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ABSTRACT 
 
The naked mole-rat (Heterocephalus glaber) is characterized by a more than tenfold higher life expectancy 
compared to another rodent species of the same size, namely, the laboratory mouse (Mus musculus). We used 
mass spectrometric metabolomics to analyze circulating plasma metabolites in both species at different ages. 
Interspecies differences were much more pronounced than age-associated alterations in the metabolome. Such 
interspecies divergences affected multiple metabolic pathways involving amino, bile and fatty acids as well as 
monosaccharides and nucleotides.  The most intriguing metabolites were those that had previously been linked 
to pro-health and antiaging effects in mice and that were significantly increased in the long-lived rodent 
compared to its short-lived counterpart. This pattern applies to α-tocopherol (also known as vitamin E) and 
polyamines (in particular cadaverine, N8-acetylspermidine and N1,N8-diacetylspermidine), all of which were 
more abundant in naked mole-rats than in mice. Moreover, the age-associated decline in spermidine and N1-
acetylspermidine levels observed in mice did not occur, or is even reversed (in the case of N1-acetylspermidine) 
in naked mole-rats. In short, the present metabolomics analysis provides a series of testable hypotheses to 
explain the exceptional longevity of naked mole-rats.  
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INTRODUCTION 
 
Although biological and chronological time can be 
dissociated to some extent by experimental manipula-
tion, aging appears to be the most important risk factor 
for the deterioration of normal physiological functions 
and the manifestation of organ-specific or systemic 
pathologies, physical and mental decadency, and 
eventual death [1–3].  
 
One species that – to a certain degree – escapes from 
the rule that natural life expectancy declines with body 
mass is the naked mole-rat (Heterocephalus glaber). 
The naked mole-rat (NMR) is a small poikilotherm 
rodent native to East Africa that lives strictly 
underground in social colonies (Kenya, Ethiopia and 
Somalia). Although this rodent has a similar size as the 
laboratory mouse (Mus musculus), it lives 10-20 times 
longer without showing any visible signs of aging [4]. 
Furthermore, the naked mole-rat can live for over 32 
years in captivity [5], without facing any increased age-
related risk of mortality, challenging Gompertz’s 
mortality law, and thus establishing the naked mole-rat 
as a non-aging mammal [6].  
 
Not only naked mole-rats can live an extremely long 
life, but they also show a remarkably long healthspan 
associated with almost no decline in physiological or 
biochemical functions for more than 20 years [4,7]. For 
example, cardiac functions are well preserved in aged 
naked mole-rats [8], cognitive functions do not decline 
with age and the NMR brain seems to be naturally 
protected from neurodegenerative processes [9], and 
also very little pathologic alterations have been found in 
the kidneys of aged naked mole-rats [10].  
 
In addition, typical signs of aging, such as loss of 
fertility, muscle atrophy, bone loss, changes in body 
composition or metabolism are mostly absent in the 
naked mole-rats [7,11–13]. Finally, the incidence of 
age-related diseases such as cancers or metabolic 
disorders is extremely low in the NMR [10,14].   
 
Herein, we investigated age-dependent and species-
specific differences in the metabolome of naked mole-
rats and mice, with the objective to identify novel 
mechanisms that may explain the exceptional resistance 
of NMR against the advancement of time. We were able 
to identify several circulating metabolites previously 
associated to an increased healthspan and lifespan in 
other species that might explain the longevity 
phenotype of this model species.  
 
 
 
 

