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ABSTRACT

Heat stress negatively affects reproduction in cattle by disrupting the normal function of ovarian granulosa cells
(GCs), ultimately leading to oxidative damage and cell death via apoptosis. Heme oxygenase-1(HO-1) is a member
of the heat shock protein family, which are associated with cellular antioxidant defenses and anti-apoptotic
functions. Recent studies demonstrated that HO-1 is upregulated in heat-stressed cells. In the present study, we
investigated the expression of HO-1 in bovine GCs transiently exposed to heat stress and characterized the
expression and activity of key oxidative stress enzymes and molecules. We show that heat stress induced
oxidative stress and apoptosis, and enhanced Nrf2 and HO-1 expression in primary GC cultures. Knocking down
HO-1 expression using siRNA exacerbated both oxidative stress and apoptosis, whereas pre-treating GCs with
hemin, which induces HO-1 expression, partially prevented these effects. These findings demonstrate that HO-1
attenuates heat stress-induced apoptosis in bovine GCs by decreasing production of reactive oxygen species and

activating the antioxidant response.

INTRODUCTION

High ambient temperature is considered to be a critical
factor contributing to reduced fertility in cattle in
tropical and subtropical countries, although the
involvement of heat stress in this phenomenon is well
documented even in regions with temperate climates
[1-3]. Heat stress influences ovarian function, estrous
expression, oocyte health, and embryonic development
[4, 5]. Mammalian ovarian follicles are surrounded by
granulosa cells (GCs) and theca cells, which produce
signals and hormones that enable oocyte competency to
develop into the blastocyst stage [6, 7]. Normal
proliferation and differentiation of GCs are crucial
for optimal follicular growth, oocyte development,
ovulation, and luteinization [8, 9]. Several studies
reported that heat stress adversely affects ovarian GCs,
by inducing oxidative damage, endoplasmic reticulum
stress, and apoptosis [10-12].

Oxidative stress results from imbalances between the
generation and elimination of reactive oxygen species
(ROS) within cells; excessive ROS generation can
overload cellular antioxidant defenses and damage lipids,
proteins and DNA, thereby disrupting normal cell
function and causing cell death via apoptosis or necrosis
[13]. ROS generation and oxidative stress are critically
involved in heat stress-induced apoptosis [14, 15]. Heme
oxygenase 1 (HO-1), also known as heat shock protein-
32 (Hsp32), is a stress-inducible enzyme that plays
important roles in iron homeostasis, antioxidant defense,
and apoptosis prevention [16—18]. Research has shown
that HO-1 acts as an antioxidant in hepatocytes [19] and
that low serum HO-1 levels are associated with an
increased risk for polycystic ovarian syndrome [20].
Recent studies have addressed the molecular mechanisms
responsible for the cytoprotective effects of HO-1 against
apoptosis, and have suggested its potential relevance as a
drug target in anti-oxidative therapies [21, 22].
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Our previous studies indicated that heat stress can induce 1A, 1B). In parallel, western blot analyses revealed

