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INTRODUCTION 
 
Aging represents the largest risk factor for chronic 
diseases and a significant and growing socioeconomic 
challenge for most societies worldwide. Nevertheless, 
what constitutes the human phenotype of aging is not 
well characterized, likely due to the highly complex and 
heterogeneous nature of human aging. Indeed, aging is 
probably caused by the stochastic failure of a myriad of 
different biological processes leading to increased 
susceptibility to disease and death [1].  
 
Due to the role of aging in numerous diseases, 
interventions leading to healthy aging are being heavily 
investigated. Clinical trials for aging interventions are 
challenging due to the possibility of long trial times 
and/or the necessity to investigate large cohorts. The 
generation of biomarkers that may predict the age and 
health of an individual has therefore received significant 
interest. Importantly, several recent breakthroughs have 
allowed us to discover complex biomarkers, or aging 
clocks, which are able to predict the age and risk of 
death and/or age-associated disease of individuals [2–6]. 

 

Nevertheless, it is unclear how these biomarkers predict 
the multitude of phenotypes associated with aging. To 
this end, having a well-defined phenotypical description 
of human aging and an understanding of how different 
aging phenotypes associate with each other will enable 
us to better understand aging, design trials and discover 
drugs targeting the aging process.  
 
Herein, we used a previously incomplete list of 
phenotypes associated with human aging to mine 
millions of PubMed articles for co-occurring pheno-
types, allowing us to better define what we term the 
human aging phenome. We used this computationally 
unbiased approach to generate a list of approximately a 
thousand terms and then manually curated this list to 
extract features associated with aging. We then 
validated these features manually against the description 
of more than 75 million individuals from published 
studies. Notably, these parameters cover all tissues in 
the human body and illustrate the heterogeneity of the 
human aging phenotype. Collectively, our results 
allow us to propose a description of what human aging 
is. 
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ABSTRACT 
 
Aging is among the most complex phenotypes that occur in humans. Identifying the interplay between different 
age-associated features is undoubtedly critical to our understanding of aging and thus age-associated diseases. 
Nevertheless, what constitutes human aging is not well characterized. Towards this end, we mined millions of 
PubMed abstracts for age-associated terms, enabling us to generate a detailed description of the human aging 
phenotype. We discovered age-associated features in clusters that can be broadly associated with previously 
defined hallmarks of aging, consequently identifying areas where interventions could be pursued. Importantly, 
we validated the newly discovered features by manually verifying the prevalence of these features in combined 
cohorts describing 76 million individuals, allowing us to stratify features in aging that appear to be the most 
prominent. In conclusion, we propose a comprehensive landscape of human aging: the human aging phenome. 
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RESULTS 
 
Identification of abstracts describing human aging 
 
As a starting point for defining human aging we used 44 
clinical terms that we had previously used to describe 
human aging [7–9]. To increase our ability to capture 
semantically similar age-associated terms we extracted 
synonyms and spelling analogues for each of these 44 
clinical terms from the SNOMED CT terminology, 
which contains a comprehensive and validated collec-
tion of terms describing clinical features (Table S1,  
Figure S1A) [10]. In all subsequent analyses using the 
44 clinical terms we also included their synonyms and   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

spelling analogues. To quantitatively test whether the 
terms in the list are associated with human aging, we 
measured their enrichment in aging-related abstracts 
when compared to all PubMed abstracts. To that end, we 
mined 17,730,690 PubMed abstracts for occurrences of 
the 44 clinical terms and investigated whether they co-
occur with the word aging. In addition to aging we 
included other ‘aging keywords’ with similar semantic 
meaning, e.g., elderly, old age, retirement (Figure 1A and 
Table S2, Figure S1B).  Indeed, the 44 terms were en-
riched 3.1-fold (mean, p-value < 2e-16, chi-squared test) 
in abstracts that also contained aging keywords, suggest-
ing that this list could be used as bait for finding other 
terms describing aging (Figure 1B, 1C and Figure S2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. An approach to identifying age-related features.  (A) Workflow-diagram of the project. (B) Top and bottom clinical terms 
that are enriched in the aging dataset (see figure S1 for the expanded list). (C) Mean enrichment of the terms (Mean ± SEM, n = 44, p-value 
determine by Chi-square test, see Figure S2 for individual terms). 
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To qualitatively test the algorithms’ ability to find new 
terms, we selected 100 random abstracts and manually 
picked out terms of interest to determine if the text-
mining algorithm would be able to capture them. We 
then calculated the F-measure (F1 score) based on the 
precision and recall of the algorithm [11]. This score is 
determined by identifying how many terms are included 
and how many are missing in the abstracts by comparing 
a manual selection versus the automated algorithm. The 
algorithm was calculated to have an Fl score of 0.898, 
suggesting that our text-mining algo-rithm captures the 
majority of terms allowing us to interrogate the aging 
phenotype.  
 
