNA and protein expression of NOTCH3 in IA tissue 
suggests that NOTCH3 can protect against IA. We 
further confirmed that the genotypes of these samples 
did not contain risk variants allele T of rs779314594 
allele A of rs200504060, and allele T of rs2285981 
(Supplementary Table 3). 
 
NOTCH3 expression in neutrophils  
 
Due to the role of the immune response in IA rupture, we 
retrieved data on NOTCH3 expression in peripheral blood 
neutrophils from individuals with IA and healthy controls 
from the GEO database (https://www.ncbi.nlm.nih.gov/ 
geo, GSE106520) [14]. NOTCH3 mRNA expression was 
significantly higher in IA neutrophils (Figure 6A). 
 
NOTCH3 knockdown down-regulates angiogenesis 
factors in HUVEC 
 
IA has been associated with IL-1β, IL-6, TNF-α, MMP9, 
MMP2, NF-κB, MCP-1, and VCAM1 [8, 11, 12, 18–20]. 
To determine whether these factors are regulated by 
NOTCH3, we transfected HUVECs with shRNA 
targeting NOTCH3 or negative control shRNA, and we 
verified NOTCH3 knockdown in HUVECs using 
Western blotting and RT-qPCR (Figure 6B). Levels of 

mRNAs encoding all these factors tended to decrease in 
the presence of NOTCH3 knockdown, but the decrease 
was significant only in the case of IA-related and 
angiogenesis factors MMP9, NF-κB, MCP1, IL-6 and 
VCAM-1 (Figure 6C). However, no noticeable 
differences in these significantly decreased angiogenesis 
factors were found between IA and healthy artery 
(Supplementary Figure 1). 
 
DISCUSSION 
 
In this study, we identified NOTCH3 as a key IA-related 
gene through a series of bioinformatic analyses 
followed by validation with IA patients’ samples and 
cell culture. First, we analyzed next-generation 
sequence data and discovered 6649 deleterious SNPs in 
4537 genes in IA patients. Second, we collected RNA-
sequencing data from GEO datasets and identified 1403 
DEGs associated with IA. Third, we focused on 369 
genes shared between the genes that were mutated in 
our next-generation sequencing data and the DEGs from 
the GEO data. Finally, we took the intersection of four 
highly relevant IA-related GO-term genes and decided 
to focus on NOTCH3 because of its previously defined 
role in the cerebral artery. We then performed 
immunohistochemical studies on IA and cerebral artery 
tissue and showed NOTCH3 down-regulation in IA. 
Further, we found that NOTCH3 knockdown down-regulated 
angiogenesis molecules in HUVECs. However, the 

http://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/geo
https://www.ncbi.nlm.nih.gov/geo
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Figure 5. (A) Representative pictures of NOTCH3 immunohistochemistry staining or hematoxylin and eosin staining of IA and cerebral artery 
tissues. (B) Reconstructed images from diagnostic CTA and DSA scans. The red arrows indicate the location of the IA. (C) Percentage of 
positively stained cells in panel (A) as measured using Image J. ACoA: anterior communicating artery, MCA: middle cerebral artery.  p<0.05. 
 

Figure 6. (A) Quantification of NOTCH3 transcription in peripheral blood neutrophils from samples with or without IA. (B) Western blot and 
RT-qPCR of whole cell lysate from HUVECs transduced with negative control shRNA or NOTCH3-shRNA. (C) Quantification of IA-related factor 
transcripts from HUVECs transduced with negative control shRNA or NOTCH3-shRNA. 
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mRNA expression of NOTCH3 increases in peripheral 
blood neutrophil. 
 
In this study, we found that IA may be associated with 
allele T of rs779314594 (P = 0.001), allele A of 
rs200504060 (P = 0.004), and allele T of rs2285981 (P = 
0.004) in discovery cohort (Table 3). However, no 
significant enrichment was detected in the sporadic IA 
cases (Supplementary Table 2). It indicates that the 
detected SNPs of NOTCH3 remain familial 
accumulations. They locate in the exons regions of 
NOTCH3 gene, and may affect the function of protein, 
because the variations alter the amino acid residue of 
original protein so that the structure of the NOTCH3 
protein was changed [28] (Figure 4). Additionally, this 
alteration was predicted be deleterious by bioinformatics 
tools GERP++ [47], SIFT [46], CADD [48], PolyPhen-2 
[49], and MutationTaster [29] (Table 2). 
 