RESULTS AND DISCUSSION 
 
Trans-species differences in the metabolome 
 
Plasma samples from post-adolescent young (1-1.5 
months), intermediate (6-10 months) and mature/old (20 
months) mice were compared to plasma specimens from  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Overview of the plasma metabolome in the two rodents. The abundance of each metabolite is indicated for each 
mouse or naked mole-rat (NMR) as a heat map (red = high, green=low). Results were subjected to hierarchical clustering to indicate the 
increase (upper part) or decreased (lower part) of metabolites in NMR as compared to mice. Note that the raw data are listed in 
Supplementary Table 1. 
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post-adolescent young (1 year), intermediate (4 years) 
and relatively mature/old (10 years) naked mole-rats. 
Samples were subjected to mass spectrometric meta-
bolomics using several different extraction methods, 
matrices and chromatography methods (including gas 
and liquid chromatography) to extract a maximum of 
information on a wide spectrum of metabolites. Results 
were then filtered based on quality control criteria (see 
Materials and Methods) and subjected to unbiased 
hierarchical clustering to reveal age- and species-
dependent differences (Figure 1, Supplementary Table 
1). We also performed volcano plot-based comparisons 
between mice and naked mole-rats irrespective of their 
age (Figure 2a), as well as within the same species  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

between young and old animals (Figure 2a, b). This 
approach clearly indicates that species differences are 
well more important than age, allowing to clearly 
separating the samples from two rodents (Figure 1). The 
number of metabolites that were significantly reduced 
in their plasma concentration in naked mole-rats as 
compared to mice was larger than the number of 
compounds that were enhanced (Figure 1 and 2, 
Supplementary Table 1). Bioinformatic analyses to 
understand the divergence in the metabolomes from 
mice and naked mole-rats failed to yield a simple 
pattern of differences (Supplementary Figure 1 and 
Supplementary Figure 2). Rather, the two species differ 
in multiple apparently unconnected pathways.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Volcano plots of metabolome differences. (A) Interspecies comparison. (B) Comparison between young (1-1.5 
months) and old (20 months) mice. (C) Comparison between young (1 year) and old (10 months) naked mole-rats (NMR). The 
color code classifying different metabolic species used in A is also used in B and C. Selected metabolites are indicated. 
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Metabolites reduced in naked mole-rats 
 
A large number of diverse circulating phosphatidyl 
cholines (abbreviated PCae) with distinct acyl chains 
(length 14 to 20) and unsaturation levels (from 0 to 4) 
were reduced in naked mole-rats. In addition, multiple 
unsaturated free fatty acids (e.g. arachidonic, dodece-
noic, docosahexaenoic, heptadecanoic, linoleic, non-
adecanoic, oleic, palimitoleic, tetradecadienoic acids) 
and carnitine-acyl esters (length 2-14) were decreased, 
pointing to a major alteration of lipid metabolism. The 
reduction of lipids and in particular, carnitine-acyl 
esters, that occurs in naked mole-rats might indicate 
efficient beta-oxidation. In line with a possible 
alteration of lipid metabolism, the major ketone body 3-
hydroxybutyrate and two ketogenesis-associated meta-
bolites, 2-hydroxy-2-methylbutyric acid and 2-hydroxy-
3-methylbutyric acid, were depleted in the long-lived 
species. Furthermore, two primary bile acids (cholic and 
muricholic acids) and two tauro-conjugated bile acids 
(taurocholic, tauromuricholic acids) were strongly 
diminished. Several nucleic acid-relevant metabolites 
(guanosine, hypoxanthine, inosine, ribose-5-phosphate, 
and xanthine) were also reduced in the plasma from 
naked mole-rats compared to that of mice (Figure 1 and 
Figure 2a).  
 
Several gamma-glutamyl amino acids (gamma-glutamyl 
leucine, gamma-glutamyl lysine, gamma-glutamyl 
threonine, and gamma-glutamyl tyrosine), which are 
proteolytic breakdown products were underrepresented 
in the plasma from naked mole-rats, in line with a prior 
report [15], suggesting a major reduction in protein 
turnover or an improved clearance of these metabolites 
(Figure 3a-d). The lysine degradation product 5-
aminovaleric acid present also a reduced abundance in 
NMR compared to mice (Figure 3e). This metabolite is 
correlated positively with breast cancer risk in women 
[16]. Hydroxyphenyllactic acid, a tyrosine metabolite 
that increases with weight loss in obese women [17] and 
that correlates with ovarian cancer recurrence after 
surgery [18], was also decreased in NMR (Figure 3f). 
Furthermore, the tryptophan metabolite 3-Indole 
propionic acid (a bacterial metabolite), was diminished 
(Figure 3g). The same applies to taurine, a cysteine 
metabolite (Figure 3h), and dimethylglycine (Figure 3i), 
which increases with methionine restriction in mice 
[19]. However, methionine tended to be relatively lower 
in the long-lived species (Figure 3j), supporting the 
hypothesis [15] that long lived naked mole-rats bear 
characteristics of a methionine-restricted metabolism.  
 