Mining for potential aging-associated phenotype 
terms 
We next identified 3,198,218 PubMed abstracts 
containing one or more of the 44 age-associated clinical 
terms and 431,949 abstracts containing two or more of 
the 44 age-associated clinical terms.  We speculated that  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

abstracts containing two or more age-associated clinical 
terms are more accurately associated with aging 
compared to abstracts containing just one term. For 
example, if we search for abstracts containing the single 
term ‘cancer’ we would possibly find terms that show 
only minor association with aging.  We therefore com-
pared the frequency of co-occurrence of each of the 
terms by dividing the number of times a term is 
mentioned together with any other term versus when it 
is mentioned on its own (Figure S3). Indeed, if we only 
considered abstracts where single clinical-terms were 
mentioned we observed that very common terms, like 
‘cancer’, skewed the entire dataset towards those terms 
instead of aging. We therefore only considered abstracts 
that contain two or more age-associated clinical terms 
for finding new terms that describe human aging.  
 
Employing this approach, we identified 28,516 PubMed 
abstracts which contain: 1) at least two occurrences of 
the 44 clinical terms, and 2) at least one aging keyword.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Age-associated clinical terms show distinct pathological clusters. T-distributed Stochastic Neighbor 
Embedding (t-SNE) clustering of z-score normalized data.  
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These age-associated abstracts were then used as a 
foundation for mining new terms associated with aging. 
We generated a list of the most frequent words in the 
age-associated abstracts. We chose a cutoff of at least 
100 occurrences, including repeated occurrences of a 
term in an abstract, as a way to filter the number of 
terms identified and to make sure that only well-
recognized terms are included. We discarded terms 
based on their semantic tags in SNOMED (e.g., 
“procedure”, “qualifier value”, “body structure”). This 
led to the identification of 994 new terms that could be 
considered age-associated (Table S3).  
 
Association analyses reveal tissue specific clustering 
in aging 
 
To further investigate the relationships between these 
features, we generated a clinical term matrix reflecting 
the co-occurrence of terms in each abstract. To avoid 
bias towards terms that were more commonly or less  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

commonly mentioned than average, we employed both 
standard score (z-score) and term frequency–inverse 
document frequency (tf-idf) normalization [12,13]. 
These two normalization algorithms compensate for the 
ways in which terms associate differently: z-score 
emphasizes connections between more rare co-
occurrences while tf-idf emphasizes correlations bet-
ween more common terms. By using these matrices, we 
could perform further analyses and investigate how 
different features associate with each other. To find 
large-scale patterns in the data we applied T-distributed 
Stochastic Neighbor Embedding (t-SNE) clustering to 
the matrices. This unsupervised machine-learning 
algorithm allowed us to identify groups of terms that 
appeared closely associated (Figure 2 and Figure S4). In 
particular, it was apparent that terms relating to specific 
pathologies (e.g., heart disease, neurodegeneration) 
associate with one another, thereby validating our 
normalization methods. Notably, the term cancer 
appeared to associate with a cluster including ‘iron’,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. A defined aging phenome shows functional clustering. Agglomerative hierarchical clustering of 105 clinical 
terms describing human aging based on z-score normalized representation in the literature. Colors represent different 
clusters. The approximately unbiased value is shown in red while the bootstrap probability value is shown in blue. 
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‘Ferritin’, ‘Anemia’ suggesting that these are possible 
markers for cancer identification/progression. Indeed, 
this may be the case [14].  In sum, these algorithms 
show that the results generated from our data-mining 
effort agree with current knowledge and suggest that 
our method is robust.  
 