Damage to the cerebral artery is the induction factor for 
IA [30], and NOTCH3 plays a vital role in cerebral 
blood vessels. NOTCH3 is essential for the structural 
integrity of small distal elastic arteries. In NOTCH3-null 
mice, myogenic tone significantly decreases, and 
isolated cerebral and tail caudal arteries show increased 
flow-mediated dilation. NOTCH3 governs the reactivity 
of vessels to pressure, flow, and other mechanical factors 
via the RhoA/ROCK signaling pathway [31]. Recently, 
our team identified the guanine exchange factor 
ARHOGEF17 in the RhoA/ROCK signaling pathway as 
a risk factor for IA [32]. Furthermore, the Notch 
pathway cross-talks with important signaling networks 
involving angiotensin-2 (AngII), [33] TGFβ, [34] ALK1, 
[35] and VEGF [36]. All these pathways play essential 
roles in IA onset and formation. Therefore, our findings 
support the importance of NOTCH3 in IA development. 
Further studies should be performed to determine how 
reduced expression of NOTCH3 affects the cerebral 
artery as well as the downstream IA-related signaling 
pathways mentioned above. Our findings here are 
consistent with previous studies linking NOTCH3 to IA 
[37], and cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy [25]. 
 
NOTCH3 can promote inflammation in some biological 
processes [38], and inflammatory cells play a crucial 
role in IA formation and rupture. We examined 
NOTCH3 mRNA expression in neutrophils from the 
GEO database and found mRNA expression to be 
higher in IA neutrophils than in control neutrophils 
(Figure 6A). It may be that higher levels of NOTCH3 in 
neutrophils promote inflammation in the cerebral artery, 
injuring it and thereby leading to IA. We did not find 
direct connection between the expression level of 
NOTCH3 and the patient prognosis in our study. 
Nevertheless, rupture of IA is the most severe 

prognostic indicator for IA patient, and the risk of 
aneurysm rupture is associated with the degree of 
inflammation in the arterial wall, which in turn could be 
aggravated by upregulated NOTCH3 in neutrophils [39, 
40]. In addition to inflammation, altered NOTCH3 
expression may contribute to IA by influencing 
angiogenesis damaging cerebrovascular endothelial 
repair. We found that NOTCH3 knockdown in 
HUVECs significantly down-regulated MMP9, NF-κB, 
MCP1, IL-6 and VCAM-1. These factors help regulate 
angiogenesis under homeostatic conditions [41], and an 
imbalance of angiogenesis factors is associated with IA 
[42]. We extracted the expression levels of impacted 
genes by NOTCH3 knockdown in HUVEC of from the 
GEO dataset but no noticeable difference was found 
between IA and healthy artery (Supplementary Figure 
1). The authors deem that the possible cause is that 
these decreased changes of IA-related factors are mainly 
in cerebral vessel endothelium but not smooth muscle, 
and these changes cannot be shown in the sequencing of 
the complete IA and healthy artery. In short, distinct 
expression of NOTCH3 in IA tissue vs. neutrophils may 
have differential implication in IA: down-regulated 
NOTCH3 in IA tissue disrupts angiogenesis and 
cerebrovascular endothelial repair [43]; up-regulated 
NOTCH3 in neutrophils promotes inflammation and 
damage cerebral vessels directly.  
 
In conclusion, we think that variations in NOTCH3 and 
dysregulation of its expression (down-regulation in 
cerebral artery, up-regulation in neutrophils) contribute 
to IA, perhaps directly as well as indirectly by affecting 
the levels of downstream IA-related factors (Figure 7). 
For precision medicine [44], our work identifies  
 

 

 
Figure 7. Schematic illustrating a possible role for NOTCH3 
in IA. NOTCH3 is altered at the genetic polymorphisms which 
were predicted to alter an amino acid residue and therefore 
potentially the protein structure. Down-regulated expression of 
NOTCH3 in the cerebral artery influences angiogenesis damaging 
cerebrovascular endothelial repair. Up-regulated expression of 
NOTCH3 in neutrophil activate and promote inflammation in the 
cerebral artery. In a word, these abnormities in NOTCH3 cause 
damage to blood vessels in the brain, which can lead to the onset 
and development of intracranial aneurysm. Image modified from 
ScienceSlides (VisiScience Corp., North Carolina, USA). 
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NOTCH3 as a novel target for treating or even preventing 
IA. Further research is needed to clarify how NOTCH3 
participates in IA formation and development. 
 
MATERIALS AND METHODS 
 
Patient information and next-generation sequence 
data 
 
All study participants signed informed consent before 
enrollment. The discovery cohort for this study included 
20 Chinese individuals diagnosed with IA at Tianjin 
Medical University General Hospital (Figure 1A and 
1B). Ten individuals had unruptured IAs diagnosed by 
computed tomography angiography or digital 
subtraction angiography. The remaining ten subjects 
had subarachnoid hemorrhage caused by IA rupture, 
which was confirmed by computed tomography 
angiography, surgery and clinical symptoms or signs. 
Among the 20 patients, 19 were familial cases, while 
one was a sporadic case.  
 