Of note, sphingosine-1-phosphates (S1P) was reduced 
in naked mole-rats compared to mice (Figure 4a), a  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Amino acid derivatives that are reduced in naked mole-rats. Statistical comparisons were calculated by means of a two-
sided Wilcoxon test. P-values are indicated. 
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finding that appears interesting because in humans, S1P 
levels inversely associate with arteriosclerosis [20], but 
increase in prostate cancer [21], and predict osteo-
porotic fractures in postmenopausal women [22]. Thus, 
S1P seems a biomarker of several health-related 
parameters. Other metabolites that were reduced in the 
long-living species were glycerol-3-phosphate, indole-
3-acrylic acid (a plant auxin), phosphocreatine (Figure 
1), S-adenosylmethione (the methyl group donor for 
methylation reactions) (Figure 4b), as well oxidized 
glutathione, pleading in favor of a strong antioxidant 
system [23]. Indeed, the ratio of reduced over oxidized 
glutathione was significantly higher in naked mole-rats 
than in mice (Figure 4c).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus, a large panel of metabolites falling into distinct 
functional categories is comparatively low-abundant in 
naked mole-rats than in mice.  
 
Metabolites increased in naked mole-rats 
 
Opposite to the multiple abovementioned phosphatidyl 
cholines, PCae (22:4) was increased in naked mole-rats. 
Three aliphatic even-number medium-chain (12, 14 or 
16 carbons) alpha-omega dicarboxylic acids (dodecane-
dioic, tetradecanedioic and heptadecatrienoic acids) 
were increased in NMR. These metabolites can be 
endogenously generated by omega oxidation of 
monocarboxylic acids or stem from vegetables [24].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4. Selected metabolic alterations in naked mole-rats. Statistical comparisons were calculated by means of a 
two-sided Wilcoxon test. P-values are indicated. 

 

Figure 5. Amino acid derivatives that are elevated in naked mole-rats. Statistical 
comparisons were calculated by means of a two-sided Wilcoxon test. P-values are indicated. 
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Among these, dodecanedioic acid has been shown to 
improve glycemic control and to reduce muscle fatigue 
in type-2 diabetes patients, suggesting that it can 
improve metabolic flexibility [25,26]. In contrast, 
hexadecanedioic acid plasma levels are associated with 
high blood pressure in patients, and oral supplemen-
tation of hexadecanedioic acid causes hypertension in 
rats [27] (Figure 1).  
 
Phosphocholine and cholesterol were enhanced in the 
long-lived rodent (Figure 1). Several bile acids were 
also increased, as this applies to one primary bile acid 
(chenodeoxycholic), three secondary bile acids 
(deoxycholic, hyodeoxycholic, ursodeoxycholic) and 
three glycoconjugated (glycodeoxycholic, glycocheno-
deoxycholic, glycohyodeoxycholic. This shift in 
circulating bile acids (Supplementary Figure 1) suggests 
species-differences in their metabolism, as this has been 
reported across mammalian species [28]. Bile acid 
supplementation has been shown to promote longevity 
in yeast [29,30], and supplementation with cholic acid 
increases longevity in short-lived progeroid mice [19].  
This suggests a possible link between bile acid meta-
bolism and the exceptional longevity of naked mole-rats.  
 
Several free amino acids were particularly abundant in 
naked mole-rats compared to mice: alanine, aspartic 
acid, glutamic acid, isoleucine, leucine, serine and 
threonine (Figure 1, Figure 2a). Moreover, the dipeptide 
leucylproline and several amino acid derivatives were 
elevated: hexanoylglycine, S-adenosyl homocysteine 
and trimethyl lysine (Figure 5a-d). Interestingly, 
multiple sugars were more abundant in the plasma from 
the long-lived species, as this applies to lactose, 
maltose, raffinose and sucrose, as well as to the sugar 
alcohol xylitol. Two malonate derivatives, methylmalo-
nic acid and malonylcarnitine were both overabundant 
in naked mole-rats. Lactate was increased, and so was 
adenosine, azelaic acid (generally considered as a 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fungal metabolite), creatinine, glyceric acid (a glycerol 
oxidation product) and hippuric acid (a biomarker of 
polyphenol uptake) (Figure 1, Figure 2a).  
 