While the 994 terms represent an unbiased list of age-
associated terms, it was apparent that many terms are 
not descriptive of the aging phenotype. To further 
condense the list of features, we manually curated the 
list, allowing us to identify 105 age-associated terms 
that could constitute the aging phenome (Table S4). To 
understand how these terms correlate with each other, 
we performed agglomerative hierarchical clustering 
analysis and created heatmaps of the co-occurrence of 
the terms. Notably, this allowed us to identify features 
that are co-associated with each other in aging (Figure 3 
and Figure S5A-C). While t-SNE clustering appeared to 
work well with both tf-idf and z-score normalized data, 
hierarchical clustering only gave good and meaningful 
separation using z-score normalized data. Indeed, using 
this normalization, broad clusters were apparent 
representing major organ systems. For example, 
musculoskeletal terms formed a separate cluster, neuro-
logical terms another, etc. A number of interesting 
observations were evident from the clustering. For 
instance, kidney function appeared to associate more 
closely with cardiovascular disease than the metabolic 
cluster containing cholesterol; and facial wrinkles, 
alopecia and graying of hair associated with a 
hematological aging cluster.  
 
Nine cellular and physiological hallmarks have been 
associated with aging [1]. To understand how each 
hallmark might contribute to the aging phenome and the 
observed clustering of terms, we mined the PubMed 
data for the hallmark terms and their synonyms (Table 
S5) allowing us to rank how each hallmark contributes 
to each term. This allowed us to generate a hierarchical 
clustering and heatmap of the terms and their 
relationships with the hallmarks (Figure 4). Quite 
strikingly, clusters of terms were associated with 
specific hallmarks, suggesting that these hallmarks are 
driving that specific cluster. For example, neuro-
degenerative diseases were associated with the 
proteostasis hallmark, while a metabolic cluster of 
obesity, weight loss, hypertriglyceridemia was asso-
ciated with the nutrient sensing aging hallmark. This 
approach also allowed us to understand how the 
hallmarks relate to each other. It was evident that 
genomic instability was associated with telomere 
attrition; and stem cell exhaustion appeared to be 
associated with altered intercellular communication.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4. The hallmarks of aging are associated with certain human features. Heatmap and cluster analysis of the association 

between age-associated clinical terms and hallmarks of aging.  
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These two clusters were associated with cellular 
senescence.  While this approach gives us a good 
understanding of how the different terms associate with 
each other and the potential underlying molecular basis 
of this clustering, it remains unclear how each term 
contributes to aging. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is likely that not all features are equally important in 
aging. We therefore weighed the terms based on the 
frequency of their occurrence in abstracts also 
containing the aging keywords. We found 170,350 
abstracts containing the 105 terms from the final list and 
aging keywords. Terms were counted as present or  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. The aging phenome. (A) The prevalence of features in the elderly (manually curated literature describing 76,928,696 
individuals). HDL: High density lipoprotein, IGF-1: Insulin like growth factor-1, LDL: Low density lipoprotein (B) Agglomerative hierarchical 
clustering using uncentered similarity and average linkage of aging and genetic diseases (red: primary mitochondrial disorders, green: 
non-mitochondrial disorders, purple: segmental progerias). The approximately unbiased value is shown in red while the bootstrap 
probability value is shown in blue. ADOA: Autosomal dominant optic atrophy, MELAS: Mitochondrial encephalopathy, lactic acidosis, and 
stroke-like episodes, MERRF: Myoclonic epilepsy with ragged-red fibers, XPA: Xeroderma pigmentosum complementation group A.  
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absent with a frequency ranging from 10 to 26,845 
abstract occurrences (mean of 2702.67, Figure S6). 
Notably, we found dementia, cancer, depression, and 
hypertension among the most strongly age-associated 
terms in the literature. Interestingly, terms like “graying 
of hair” and “facial wrinkles” were among the 10 least 
frequent terms, despite being highly prevalent in the 
aging population [15].  This indicates a discrepancy 
between the perceived importance in PubMed and the 
real prevalence in the general population.  
 
Manual curation producing a weighted aging 
phenome 
 
To understand the importance of these terms in normal 
aging, we manually identified papers describing cohorts 
of individuals where the prevalence of the new age-
associated terms was described. Since some features 
reflect similar processes (e.g., increased serum levels of 
creatinine and kidney disease), these terms were 
combined to allow subsequent comparative analyses.  In 
total, the prevalence of the features from a variety of 
published cohorts describing a total of 76,928,696 
individuals aged 65 years or older where identified, 
allowing us to comprehensively describe the prevalence 
of the different features in aging (Figure 5A) [15–70]. 
This process further allowed us to compare how human 
aging is associated with other diseases based on the 
prevalence of features [7–9]. To this end, we performed 
hierarchical clustering between aging and known 
premature aging diseases, primary mitochondrial 
disorders, and some non-mitochondrial control diseases 
[71]. Notably, aging clustered strongly with known 
premature aging diseases: Werner syndrome and 
Hutchinson-Gilford progeria, and these in turn clustered 
with primary mitochondrial diseases (Figure 5B).  In 
sum, we were able to define and quantify a human 
aging phenome covering all tissues in the body. 
 