apoptosis of ovarian GCs and activate the expression of apoptosis induction, denoted by upregulation of cleaved
HO-1, but the precise molecular mechanism involved caspase-3 and increased Bax/Bcl-2 ratio (Figure 1C-1E).
remained unclear [10, 12]. In the present study, we Furthermore, the increase in the apoptotic rate with
hypothesized that HO-1 expression mediates anti-apoptotic increasing temperatures was also confirmed through
effects in heat-treated GCs by decreasing oxidative stress. Annexin V/PI staining using flow cytometry (Figure 1F).
Using a bovine GC culture system, we confirmed the
impact of heat stress on apoptosis and characterized the Heat stress induces alterations in cellular redox status
cytoprotective mechanism of HO-1 in relation to the and promotes Nrf2 nuclear translocation in GCs
expression and activity of key oxidative stress enzymes
and markers, including SOD, GSH-Px, and MDA. The redox status in cells is determined by the balance
between oxidant stressors and antioxidant reserves. We
RESULTS investigated MDA levels, an indicator of oxidant stress, as
well as SOD and GSH-Px activities as a measure of
Heat stress induces ROS generation and apoptosis in antioxidant cellular reserves. To confirm the effect of heat
GCs stress on the antioxidant defense system, the expression of
the antioxidant gene SOD2 was also analyzed in GCs by
To investigate the effects of heat stress on ROS western blot. Compared to control cells (37°C), SOD2
generation by GCs, DCF fluorescence was evaluated as a expression was significantly decreased (Figure 2A, 2B),
surrogate measure of ROS production in cultured bovine and SOD activity was reduced (Figure 2F) in GCs exposed
GCs. We found that ROS generation increased with to heat stress (40°C). In addition, heat stress (40°C)
increasing temperatures, i.e. 37°C < 40°C < 42°C (Figure resulted in markedly lower GSH-Px activity and higher
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Figure 1. Heat stress induces ROS generation and apoptosis in bovine ovarian GCs. (A, B) Intracellular accumulation of ROS at
different temperatures, quantified by DCF fluorescence. Scale bars, 50 um. (C-E) Immunoblot analysis of Bax/Bcl-2 and cleaved caspase-3in
GCs. (F) Apoptosis induction by heat stress in GCs, analyzed by FACS assay. Data represent mean + SEM; n = 3 in each group. *P < 0.05; **P <
0.01; ***P < 0.001.
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MDA levels than those measured in the normothermic
control group (Figure 2G, 2I). In contrast, compared to
control cells, at 42°C the levels of SOD and GSH-Px were
increased, while those of MDA were decreased, although
these changes were not statistically significant.

Next, the expression of nuclear factor erythroid 2-
related factor 2 (Nrf2) and HO-1was measured at the
protein level. The expression of both proteins was
increased significantly after heat stress (Figure 2A, 2C,
2D), a condition that also promoted nuclear translocation
of Nrf2 (Figure 2E, 2H).

HO-1knockdown enhances heat stress-induced ROS
generation and apoptosis, and reduces the
antioxidative response

To assess the role of HO-1 on oxidative stress responses
and apoptosis under heat stress, its expression was
silenced using specific siRNAs. We used siHO-1-2 in
these experiment because it had the strongest knockdown
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effect (Figure 3A). Annexin V/PI staining showed that
the apoptotic rate in the siHO-1 + 40°C group of cells
was increased significantly compared to the NC (negative
control siRNA) + 40°C group (Figure 3B, 3C).
Concomitantly, and compared to the latter control,
significant increases in the expression of cleaved caspase-
3 and the Bax/Bcl-2 ratio (Figure 3D-3F), as well as
enhanced ROS production (Figure 3G, 3H), were
observed in siHO-1 + 40°C cells. To investigate whether
HO-1 silencing affects the redox status of GCs, SOD2
expression, MDA content, and SOD and GSH-Px
activities were next measured. Western blot confirmed
effective silencing of HO-1 expression in siHO-1-
transfected GCs, and a significant decrease in SOD2
expression in the siHO-1 + 40°C group of cells (Figure
4A, 4C). This result was consistent with reduced SOD
levels in HO-1-silenced, heat stress GCs (Figure 4D). In
addition, compared to the NC + 40°C group, MDA levels
were significantly up-regulated (Figure 4E) and the
activity of GSH-Px was significantly down-regulated
(Figure 4F) in the siHO-1 + 40°C group.
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Figure 2. Heat stress leads to dysfunction of the antioxidant defense system and oxidative stress in GCs. (A-D) Western blotting
showing the expression of Nrf2, HO-1, and SOD2. (E) Nuclear translocation of Nrf2 evaluated by DCF fluorescence. Scale bars, 50 um. (F)
Estimation of SOD activity. (G) Estimation of GSH-Px activity. (H) Nuclear translocation of Nrf2 determined by western blotting. (I) MDA
content. Data represent mean £ SEM; n = 3 in each group. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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Figure 3. HO-1 gene knockdown enhances ROS generation and induces apoptosis in GCs under heat stress. (A) Western blot
analysis of HO-1 expression after siRNA mediated knockdown of HO-1. (B, C) Annexin V/PI FACS analysis of apoptosis. (D—F) Expression of
Bax/Bcl-2 and cleaved caspase-3 by western blot. (G, H) Intracellular ROS accumulation detected through DCF fluorescence. Scale bars, 50
um. Data represent mean + SEM; n = 3 in each group. *P < 0.05; **P < 0.01; ***P < 0.001.
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Figure 4. HO-1 gene knockdown impairs antioxidant defenses in GCs exposed to heat stress. GCs were transfected with NC or
siHO-1 and exposed to heat stress for 2 h. (A—C) Western blot expression of HO-1 and SOD2. (D) SOD activity. (E) MDA content. (F) GSH-Px
activity. Data represent mean + SEM; n = 3 in each group. *P < 0.05; **P < 0.01; ***P < 0.001.
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HO-1induction increases antioxidant defenses and
attenuates ROS generation and apoptosis in heat-
stressed GCs