The few metabolites that have been most convincingly 
linked to health-improving and antiaging effects in mice 
include two vitamins (B3, E) and polyamines. 
Nicotinamide (also called niacinamide, vitamin B3), 
which is known to extend health span and lifespan in 
mice [31,32], tend to increase in naked mole-rats and 
actually augmented with age in this species but not in 
mice (Figure 6a). The potent antioxidant α-tocopherol 
(vitamin E), which can enhance the lifespan of short-
lived mouse strains [33, 34], was also increased (Figure 
6b). Several polyamines (cadaverine, N8-acetyl-
spermidine, N1,N8-diacetylspermidine, but not 
ornithine nor putrescine) were elevated in the long-lived 
species (Figure 7). Importantly, spermidine and N1 
acetylspermidine declined in aging mice, but remained 
at high levels in aging naked mole-rats (Figure 7c, d), 
echoing an abundant literature showing that spermidine 
supplementation promotes longevity in mice and other 
model organisms [35–38] and that increased nutrient 
uptake of spermidine reduces cardiovascular and 
cancer-related mortality in humans [39–41]. 
 
CONCLUDING REMARKS 
 
Our present work reveals important differences in the 
metabolism between two species differing in their 
natural lifespan, namely, short-lived mice and long-
lived naked mole-rats. These differences affect all major 
metabolic pathways, leading to alterations in the relative 
proportions of specific amino acid and their derivatives, 
free fatty acids and their carnitine esters, phosphatidyl 
cholines, bile acids, nucleic acids and their derivatives, 
protein degradation products and many other 
metabolites. A few differences may be hypothesis 
generating, as this applies to nicotinamide, α-tocopherol  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6. Vitamins that are elevated in naked mole-rats. Statistical comparisons were calculated 
by means of a two-sided Wilcoxon test. P-values are indicated.  
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and polyamines which augmented in naked mole-rats, in 
the line with prior experiments showing that their 
continuous administration to mice can increase health 
span and longevity. That said, it will be necessary to 
inhibit the pathways involved in the intestinal absorption 
or synthesis of nicotinamide, α-tocopherol and 
polyamines in naked mole-rats and to consequently 
reduce their lifespan before a firm cause-effect-
relationship between the accumulation of such ‘longevity 
molecules’ and the phenotype can be established.  
 
Another difficulty inherent to the interpretation of the 
present results concerns the actual source of the 
longevity-associated molecules. For example, several 
and the saturated fatty acids with uneven-numbered  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