DISCUSSION 
 
Aging is among the most complex phenotype in 
humans. Indeed, the list of features found here reflects 
the multitude of pathologies associated with aging. Of 
note, we were able to identify a number of large-scale 
clusters within the aging phenome that associate with 
specific molecular pathways. This finding could 
indicate that clustered phenotypes share common 
etiologies. Indeed, loss of proteostasis is associated with 
multiple neurodegenerative diseases and this appeared 
to be corroborated with our approach. Quite interesting-
ly, this could also indicate that there are only a few 
underlying processes driving each of the different 
phenotype clusters, suggesting that targeting these root 
causes may be a good strategy for treating multiple age-
associated pathologies. 

Determining the importance of the different features of 
aging is challenging. Herein, we created a ranked list of 
features associated with aging. The top ranked term was 
dementia followed by cancer, depression, hypertension, 
fractures, and stroke. Notably, while these features are 
certainly important, they are much less prevalent than 
features such as muscle weakness, facial wrinkles and 
graying of hair. Indeed, such features were considerably 
underrepresented in the aging research literature despite 
being some of the most prevalent in human aging. One 
could speculate that these under-represented features of 
aging could be good research targets in future studies. 
Further, the fact that some features are highly prevalent 
yet rarely studied could indicate that our data-mining 
approach incompletely describes human aging. 
Nevertheless, the identified terms appear to describe 
human aging comprehensively as well as have clinical 
relevance in terms of premature aging diseases. Further, 
the terms cluster well with each other and with the 
previously manually generated list of 44 terms 
indicating that our approach appears to be valid. 
  
In conclusion, the aging phenome could be used in a 
myriad of applications. For instance, the critical know-
ledge of the aging phenome could determine possible 
outcomes for clinical trials, for identifying new 
biomarkers of aging and for discovering how different 
pathologies arise in aging. As shown, the aging phe-
nome could also be used to better classify premature 
aging diseases, a group of disorders that could be of 
interest in understanding the mechanistic basis of aging.  
 
MATERIALS AND METHODS 
 
Software 
 
All source code used in this paper can be found at 
https://github.com/scheibye-knudsen-lab/aging-
phenome/  . 
 
PubMed Baseline Repository 
 
17,730,690 journal abstracts from the PubMed Baseline 
Repository [72] (Last Updated November 28, 2017) 
were downloaded and used for subsequent analyses. 
 
SNOMED clinical terms 
 
SNOMED CT [10] was used as a source of terms as 
well as synonyms and spelling analogues for terms. 
 
Synonyms of age-associated clinical terms 
 
44 previously described age-associated clinical terms 
[7] were augmented with up to 20 synonyms and 
spelling analogues as defined in SNOMED CT [73], 

https://github.com/scheibye-knudsen-lab/aging-phenome/
https://github.com/scheibye-knudsen-lab/aging-phenome/
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e.g. “Graying of hair”, “Gray Hair” (Table S1). 
Synonyms and spelling analogues were counted towards 
their corresponding original term. 
 
Aging keywords 
 
To identify abstracts that are associated with aging, we 
used a list of aging keywords, e.g. “aging”, “aging 
related”, “old age” and “retirement” along with spelling 
analogues, e.g. “ageing”, “ageing-related” (Table S2).  
 
Abstract identification and word matrix generation 
 
PubMed abstracts were searched for the presence of the 
44 age-associated clinical terms yielding a feature 
matrix signifying the presence or absence of each of the 
terms in each of the 17,730,690 PubMed abstracts. We 
then discarded abstracts where no age-associated 
clinical terms were present yielding a remaining 
3,198,218 abstracts with one or more terms present. 
Similarly, we constructed a matrix signifying the 
presence or absence of each of the 12 aging keywords in 
the 17,730,690 PubMed abstracts. 353,245 abstracts 
were found to contain one or more of the 12 aging 
keywords. 28,516 abstracts were identified where both 
an aging-keyword and at least two clinical terms were 
present and this was used to generate a matrix of 
combined terms.  
 