To confirm the protective effects of HO-1 against
oxidative stress and apoptosis triggered by heat stress,
hemin (an HO-1-specific activator) was applied to
cultures over 48 h to induce HO-1 expression in GCs
(Figure 5A). After heat stress treatment (40°C),
significant decreases in both ROS generation (Figure
5B, 5C) and apoptotic rate (Figure 5F) were detected in
cells treated with hemin. Meanwhile, western blots
confirmed HO-1 induction and decreased Bax/Bcl-2
ratio in the 40°C + hemin group (Figure 5D, 5E, 5G). In
addition, compared to the 40°C control group, the
expression of SOD2 was dramatically up-regulated
(Figure 5D, 5H) and SOD levels were increased (Figure
51) in GCs in the 40°C + hemin group.

DISCUSSION
Despite the use of modern cooling systems in dairy farms,
heat stress remains a major contributing factor to the low

Hoechst33342

relative mRNA expression >
of HO-1 (fold of B-actin)

o
hemin o 5 0 2
(umol/L) 0

ROS

Merged

ctl  40°C 40°C+ hemin
hemin

0°C

E 0y ——
35
i i
CRE]
%2 254
2% 20l -
£3
52 %1
~ %
= 5l .
g ?
1
ol
ot 40°C 40°C+ hemin ol 40°C  40°C+  hemin
‘hemin ‘hemin

@
07

SOD2 expression

(fold of a-tubulin)

fertility among lactating dairy cows in hot environments
[23-25]. Noxious effects of heat stress include impaired
steroidogenic ability [26], altered follicular dynamics that
impact GC function [10], and deficient oocyte maturation,
fertilization, and preimplantation embryonic development
[27, 28]. In the ovarian follicle, GCs play a vital role in
nourishing the oocytes and secreting estrogens to establish
a suitable microenvironment for normal reproductive
function [8, 9]. GC apoptosis due to heat stress may be
one of the most critical factors affecting GC function and
dairy cow fertility [11].

The present study sheds light on the deleterious effects of
heat stress on GC function and survival, revealing a
protective role for HO-1 against oxidative damage and
apoptosis. Previous research demonstrated that oxidative
stress plays a pivotal role in heat stress-induced apoptosis
[29, 30], and the involvement of mitochondrial pathways
have been reported in mouse GCs exposed to high
temperatures in vitro [12]. In the present study, GCs we
resubjected to simulated heat stress (either 40°C or 42°C),
which led to oxidative stress and apoptosis. Oxidative
stress  occurs  when the  steady-state  ROS
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Figure 5. Hemin-mediated HO-1 induction decreases oxidative stress and attenuates ROS generation and apoptosis in GCs
exposed to heat stress. (A) gRT-PCR analysis of HO-1 gene expression in GCs pre-treated with hemin (10 umol/L for 48h). (B, C) Effect of
HO-1 overexpression on ROS accumulation in GCs under heat stress. (D, E, G, H) HO-1, SOD2, and Bax/Bcl-2 expression determined by
western blotting. (F) Hemin pre-treatment reduced apoptosis of heat-stressed GCs, as determined by FACS assay. (I) Enhanced SOD activity in
hemin-treated GCs. Data represent mean = SEM; n = 3 in each group. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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concentration is transiently or chronically enhanced,
disturbing cellular metabolism and its regulation and
damaging cellular constituents [13]. Accordingly, heat-
stressed GCs showed increased ROS production,
decreased SOD2 expression, and reduced activities of
SOD and GSH-Px, two key enzymes in the cellular
antioxidant system. Mitochondrial dysfunction was
involved in the ensuing apoptosis of GCs, as indicated by
increases in both cleaved caspase-3 expression and the
Bax/Bcl-2 ratio [12—14].