Patient blood samples were collected and immediately 
preserved in the −80 °C freezer until further use. 
Samples were used for whole-genome sequencing 
(n=10) (Novogene, Beijing, China) and whole exome 
sequencing (n=10) (BerryGenomics, Beijing, China) 
(Figure 1C). Variation sites were annotated and 
filtered based on functional changes by SAMtools, 
ANNOVAR, PolyPhen-2 and SIFT software [45–48]. 
We adapted broadly used bioinformatics tools 
including GERP++, [49] SIFT, [48] CADD, [50] 
PolyPhen-2, [51] and MutationTaster to predict the 
functional effects of missense variants [29, 52]. As 
long as one of the above tools predicts the harmfulness 
of the SNP, we assume that this variation site is 
deleterious SNP. All genes with de deleterious SNPs 
were screened for combining with the following trans-
criptome sequencing data to find new IA-related genes. 
 
Composition and analysis of transcriptome 
sequencing data 
 
We obtained high-throughput RNA data from 129 
samples across eight series of data for IA and cerebral 
artery tissue from the Gene Expression Omnibus (GEO) 
(Supplementary Table 3). We also obtained high-
throughput RNA data from peripheral blood neutrophils 
of IA patients and controls from the GEO 
(https://www.ncbi.nlm.nih.gov/geo, GSE106520). 
 
Differentially expressed genes (DEG) between IA and 
healthy cerebral artery tissue were identified using R 
and Bioconductor [53, 54]. First, we used the limma 
package (version 3.8) with batch normalization to 
integrate different data platforms into one matrix [55]. 

Then all the samples from the combined matrix were 
standardized (Supplementary Figure 2) and DEGs were 
determined using the Empirical Bayes method [56]. 
Statistically significant DEGs were defined as p<0.05 
and |logFC| > 1 (logFC, Fold change between IA and 
healthy cerebral artery). 
 
Comprehensive data mining  
 
To identify likely IA-related genes, we combined the 
next-generation sequencing data and high-throughput 
RNA data and analyzed them using BiNGO (Cytoscape 
Biological Networks, Version 3.0.3), a Gene Ontology 
(GO) program that assesses the overrepresentation of 
GO categories in a biological network [23]. DEGs were 
analyzed using the Benjamini & Hochberg False 
Discovery Rate (FDR) correction [57]. P-value < 0.05 
was used to define significant enrichment. This analysis 
identified the following enriched IA-related GO-term 
genes: GO-6950, response to stress; GO-7399, nervous 
system development; GO-2376, immune system 
process; and GO-48856, anatomical structure 
development. These subcategories were checked for 
overlap with mutant genes discovered from our next-
generation sequencing in order to identify shared IA-
related gene(s). 
 
Identified SNPs of NOTCH3 was tested in sporadic 
IA patients 
 
In order to ascertain the association between identified 
SNPs of NOTCH3 and sporadic IA patients, we 
performed KASP (Kompetitive Allele Specific PCR) 
for SNP genotype (BioMiao Biological Technology 
(Beijing) Co., Ltd). The primers and probes were 
designed by the Laboratory of the Government Chemist 
(LGC) (Supplementary Table 4).  The DNA of blood 
samples of IA patients (n=594) and control subjects 
(n=600) sourced from our previous studies [32, 58].  
The Sequencing data was analyzed by PLINK (Version 
1.9) [59]. Multiple-testing was performed in PLINK to 
make the statistics more exact. 
 
Preparation and immunohistochemistry of IA and 
healthy cerebral artery specimens 
 
IA specimens were donated by three patients who 
underwent clipping at Fuzhou Second Hospital 
Affiliated to Xiamen University. All three subjects 
signed informed consent forms. The sample acquisition 
was approved by IRB (SQ2018-003). After the 
aneurysm was securely clipped, a small piece of tissue 
was removed from the IA crest and considered as IA 
wall tissue. Cerebral artery samples from the control 
group were taken from autopsies performed in the 
Department of Pathology at Fuzhou Second Hospital 