Precision and recall (F1 score) 
 
The precision of the search algorithm to find all the 
correct clinical terms was examined by selecting 100 
random abstracts and manually identifying terms of 
interest. Hereafter, the terms were counted if found (or 
not) by the search algorithm. To evaluate the precision 
of the algorithm we calculated an F-measure (F1 score) 
for the terms that were found (true positive) and that 
were not found (false negative) by the algorithm, 
compared with the manually identified terms.  
 
Enrichment of age-associated clinical terms in 
abstracts containing aging keywords 
 
The total number of times a clinical term was present in 
the 353,245 abstracts containing aging keywords was 
calculated. This is the aging-count. To find the expected 
count, 353,245 abstracts were randomly selected from 
the entire data set of 17,730,690 abstracts and the total 
number of times a clinical term was present was 
calculated. This was repeated 100 times and the average 
total count per clinical term was calculated. This is the 
expected-count. The ratio between the aging-count and 
the expected-count was then calculated per clinical term 
as a measurement of enrichment of terms in age-
associated abstracts. 

 New aging clinical terms from PubMed abstracts 
 
67,901 SNOMED CT terms were found to be present in 
the 28,516 abstracts where both an aging-keyword and 
at least two clinical terms were present (see above). We 
discarded terms mentioned less than 100 times as those 
would be weaker candidates for newly discovered aging 
clinical terms. This reduced the list of potential new 
terms to 10,486. 
 
This list of terms was filtered based on the following 
unwanted semantic tags associated with SNOMED CT 
terms: ‘procedure’, ‘qualifier value’, ‘body structure’, 
‘attribute’, ‘organism’, ‘person’, ‘regime/therapy’, 
‘ethnic group’, ‘environment’, ‘physical object’, ‘tumor 
staging’, and ‘geographic location’. Words containing 
‘/’ signified unit measures and were also removed.  This 
resulted in a final list of 994 terms. 
 
Word matrix normalization 
 
A combined set (n=1050) of age-associated clinical 
terms (44) and aging keywords (12) as well as the 
newly generated list of clinical terms (994) was 
projected into a count-matrix that consisted of 1050 
terms against 28,516 abstracts. The value inserted in the 
matrix was 1 if the term was present in the abstract and 
0 if it was absent. For normalization the values were 
subsequently converted into (1) z-score ( z-scorex = 
(mean – valuex ) / standard deviation ) using the python 
scipy.stats.zscore library and (2) tf-idf using the 
sklearn.feature_extraction library [74].  
 
Manual curation of new age-associated clinical terms 
 
We manually curated the list of 994 candidate age-
associated clinical terms to exclude concepts that are 
clearly not aging related, e.g. “disorder” or “enzyme”, 
yielding a list of 105 terms: the aging-phenome. 
 
Hallmarks of aging analysis 
 
The nine hallmarks of aging were augmented with up to 
three synonyms from SNOMED CT. The 17,730,690 
abstracts were then mined for mentions of one or more 
of the nine hallmarks of aging. The abstracts containing 
hallmarks of aging (673,409) were then mined for the 
105 human aging-phenome terms. First, we counted the 
co-occurrence of each of the 105 aging phenome terms 
with each hallmark of aging, and summarized in a count 
matrix with terms as rows and hallmarks as columns. 
Second, the count matrix was normalized, by dividing 
each value in the matrix by the total count (sum of the 
column) of each hallmark of aging. Third, for each 
term, we calculated the percentage contribution from 
each hallmark of aging. This percentage matrix was 
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used for the generation of a heatmap and agglomerative 
hierarchical clustering. 
 
Circular dendrogram 
 
Agglomerative hierarchical clustering of the z-score and 
tf-idf normalized matrices was performed using 
Euclidian distance and average similarity, and plotted in 
a circular dendrogram using the ‘ape’ R package. We 
manually identified 14 clusters of terms that fit well 
together, e.g. Glaucoma, Cataract and Visual acuity 
decrease, and colored the dendrogram accordingly. 
 