molecules that are increased or reduced in naked mole-
rats are most likely plant-derived: indole-3-acrylic acid 
carbon atoms (heptadecanoic and nonadecanoic acid), 
which all are diminished, and hippuric acid, which is 
augmented. Hippuric acid levels are known to rise with 
the consumption of phenolic compounds [42]. Thus, 
dietary differences in the two species (which do not 
receive the same chow) may dictate part of the 
discrepancies in the metabolome. Another molecule that 
is scarce in naked mole-rats is 3-Indole propionic acid, 
most likely a bacterial metabolite, contrasting with the 
fact that a fungal metabolite, azelaic acid, is over-
abundant. Hence, there may be major differences in the 
microbiota that explain some of the metabolic 
discrepancies found between the two species.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.  Influence of age and species differences on the abundance of polyamines and polyamine 
metabolites. Statistical comparisons were calculated by means of a two-sided Wilcoxon test. P-values are indicated. 
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It is important to note that the longevity of the 
mammalian meta-organism composed by the host and 
microbial communities is dictated by the systems 
property of this ecological unit. Thus, both mice and 
human show age-related shifts in the intestinal 
microbiota [43–45], and such shifts can actually 
contribute to the age-associated organismal decline 
[46], at least in the context of progeroid syndromes[47]. 
The body content of vitamins from the B series 
including nicotinamide as well as of polyamines and 
bile acids are strongly influenced by the intestinal 
microbiota (because bacteria are able to synthesize 
them), supporting the intriguing, yet-to-be-confirmed 
hypothesis that (some of) the longevity-associated 
metabolic alterations found in naked mole-rats actually 
reflect a particular gut flora [48]. Thus, one species that 
is highly abundant in the gut from naked mole-rats, 
Bacillus megaterium [49,50], is also particular efficient 
in polyamine biosynthesis [51,52]. These results call for 
an extensive functional characterization of the naked 
mole-rat microbiota with respect to its possible 
longevity-conferring properties. The polyamine sper-
midine is known to induce autophagy in multiple model 
organisms including mice [53–56], and autophagy 
induction accounts for its lifespan-extending effects 
[35–38]. Of note, autophagy reportedly is increased in 
naked mole-rats [57,58]. Hence, it will be tempting to 
investigate whether the depletion of polyamine (by 
inhibition of their biosynthesis by bacterial and host 
enzymes or by inhibition of their intestinal uptake) 
would reduce autophagic flux in naked mole-rats, 
thereby reducing the fitness of this species.  
 
In synthesis, we identified several metabolites that may 
explain the exceptional longevity of naked mole-rats. 
Future studies are required to understand the 
mechanistic bases of their accumulation as well as their 
actual contribution to the suppression of the aging 
process.  
 
MATERIALS AND METHODS 
 
Animal maintenance and experimental procedure 
 
Animal experimental protocol was approved by the 
French National Ethical Committee ComEth 
Anses/ENVA/UPEC (authorization N°12114-
2017110916247504-v3). Nineteen male naked mole-
rats (1-year-old (n=6), 4 years old (n=6) and 10 years 
old (n=7)) and twenty-two C57BL6/J male mice (1-1.5 
months old (n=7), 6-10 months old (n=10) and 20 
months old(n=5)) were used in this study. Naked mole-
rats were housed in Plexiglas cages interconnected with 
tubes to simulate burrows with tunnel systems. Naked 
mole-rats were kept in the dark, at a temperature of 28-
30°C, and 70% humidity. 

All animals were fasted overnight and all blood samples 
were collected in the morning (8-10 am). The blood was 
collected in heparinized tubes and centrifuged at 3000 
rpm, for 10 min at 4°C. Plasma samples (30-50µl) were 
collected and stored (− 80 °C) until metabolomic 
analysis. 
 
Standard and reagents 
 
Acetonitrile (Sigma Aldrich); Isopropanol (Sigma 
Aldrich); Methanol (Sigma Aldrich); Chloroform 
(Sigma Aldrich); Acetic acid (Sigma Aldrich); Formic 
acid (Sigma Aldrich); Methoxyamine hydrochloride 
(Sigma Aldrich); MSTFA - N-Methyl-N-(trimethylsilyl) 
trifluoroacetamide (Sigma Aldrich); Pyridine (Sigma 
Aldrich); 3 nitrophenylhydrazine (Sigma Aldrich); N-
(3-Dimethylaminopropyl)-N′-ethylcarbodiimide; hydro-
chloride (EDC) (Sigma Aldrich); Sulfosalicylic acid 
(Sigma Aldrich). 
 
Sample preparation plasma (lithium heparin) 
 
A volume of 25 µL of plasma were mixed with 250 µL 
a cold solvent mixture with ISTD (MeOH/Water/ 
Chloroform, 9/1/1, -20°C), into 1.5 mL microtube, 
vortexed and centrifuged (10 min at 15000 g, 4°C) to 
obtain protein precipitation. Then upper phase of 
supernatant was split in three parts: 50 µL were used for 
GC-MS experiment in injection vial, 30 µL were used 
for the SCFA (Short Chain Fatty Acids) UHPLC-MS 
method, and 50 µL were used for others UHPLC-MS 
experimentations.  
 