Interestingly, the expression of two oxidative biomarkers,
Nrf2 and HO-1, was found to be upregulated in GCs
exposed to heat stress. This is in line with results of an
earlier study, which showed that hypoxia induces
significant upregulation of Nrf2-mediated oxidative
stress response genes in the bovine embryo [32].
Furthermore, our study showed that heat stress promotes
Nrf2 nuclear translocation. Nrf2 controls the
transcription of the HO-1 gene [33], which encodes a
cytoprotective heat shock protein (HSP) found to be
upregulated by oxidative stress and inflammation [34].
The present data also confirmed that HO-1 expression
can be induced by heat stress. GCs exposed to 40°C
exhibited significantly higher MDA content and lower
SOD and GSH-Px activities than control cells cultured in
normothermic conditions. This is consistent with
oxidative stress-mediated inhibition of antioxidant genes
and production of MDA, a by-product of lipid
peroxidation. However, in cells grown at 42°C, neither
MDA content nor SOD and GSH-Px activities differed

significantly from control, this may be due to that these
antioxidant enzymes were further upregulated to
neutralize excessive ROS formation [36]. However,
since both ROS generation and apoptosis were enhanced
at 42 relative to control, the compensatory upregulation
of SOD and GSH-Px activities at higher temperatures
was clearly unable to counteract cell death.

Our previous study showed that heat stress increases the
synthesis of several HSPs; i.e., HSP32 (HO-1), HSP60,
HSP70, HSP90, and HSP105, which help maintain
cellular redox homeostasis to ensure survival of cells
[34]. HO-1 is an oxidative stress marker and contributes
to iron homeostasis, antioxidant defense, and apoptosis
prevention. Unlike HO-2, HO-1 is inducible and was
suggested to be an important autocrine/paracrine factors
that regulates apoptosis in porcine GCs [33]. Despite
evidence for a role of HO-1 in the induction of genes
involved in oxidative stress response pathways triggered
by ROS accumulation in cells [10, 31], its role in heat
stress in GCs had not been investigated. Interestingly,
we show here that HO-1 knockdown potentiates heat
stress-mediated oxidative stress and apoptosis in GCs,
while pre-treatment with hemin (a HO-1 inducer) had
protective effects. These results imply that HO-1
counteracts heat stress-induced apoptosis by decreasing
oxidative stress (Figure 6).

In summary, we found that heat stress induces apoptosis
in bovine GCs by increasing intracellular ROS and ROS
and decreasing the expression and activity of
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Figure 6. Schematic model of HO-1 regulation of oxidative stress and apoptosis in GCs exposed to heat stress.
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antioxidant enzymes. Under heat stress, HO-1 silencing
enhances ROS production and apoptosis, while forced
expression decreases apoptosis by attenuating ROS
accumulation and upregulating the expression/activity
of antioxidant enzymes. Thus, modulation of HO-1
expression may be a promising approach to the
prevention and treatment of ovarian dysfunction and
infertility caused by heat stress in cow.

METHODS
GC isolation, culture, and treatments

This study was approved by the Animal Protection and
Utilization Committee of Nanjing  Agricultural
University, Nanjing, China. All ovaries were acquired
from Holstein cattle. After acquisition, the ovaries were
washed with saline and the follicular fluid was extracted
from follicles (about 5 mm in diameter) and placed into a
15 mL centrifuge tube using a disposable needle.
Follicles were healthy and round with a sharp and
continuous granulosa cell membrane [37], indicating that
they were well developed. Follicular fluids were clear.
Follicular cells were washed twice with phosphate
buffered saline (PBS) and resuspended in culture medium
(DMEM-F12, HyClone, Logan, USA). Cells were then
plated into T25 flasks (5 x 10° cells/flask) in DMEM-F12
supplemented with 10 % fetal bovine serum (FBS,
Gibco, Gaithersburg, USA) and cultured at 37°C with 5
% CO». The medium was replaced after 24 h in order to
remove non-adherent cells. The cells remaining were
approximately triangular or polygonal, with large nuclei,
and expressed follicle stimulating hormone receptor
(FSHR), a specific marker of GCs (Supplementary
Figure S1). After two or three days, cells at passage II
were used for experiments (within one week). In order to
establish a heat stress model, GCs were heat-treated
(40°C and 42°C) for 2 h and then allowed to recover for
6 h at 37°C [12, 38]. For pharmacological experiments,
before heat treatment GCs were pre-treated with 10
umol/L hemin (Sigma, MO) for 48 h to induce HO-1
expression [39].