T-distributed Stochastic Neighbor Embedding (t-
SNE) 
 
T-distributed Stochastic Neighbor Embedding (t-SNE) 
[75] was performed using TensorFlow’s online 
implementation of t-SNE (projector.tensorflow.org) by 
loading the matrix of the 105 word-vectors on 28,516 
PubMed abstracts. Since we applied normalization to 
the data, we turned TensorFlow’s spherize data feature 
off. We elected to visualize the results in two-
dimensional space and accepted TensorFlow’s default 
values for perplexity (=9) and learning rate (=10.) The 
algorithm was allowed to run for 10,925 iterations. We 
then applied k-means clustering to the two-dimensional 
t-SNE coordinates and colored the clusters accordingly. 
We elected to cluster 14 centers in accordance with the 
number of clusters we identified manually in the 
circular dendrogram. 
 
Heatmap 
 
We used the ‘Pheatmap’ R package [76] to generate a 
clustered heatmap of the z-score and tf-idf normalized 
matrices of the 105 aging phenome. Agglomerative 
hierarchical clustering for both the terms and abstracts 
was done using average-linkage and Euclidian distance. 
 
Term frequency in abstracts 
 
We performed a text search for the 105 terms with 
synonyms to evaluate the occurrence frequency of these 
terms in the literature. The analysis was performed only 
on the 353,245 abstracts also containing aging 
keywords. The terms with synonyms were collapsed 
into the ‘main’ term and only counted as present (one) 
or absent (zero) in each abstract. 
 
Identification of prevalence 
 
Manual identification of the prevalence of each of the 
105 terms in populations aged 65 or older was 
performed by searching PubMed for articles where 
cohorts were described. Each term was searched in 

PubMed along with the keywords ‘prevalence’ and/or 
'clinical’ and/or ‘elderly’/’aging’/’retired’. For each 
term we attempted to identify the most recent and 
largest cohort available. In some cases we had to 
calculate how many elderly individuals had abnormal 
values compared to young individuals. For example, 
average lactate increases with age [16], but to define a 
prevalence of “lactate accumulation” we calculated the 
percentage of elderly individuals that were more than 2 
standard deviations different from young individuals. In 
some cases, terms were redefined to more descriptive 
terms. For example, the term “platelets” was redefined 
to “thrombocytopenia” and “thrombocytosis,” and the 
prevalence of those terms was identified. 
 
Statistics 
 
Statistical tests were conducted as indicated in the text. 
Bootstrap resampling (100 iterations) was applied to 
hierarchical clustering using the ‘pvclust’ R package 
[77]. 
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Figure S1. Age-associated clinical terms and the PubMed repository. (A) 44 age-
associated clinical terms and their prevalence in the elderly population. (B) Distribution of 
PubMed abstracts used in the analyses according to their publication date.  
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Figure S2. Fold enrichment of the 44 clinical terms in abstracts containing aging keywords. The 
fold enrichment of the 44 clinical terms in abstracts containing aging keywords compared to a calculated 
expected number of terms occurring in 100 randomly sampled abstracts.  
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Figure S3. Including two clinical terms as search bait leads to less data skewing. Graph shows fold 
difference in the identified terms count using abstracts with at least one of the 44 clinical terms versus using 
abstracts with co-occurrence of the 44 clinical terms. 
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Figure S4. Machine-learned clustering of age-associated terms. t-SNE clustering of term frequency–inverse 
document frequency (tf-idf) normalized data. Coloration is based on k-means clustering (14 clusters) of the 2D data. 
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Figure S5. Distinct clusters can be identified in z-score or tf-idf normalized data. (A) Heatmap of z-score 
normalized data. (B) Heatmap of tf-idf normalized data. C Agglomerative hierarchical clustering of tf-idf normalized data.  
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 Figure S6. The 105 age-associated clinical terms occurrence frequency in PubMed abstracts containing the aging 
synonyms. The frequency of occurrence of the 105 age-associated clinical terms in abstracts also containing aging synonyms. 
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Supplementary Tables  
 
Please browse the Full Text version to see the data of 
Supplementary Tables: 
 
Table S1. List of terms describing clinical features. 
 
Table S2.  List of 'aging' keywords. 
 
Table S3. List of terms that were mined from PubMed 
based on the aging keywords (marked in yellow) and 
the clinical terms (marked in green). 
 
Table S4. List of 105 manually curated terms 
describing human aging. 
 
Table S5. List of aging hallmark terms and their 
synonyms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 