GC-MS aliquot was evaporated and 50 µL of 
methoxyamine (20 mg/mL in pyridine) were added on 
dried extracts, then stored at room temperature in dark, 
during 16 hours. The day after, 80 µL of MSTFA was 
added and final derivatization occurred at 40°C during 
30 minutes. Samples were directly injected into GC-
MS. 
 
Concerning the UHPLC-MS aliquots (for SCFA 
method), 15 µl of 200mM 3-NPH and 15 µl of EDC 
(150mM) were added. The whole was heated at 40°C 
during 1h. 60 µl of H20 was added and the whole was 
injected into UHPLC-MS. 
 
Concerning the LC-MS aliquots, the 50 µl collected 
supernatant was evaporated at 40°C in a pneumatically-
assisted concentrator (Techne DB3, Staffordshire, UK). 
The LC-MS dried extracts were solubilized with 150 µL 
of MilliQ water. Samples were aliquoted for LC 
methods and backup. Biological samples and QC 
aliquots are kept at -80°C until injection or transferred 
in vials for direct analysis by UHPLC/MS. 
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Concerning the rest of the supernatant and the pellet, 90 
µl of methanol with 2% of sulfosalicylic acid (SSA) 
was added before vortex and centrifugation (10 min at 
15000g, 4°C). 130 µl of the supernatant were 
transferred in a microtube and evaporated. The dried 
sample were spiked with 100 µl of MilliQ water before 
injection in UHPLC/MS of the polyamines method. 
 
Aliquots for analysis were transferred in polypropylene 
vials and injected into UHPLC-MS or kept at -80°C 
until injection. 
 
Widely-targeted analysis of intracellular metabolites 
gas chromatography (GC) coupled to a triple 
quadrupole (QQQ) mass spectrometer 
 
GC-MS/MS method was performed on a 7890B gas 
chromatography coupled to a triple quadrupole 7000C 
(Agilent Technologies, Waldbronn, Germany) equipped 
with a High sensitivity electronic impact source (EI) 
operating in positive mode.  
 
Front inlet temperature was 250°C, injection was 
performed in splitless mode. Transfer line and ion-
source temperature were 250°C and 230°C, respective-
ly. Septum purge flow was fixed at 3 mL/min, purge 
flow to split vent operated at 80 mL/min during 1 min 
and gas saver mode was set to 15 mL/min after 5 min.  
 
Helium gas flowed through column (J&WScientificHP-
5MS, 30m x 0.25 mm, i.d. 0.25 mm, d.f., Agilent 
Technologies Inc.) at 1 mL/min. Column temperature 
was held at 60°C for 1 min, then raised to 210°C 
(10°C/min), followed by a step to 230°C (5°C/min) and 
reached 325°C (15°C/min), and be hold at this 
temperature for 5 min.  
 
Collision gas was nitrogen. Scan mode used was MRM 
for biological samples. Peak detection and integration of 
analytes were performed using Agilent Mass Hunter 
quantitative software (B.07.01). 
 
Targeted analysis of bile acids by ion pairing ultra-
high-performance liquid chromatography (UHPLC) 
coupled to a Triple Quadrupole (QQQ) mass 
spectrometer 
 
Targeted analysis was performed on a RRLC 1260 
system coupled to a Triple Quadrupole 6410 (Agilent 
Technologies) equipped with an electrospray source 
operating in positive mode. Gas temperature was set to 
325°C with a gas flow of 12 L/min. Capillary voltage 
was set to 4.5 kV. 
 
10 μl of sample were injected on a Column Poroshell 
120 EC-C8 (100 mm x 2.1 mm particle size 2.7 µm) 

from Agilent technologies, protected by a guard column 
XDB-C18 (5 mm × 2.1 mm particle size 1.8 μm) and 
heated at 40°C by a Pelletier oven.  
 
Gradient mobile phase consisted of water with 0.2% of 
formic acid (A) and acetonitrile/isopropanol (1/1; v/v) 
(B) freshly made. Flow rate was set to 0.3 mL/min, and 
gradient as follow: initial condition was 70% phase A 
and 30% phase B, maintained during 1.5 min. 
Molecules were then eluted using a gradient from 30% 
to 60% phase B over 9 min. Column was washed using 
98% mobile phase B for 2 minutes and equilibrated 
using 30% mobile phase B for 2 min. After each 
injection, needle was washed twice with isopropanol 
and thrice with water. Autosampler was kept at 4°C. 
 
