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INTRODUCTION 
 
Telomeres are the (TTAGGG)n repeats located at the ends 
of each chromosome. Their broad function is to prevent 
genomic instability [1]. Telomeres in adult germ cells [2], 
bone marrow [3, 4] and embryonic stem cells [5] are 
largely maintained by telomerase. After birth, however, 
telomeres in somatic cells gradually shorten because of 
the repressed activities of telomerase [3–6]. In cultured 
cells, when telomeres become critically short, the cell 
reaches replicative senescence [1, 7]. Telomere length 
(TL) is reported to be shorter in leukocytes of men than 
women, but this sex difference may depend on the 
measurement method [8]. In their meta-analysis of data 
from 36 cohorts with a total of 36,230 participants, 
Gardner and colleagues found longer telomeres in women 
only for the terminal restriction fragments (TRF) Southern 
blot method [8]. By contrast, no sex effect was detected 
for the other TL measurement methods including the 
widely used quantitative real-time polymerase chain 
reaction (qPCR) protocol originally described by 
Cawthon [9]. TL is also shorter in leukocytes of 
individuals of European ancestry than individuals of 
African ancestry [10, 11]. Further, leukocyte telomere 
length (LTL) is associated with the two disease categories 
that largely define longevity in contemporary humans—
cancer and cardiovascular disease [12–14]. 
 
High heritability estimates for LTL have been reported 
irrespective of the methods used for measuring LTL; 
reported heritability estimates are between 36% and 82% 
based on Southern blot [15–18], and between 51% and 
76% based on qPCR [19, 20]. Genome-wide association 
studies (GWAS) conducted in large observational cohorts 
have identified 11 loci associated with LTL [21–24].  
A subset of these loci harbor telomere maintenance 

genes. These loci, however, explain only a small 
proportion of the genetic variance in LTL. Similarly, 
relatively little is known about epigenetic changes and 
LTL. Here, we focus on the relationship between LTL 
and DNA methylation levels in leukocytes. Epigenome-
wide association studies (EWAS) have emerged as a 
powerful tool for evaluating genome-wide changes in 
DNAm for a given phenotype of interest [25]. Previous 
studies have explored the association between DNAm 
and LTL [26–28], but these studies were somewhat 
limited due to moderate sample sizes or the focus on 
specific regions in the genome. Here, we conduct the 
largest EWAS of LTL to date in different groups defined 
by sex and ethnicity. 
 
RESULTS 
 
Epigenome-wide association study of leukocyte 
telomere length 
 
We considered two sets of adjustments for LTL 
confounders: 1) partially adjusted LTL for age, sex, and 
ethnicity and 2) fully adjusted LTL for age, sex, 
ethnicity, and imputed white blood cell counts (CD4+ 
naïve, CD8+ naïve and exhausted cytotoxic T cell). We 
conducted a large-scale multi-ancestry EWAS of the 
partially and fully adjusted LTL using seven cohorts – 
the Framingham Heart Study (FHS, n=874), the Jackson 
Heart Study (JHS, n=1,637), the Women’s Health 
Initiative (WHI, n=818), the Bogalusa Heart Study 
(BHS, n=831), the Lothian Birth Cohorts (LBC1921 and 
LBC1936, n=403 and n=906, respectively), and the 
Longitudinal Study of Aging Danish Twins (LSADT, 
n=244). The analysis flow is depicted in Figure 1. We 
note that adjustment in this script indicates a mixture of 
data stratification and regression adjustment. 