https://www.ncbi.nlm.nih.gov/geo
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Affiliated to Xiamen University. The two sets of 
specimens were immediately stored at −80°C (Thermo 
Scientific™, Shanghai, China) and processed for 
experimentation within one month. Tissues were fixed 
in 4% paraformaldehyde for 24 hours, paraffin-
embedded, and sliced to a thickness of 4 μm. Specimens 
underwent antigen retrieval in 10 mM sodium citrate 
(pH 6.0) containing 0.05% Tween 20 for 3 min at 
maximum strength in a pressure cooker, then allowed to 
cool to room temperature. This was followed by 
blocking with 5% goat serum for 30 min at 37 °C to 
prevent nonspecific staining. The samples were 
subsequently incubated overnight at 4 °C with anti-
NOTCH3 primary antibody (1:300; Abcam, Cambridge, 
UK, catalog no. ab23426). After 16 hours, the samples 
were rinsed with TBST and then incubated for 1 h at 
room temperature with secondary antibodies. DAB 
chromogen was added for 4 min to a final concentration 
of 0.05%, and slices were sealed with neutral resin. 
Finally, the sections were observed and images captured 
with an inverted microscope (OLYMPUS, Japan).  
 
Before fixation, a small piece of tissue was taken for 
genotyping rs779314594, rs200504060, and rs2285981 
of NOTCH3 by Sanger sequencing (BioMiao Biological 
Technology, Beijing, China) [60]. Clinical data for 
these samples are provided in the Supplementary Data 
(Supplementary Table 5). 
 
Culture of HUVECs  
 
HUVECs (ScienCell, California, US, catalog no. 8000) 
were maintained in Endothelial Cell Medium (ScienCell, 
California, US, catalog no. 1001) supplemented with 1% 
endothelial growth supplement and 5% fetal bovine serum 
(FBS) at 37 °C in an incubator with 95% humidified air 
and 5% CO2. Subculture was performed when the cells 
reached 90–95% confluency. Cells within five passages 
were used for in vitro studies. 
 
Lentiviral transfection 
 
Recombinant lentivirus was transfected into HUVECs 
using the Lentivirus transfection system (Hanbio, 
Shanghai, China) according to the manufacturer’s 
instructions. For lentivirus construction, short hairpin 
(sh)RNA clones were inserted into pHBLV-U6-MCS-
CMV-ZsGreen-PGK-PURO puromycin lentiviral 
vectors (Hanbio, Shanghai, China). Cells were infected 
with the virus in the presence of Polybrene (Sigma-
Aldrich, Missouri, USA). At 48h later, HUVECs were 
cultured in medium containing puromycin for the 
selection of stable clones. Clones in which NOTCH3 
was stably knocked down were selected and verified by 
Western blotting and RT-qPCR. The following 
previously published shRNA sequences were used [61]: 

NOTCH3 top strand, GATCCGGGGGACCTGCCGTGG 
CTATATTCAAGAGATATAGCCACGGCAGGTCCCC 
CTTTTTTG; NOTCH3 bottom strand, AATTCAAAA 
AAGGGGGACCTGCCGTGGCTATATCTCTTGAATA 
TAGCCACAGGTCCCCCG; negative control sequence 
top strand, GATCCGGGGGACCTGCCGTGGCTATA 
TTCAAGAGATATAGCCACGGCAGGTCCCCCTTTT 
TTG; negative control bottom strand, AATTCAAA 
AAAGGGGGACCTGCCGTGGCTATATCTCTTGAAT
ATAGCCACGCAGGTCCCCCG. 
 
RT-qPCR 
 
Total RNA was extracted from cells using Trizol reagent 
(Invitrogen, Carlsbad, CA, USA) as described by the 
manufacturer’s instructions. Reverse transcription was 
performed using a Reverse Transcription Kit (Promega, 
Shanghai, China). All reactions for real-time PCR were 
carried out in triplicate in a Bio-Rad Cycler system 
(Thousand Oaks, California, USA) using the SYBR 
Premix (Madison, Wisconsin, USA) and analyzed using 
the 2ΔΔ cycle threshold method. Levels of mRNA were 
presented relative to those for GAPDH. All primers were 
sourced from PrimerBank (https://pga.mgh.harvard.edu/ 
primerbank/) [62]. Primer sequences are provided in the 
Supplementary Data (Supplementary Table 6). 
 
Statistical analysis  
 
Statistical comparisons of two groups were analyzed 
using Student’s t-test. Statistical analyses of allele T  
of rs779314594, allele A of rs200504060, and allele T 
of rs2285981 was performed by Fisher’s test. A value of 
P<0.05 was regarded as significant. All analyses were 
performed using SPSS 22.0 (64-bit edition, IBM, 
Chicago, IL, USA). 
 
Ethical approval 
 
Subjects (or their parents or guardians) have given their 
written informed consent. 
 