At the end of batch analysis, column was rinsed with 
0.3 mL/min of MilliQ water (phase A) and acetonitrile 
(phase B) as follow: 10% phase B during 20 minutes, to 
90% phase B in 20 minutes, and maintained during 20 
minutes before shutdown. 
 
Collision gas was nitrogen. Scan mode used was the 
MRM for biological samples. Peak detection and 
integration of the analytes were performed using the 
Agilent Mass Hunter quantitative software (B.07.01). 
 
Targeted analysis of polyamines by ion pairing 
ultra-high performance liquid chromatography 
(UHPLC) coupled to a Triple Quadrupole (QQQ) 
mass spectrometer 
 
Targeted analysis was performed on a RRLC 1260 
system coupled to a Triple Quadrupole 6410 (Agilent 
Technologies) equipped with an electrospray source 
operating in positive mode. The gas temperature was set 
to 350°C with a gas flow of 12 l/min. The capillary 
voltage was set to 3.5 kV. 
 
10 μl of sample were injected on a Column Kinetex C18 
(150 mm x 2.1 mm particle size 2.6 µm) from 
Phenomenex, protected by a guard column C18 (5 mm 
× 2.1 mm) and heated at 40°C by a Pelletier oven. Heat 
the column more than the room temperature allowed 
rigorous control of the column temperature. 
 
The gradient mobile phase consisted of water with 0.1 
% of Heptafluorobutyric acid (HFBA, Sigma-Aldrich) 
(A) and acetonitrile with 0.1 % of HFBA (B) freshly 
made. The flow rate was set to 0.2 ml/min, and gradient 
as follows: initial condition was 95% phase A and 5% 
phase B. Molecules were then eluted using a gradient 
from 5% to 40% phase B over 10 min. The column was 
washed using 90% mobile phase B for 2.5 minutes and 
equilibrated using 5% mobile phase B for 4 min. The 
autosampler was kept at 4°C.  
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The collision gas was nitrogen. The scan mode used 
was the MRM for biological samples. Peak detection 
and integration of analytes were performed using the 
Agilent Mass Hunter quantitative software (B.07.01). 
 
Targeted analysis of Short Chain Fatty Acid by ion 
pairing ultra-high performance liquid chromato-
graphy (UHPLC) coupled to a 6500+ QTRAP mass 
spectrometer 
 
Targeted analysis was performed on a RRLC 1260 
system (Agilent Technologies, Waldbronn, Germany) 
coupled to a 6500+ QTRAP (Sciex, Darmstadt, 
Germany) equipped with an electrospray ion source.  
The instrument was operated using multiple reaction 
monitoring (MRM) in negative ion mode with unit 
resolution for both Q1 and Q3. 
 
The optimized MS/MS conditions were: ion spray 
source temperature at 450°C, curtain (CUR) gas 
pressure at 40 psi, gas 1 (GS1) pressure at 30 psi and 
gas 2 (GS2) pressure at 70 psi. Ion-spray voltage (IS) 
was set at -4500V, collision-activated dissociation 
(CAD) at High, entrance potential (EP) at -10V and 
declustering potential (DP) at -80V.  
 
10 μl of sample were injected on a Column Zorbax 
Eclipse XBD C18 (100 mm x 2.1 mm particle size 1.8 
µm) from Agilent technologies, protected by a guard 
column XDB-C18 (5 mm × 2.1 mm particle size 1.8 
μm) and heated at 50°C by a Pelletier oven.  
 
Gradient mobile phase consisted of water with 0.01% 
of formic acid (A) and acetonitrile with 0.01% of 
formic acid (B). Flow rate was set to 0.4 mL/min, and 
gradient as follow: initial condition was 80% phase A 
and 20% phase B, maintained during 6 min. Molecules 
were then eluted using a gradient from 20% to 45% 
phase B over 7 min. Column was washed using 95% 
mobile phase B for 5 minutes and equilibrated using 
20% mobile phase B for 4 min. The autosampler was 
kept at 4°C. 
 