Immunofluorescence staining

Cells were plated on coverslips, fixed with 4 %
paraformaldehyde for 1 h and washed with PBS three
times. After permeabilization with 0.5 % Triton X-100 for
20 min, cells were treated with 2 % bovine serum albumin
(BSA) in PBS for 1 h and incubated with anti-FSHR
antibody (1:100; Proteintech, Chicago, USA) diluted in 2
% BSA at 4°C overnight. Finally, the cells were washed
with PBS and incubated with a FITC-conjugated
secondary antibody for 1 h in the dark. After washing
with PBS, cells were stained with Hoechst 33342,

mounted, and viewed under a 710 META laser-scanning
confocal microscopy (Zeiss, Oberkochen, Germany).
siRNA transfection

Negative control siRNA (NC-siRNA) and siRNAs
targeting bovine HO-1 (HO-1-siRNA / siHO-1) were
generated by QuanYang (Shanghai, China). GCs were
seeded into six-well plates and cultured for 24 h until 60%
confluence. Cells were then transfected with either 50
nmol/L. HO-1-targeting siRNA or NC-siRNA using
Lipofectamine 2000 reagent (Invitrogen, Carlsbad, USA)
according to the manufacturer’s instructions. Successful
depletion of HO-1 expression was confirmed by western
blot analyses. After subsequent treatments, cells were
harvested and analyzed.

ROS staining assay

ROS accumulation was measured using DCFH-DA
(Sigma, MO, USA), which is oxidized to fluorescent DCF
by intracellular ROS. After treatments, the cells were
washed with PBS three times and 10 umol/L DCFH-DA
in non-phenol red medium was added to the wells. After
incubation for 30 min in the dark, the cells were washed
three times with PBS, stained with Hoechst 33342 for 10
min, and viewed under laser-scanning confocal
microscopy.

Oxidative stress assay

The Biochemical Analysis Kit (Jiancheng Biotechnology,
Nanjing, China) was used to measure malondialdehyde
(MDA) content and superoxide dismutase (SOD) and
glutathione peroxidase (GSH-Px) activities in GCs
according to protocol instructions. Briefly, MDA
quantification (expressed as nmol/mg) was based on the
reaction of MDA with thiobarbituric acid in acidic
medium at 95°C, detected by absorbance at 532 nm.
SOD activity (expressed as U/mg) was determined
spectrophotometrically at 550 nm using the
xanthine/xanthine oxidase system. GSH-Px activity
(expressed as U/mg) was measured by quantifying the
absorbance (412 nm) of the complex formed by the
reaction between glutathione and 5, 5-dithiobis-(2-
nitrobenzoic).

Apoptosis assay

Flow cytometry was used to analyze apoptosis in GCs
using an Annexin V/PI apoptosis detection kit (MACS,
Miltenyi Biotec, Bergisch Gladbach, Germany)
according to the manufacturer instructions. Briefly, GCs
were seeded into bottles, treated, harvested, and washed
once with PBS and twice with binding buffer. Cells
were then incubated at room temperature with annexin
V-FITC in the dark for 15 min and with PI for 1 min,
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and flow cytometry was performed immediately
thereafter. The apoptotic rate is expressed as the sum of
the percentage of early (Annexin V+/PI-) and late
(Annexin V+/PI+) apoptosis cells.