The research institute’s committee has approved the 
study protocol of population genetics on human 
research (20170035). Immunohistochemistry of IA and 
healthy cerebral artery specimens was also approved 
(SQ2018-003). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

  Supplementary Figure 1. The impacted IA-related angiogenesis factors by NOTCH3 Knockdown in HUVEC in IA  
  and cerebral artery. 
 
 
 
                                             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                   Supplementary Figure 2. Normalization of between arrays. 
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                                           Supplementary Figure 3. NOTCH3 expression in different organs. 
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         Supplementary Figure 4. The original whole full-length and uncropped image of western results of Figure 6. 
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Supplementary Tables 

Please browse Full Text version to see the data of : 
Supplementary Table 1. DEGs between IA and healthy cerebral artery. 

 

Supplementary Table 2. Rs779314594, rs200504060, rs2285981 in sporadic IA cases and control subjects. 

SNP 
Mutant 

type  
Wild 
type F_A 

IA group Control group OR P  BONF 

A1 A2 A1A1 A1A2 A2A2 A1A1 A1A2 A2A2    
rs779314594 - C 0 0 0 527 0 0 572 - 1 1 

rs200504060 A G 
0.0158 0 17 520 0 13 572 1.44 

(0.69–
2.99) 

0.33 0.99 

 rs2285981 T C 
0.005217 0 6 569 0 13 580 0.47 

(0.18–
1.25) 

0.13 0.39 

Note: A1 and A2 are allelic genes, A1 is the mutant type, A2 is wild type. F_A, Frequency of this allele in IA group. 
Abbreviations: SNP, single nucleotide polymorphism; IA, intracranial aneurysm; BONF, Bonferroni single-step adjusted P-
values. 
 

Please browse Full Text version to see the data of : 
Supplementary Table 3. IA sample and cerebral artery sample of GEO. 

 
 
Supplementary Table 4. KASP primers and probes. 

 rs200504060 rs2285981 rs779314594 

FAM-
labelled 
primer 

GGTGCCATTGTGTAGGCACCG GTGTCCTGGACAGTCGTCCAC ATCAACCCAGTGGGCCCC
G 

HEX-
labelled 
primer 

AGGTGCCATTGTGTAGGCACCA GTGTCCTGGACAGTCGTCCAT GATCAACCCAGTGGGCCC
CA 

universa
l primer 

GGTGCTCTGCGAGATTAATGAG
GAT 

CTGCTAGGGTTTGAGGGTCAGAAT
T 

AGCAGAGGCCCCAGGCCG
T 

 
 

Supplementary Table 5. Clinical data of IA samples and CA samples. 

 
 
 
 

Sample Age Sex location Genotype 
rs779314594 rs200504060 rs2285981 

IA sample 1 53 Female AcoA CC GG CC 
IA sample 2 60 Male MCA CC GG CC 
IA sample 3 69 Male MCA CC GG CC 
CA sample 1 68 Female MCA CC GG CC 
CA sample 2 73 Male MCA CC GG CC 
CA sample 2 65 Female MCA CC GG CC 
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Supplementary Table 6. Primers of IA-related factors tested in HUVEC. 

H-IL-1beta_F-132 ATGATGGCTTATTACAGTGGCAA 
H-IL-1beta_R-132 GTCGGAGATTCGTAGCTGGA 

H-IL6_F-149 ACTCACCTCTTCAGAACGAATTG 
H-IL6_F-149 CCATCTTTGGAAGGTTCAGGTTG 

H-MCP-1_F-190 CAGCCAGATGCAATCAATGCC 
H-MCP-1_F-190 TGGAATCCTGAACCCACTTCT 
H-TNF-α_F-220 CCTCTCTCTAATCAGCCCTCTG 
H-TNF-α_R-220 GAGGACCTGGGAGTAGATGAG 
H-MMP-2_F-90 TACAGGATCATTGGCTACACACC 
H-MMP-2_R-90 GGTCACATCGCTCCAGACT 
H-MMP-9_F-97 TGTACCGCTATGGTTACACTCG 
H-MMP-9_R-97 GGCAGGGACAGTTGCTTCT 
H-NF-κB_F-104 AACAGAGAGGATTTCGTTTCCG 
H-NF-κB_R-104 TTTGACCTGAGGGTAAGACTTCT 
H-VCAM1_F-89 GGGAAGATGGTCGTGATCCTT 
H-VCAM1_R-89 TCTGGGGTGGTCTCGATTTTA 
NOTCH3_F-122  CGTGGCTTCTTTCTACTGTGC 
NOTCH3_R-122  CGTTCACCGGATTTGTGTCAC 

 