At the end of batch analysis, column was rinsed with 
0.3 mL/min of MilliQ water (phase A) and acetonitrile 
(phase B) as follow: 10% phase B during 20 minutes, to 
90% phase B in 20 minutes, and maintained during 20 
minutes before shutdown. 
 
The software used to operate the mass spectrometer 
was Analyst (Version 1.7). Peak detection, integration 
and quantification of the analytes were performed 
using MultiQuant quantitative software (Version 
3.0.3). 

Untargeted analysis of intracellular metabolites by 
ultra-high performance liquid chromatography 
(UHPLC) coupled to a Q-Exactive mass spectro-
meter. Reversed phase acetonitrile method  
 
The profiling experiment was performed with a Dionex 
Ultimate 3000 UHPLC system (Thermo Scientific) 
coupled to a Q-Exactive (Thermo Scientific) equipped 
with an electrospray source operating in both positive 
and negative mode and full scan mode from 100 to 1200 
m/z. The Q-Exactive parameters were: sheath gas flow 
rate 55 au, auxiliary gas flow rate 15 au, spray voltage 
3.3 kV, capillary temperature 300°C, S-Lens RF level 55 
V. The mass spectrometer was calibrated with sodium 
acetate solution dedicated to low mass calibration. 
 
10 μL of sample were injected on a SB-Aq column (100 
mm × 2.1 mm particle size 1.8 μm) from Agilent 
Technologies, protected by a guard column XDB-C18 
(5 mm × 2.1 mm particle size 1.8 μm) and heated at 
40°C by a Pelletier oven. The gradient mobile phase 
consists of water with 0.2% of acetic acid (A) and 
acetonitrile (B). The flow rate was set to 0.3 mL/min. 
Initial condition is 98% phase A and 2% phase B. 
Molecules were then eluted using a gradient from 2% to 
95% phase B in 22 min. The column was washed using 
95% mobile phase B for 2 minutes and equilibrated 
using 2% mobile phase B for 4 min.  
 
The autosampler was kept at 4°C.  
 
Peak detection and integration were performed using 
the Thermo Xcalibur quantitative software (3.1.). 
 
Statistical methods 
 
Raw data were processed and cleaned with R using the 
GRMeta package (located on Github/kroemerlab). 
Quality controls consisted in eliminating too low ion 
signal responses (signal to noise ratio less than 5) and 
biased metabolites (standard deviation of quality control 
pooled samples more than 26 %). Kruskal-Wallis test 
with no adjustment were conducted on processed data 
with R. The heatmap was constructed with log2 
normalized data centered around the average abundance 
from all samples. Metabolites were subjected to 
hierarchical clustering following the ward. D2 method 
and using the Euclidean distance. Volcano plots were 
constructed with a two-sided Wilcoxon to calculate p-
values and subtractions of means (on a log2 scale) of 
the groups (Mice/NMR, and Old/Young).  
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SUPPLEMENTARY MATERIAL 
 
Supplementary Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Supplementary Figure 1. Schematic overview of interspecies differences in bile acid metabolism. Note that molecular 
species that are more abundant in naked mole-rats are marked with pink backgrounds, while molecules that are more abundant in 
mice are marked in green. 
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Supplementary Figure 2. Pathway analysis was processed with Metscape app v3.1.3 from 
Cystoscape software v3.7.1 (ref http://cytoscape.org). Fold-changes were calculated by dividing means of 
groups. P-values were obtained by means of the two-sided Wilcoxon test. 
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Supplementary Table 
 
Please browse the Full Text version to see the data of 
Supplementary Table 1. Peak heights for each 
metabolite shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Supplementary Figure 3. Quantitative enrichment analysis was processed with MetaboAnalyst 
4.0 (https://www.metaboanalyst.ca/). Data were log-transformed and mean-centered. SMPDB 
pathway-associated metabolite sets was used, with a threshold of 3 compounds minimum per pathway. 