Quantitative RT-PCR (qRT-PCR)

Total RNA from GCs was extracted using TRIzol
reagent (TaKaRa Biotechnology Co. Ltd., Tokyo,
Japan) as described by the manufacturer. RNA
concentrations were measured using a NanoDrop
2000 spectrophotometer (Thermo Scientific, Waltham,
USA). Gene expression was measured by real-time
PCR analysis using SYBR Premix Ex Taq
(TaKaRa, DRR420A) on an ABI StepOne PCR system
(Applied Biosystems, Foster City, USA). The relative
expression of each target gene was normalized to that
of B-actin. The primer sequences were as follows: HO-
Iforward primer 5'-CAAGGTGCAAGACTTGGCT-3/,
reverse primer 5'-CCAGAAAGCTGAGTGTGAGG-3;
[-actin forward primer 5'-GAGGCTCAG
AGCAAGAGAGG-3’, reverse primer 5-TGCCAG
ATCTTCTCCATGTC-3’ (Supplementary Table S1).

Western blot analysis

Cells were lysed on ice with RIPA Lysis Buffer
(Beyotime, Nanjing, China) and supplemented with 1 %
proteinase inhibitor (PMSF; Beyotime). Protein
concentrations were determined using a BCA Protein
Assay Kit (Beyotime). Samples containing 50 pg
protein were separated on 6-12 % sodium dodecyl
sulfate polyacrylamide gels (SDS-PAGE) and then
electrotransferred onto  polyvinylidene difluoride
(PVDF) membrane (Millipore, Darmstadt, France). The
membranes were blocked with 5 % non-fat milk in Tris-
buffered saline + Tween 20 (TBST) for 1 h and
incubated at 4°C overnight with primary antibodies:
anti-HO-1 (1:500; Abcam, Cambridge, UK), anti-Bax
(1:1000; Proteintech, Chicago, USA), anti-Bcl-2
(1:1000; Proteintech), anti- cleaved caspase-3 (1:500;
Abcam), anti-SOD2  (1:1000; Cell  Signaling
Technology, Boston, USA), anti-Nrf2 (1:1000;
Proteintech), anti-GAPDH (1:1000; Proteintech), anti-
histone-H3 (1:2000; Proteintech), or anti-a-tubulin
(1:2000; Cell Signaling Technology). The membranes
were washed three times with TBS+ Tween 20 (TBST)
for 10 min and incubated with a secondary horseradish
peroxidase-conjugated antibody (1:2000, Proteintech) at
37°C for 1 h. Finally, the membranes were visualized
using ECL Plus Reagent (Biosharp, Hefei, China) and
the  results quantified using an  enhanced
chemiluminescence detection system (Amersham,
Piscataway, @ NJ).  Proteins = were  quantified
densitometrically with Image] software (National
Institutes of Health, Bethesda, USA) and a-tubulin,

GAPDH, and histone-H3 were used, as appropriate, as
loading controls for normalization.
Statistical analysis

Data are presented as the mean = SEM unless indicated
otherwise. Data were analyzed using a t-test and
analysis of variance (ANOVA) with GraphPad Prism
version 5.0 (GraphPad Software, San Diego, USA). P
<0.05 was considered statistically significant.
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SUPPLEMENTARY MATERIALS

A 100X 200X 400X

Hoechst33342 FSHR Merged

Supplementary Figure S1. Identification of ovarian granulosa cells (GCs) in dairy cows. (A) GCs visualized at different
magnifications. (B) GCs specifically expressed FSHR.
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Supplementary Table S1. Primer sequences for HO-1.

Genes Forward Reverse

siHO-1-1 5’-GCUCAACAUCCAGCUGUUUTT-3’ 5'-AAACAGCUGGAUGUUGAGCTT-3'
siHO-1-2 5’-CCAAGGACCAUGAUCCCUUTT-3’ 5’-AAGGGAUCAUGGUCCUUGGTT-3’
siHO-1-3 5’-GCAGCAAGGUGCAAGACUUTT-3’ 5’-AAGUCUUGCACCUUGCUGCTT-3’
siHO-1-4 5’-GGUCCUCACACUCAGCUUUTT-3’ 5’-AAAGCUGAGUGUGAGGACCTT-3’

Negative control

5’-UUCUCCGAACGUGUCACGUTT-3’

5’- ACGUGACACGUUCGGAGAATT-3’
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