ABSTRACT 
 
Telomere length is associated with age-related diseases and is highly heritable. It is unclear, however, to what 
extent epigenetic modifications are associated with leukocyte telomere length (LTL). In this study, we 
conducted a large-scale epigenome-wide association study (EWAS) of LTL using seven large cohorts (n=5,713) – 
the Framingham Heart Study, the Jackson Heart Study, the Women’s Health Initiative, the Bogalusa Heart 
Study, the Lothian Birth Cohorts of 1921 and 1936, and the Longitudinal Study of Aging Danish Twins. Our 
stratified analysis suggests that EWAS findings for women of African ancestry may be distinct from those of 
three other groups: males of African ancestry, and males and females of European ancestry. Using a meta-
analysis framework, we identified DNA methylation (DNAm) levels at 823 CpG sites to be significantly 
associated (P<1E-7) with LTL after adjusting for age, sex, ethnicity, and imputed white blood cell counts. 
Functional enrichment analyses revealed that these CpG sites are near genes that play a role in circadian 
rhythm, blood coagulation, and wound healing. Weighted correlation network analysis identified four co-
methylation modules associated with LTL, age, and blood cell counts. Overall, this study reveals highly 
significant relationships between two hallmarks of aging: telomere biology and epigenetic changes. 
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Overall, 8,716 CpG sites were significantly (P<1E-07) 
associated with the partially adjusted LTL in the global 
meta-analysis. The top four genes with the largest 
number of significant CpGs were VARS (16 CpGs), 
PRDM16 (15 CpGs), MAGI2 (14 CpGs) and MSI2 (13 
CpGs). In the group-specific meta-analyses, we found 
87 significant CpGs in men of European ancestry, 14 
significant CpGs in men of African ancestry, 298 
significant CpGs in women of European ancestry, and 

20 significant CpGs in women of African ancestry 
(Supplementary File 1). 
 
We identified 823 significant (P<1E-07) CpG sites 
associated with the fully adjusted LTL through the global 
meta-analysis. Our statistical significance threshold  
(1E-07) corresponds to a 5% family-wise error for 450K 
array studies [29]. Table 1 presents the top 30 CpGs 
among the 823 significant CpGs and groups them by

 

 
 

Figure 1. Analysis flow chart. 
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Table 1. The top 30 most significant CpG sites associated with the fully adjusted LTL. 

CpG Gene Chr 
Relation to 

UCSC  
CpG island 

UCSC  
RefGene  

group 

Meta-Analysis 

Global meta 
Z (P) 

n=5,713 

European  
male Z (P) 

n=1,389 

African  
male Z (P) 

n=697 

European  
female Z 

(P) n=2,095 

African  
female Z (P) 

n=1,532 

cg08899667 VARS 6 N_Shelf Body -10.1 (4E-24) -5.2 (3E-07) -6.0 (2E-09) -5.1 (4E-07) -4.2 (3E-05) 

cg02980249 VARS 6 N_Shelf Body -8.7 (2E-18) -5.8 (5E-09) -4.0 (6E-05) -4.8 (2E-06) -3.4 (7E-04) 

cg02597894 VARS 6 N_Shelf Body -8.1 (4E-16) -4.8 (2E-06) -4.2 (3E-05) -5.2 (2E-07) -2.7 (6E-03) 

cg04368724 VARS 6 N_Shelf Body -8.0 (9E-16) -3.0 (2E-03) -5.0 (5E-07) -4.2 (3E-05) -4.0 (8E-05) 

cg04018738 VARS 6 N_Shelf Body -8.0 (2E-15) -3.6 (3E-04) -4.6 (4E-06) -4.4 (1E-05) -3.5 (4E-04) 

cg24771152 VARS 6 N_Shelf Body -7.8 (6E-15) -3.8 (2E-04) -4.3 (2E-05) -4.0 (6E-05) -3.7 (2E-04) 

cg20507228 MAN2A2 15 - Body -9.2 (5E-20) -5.4 (8E-08) -5.7 (2E-08) -3.6 (3E-04) -3.5 (4E-04) 

cg08972170 C7orf41 7 - Body -9.0 (2E-19) -3.7 (2E-04) -4.9 (8E-07) -4.1 (5E-05) -5.4 (7E-08) 

cg27343900* ERGIC1 5 - Body -8.8 (1E-18) -6.1 (8E-10)* -5.1 (3E-07) -4.2 (2E-05) -2.4 (2E-02) 

cg10549018 TLL2 10 - Body -8.6 (1E-17) -5.3 (1E-07) -3.9 (1E-04) -4.5 (8E-06) -4.0 (7E-05) 

cg26709300* YPEL3 16 N_Shore 1stExon;Body -8.6 (1E-17) -3.9 (8E-05) -5.4 (6E-08)* -2.4 (2E-02) -4.8 (1E-06) 

cg27106909* YPEL3 16 N_Shore 1stExon;5′UTR;5′UTR -8.5 (2E-17) -5.6 (2E-08)* -5.1 (3E-07) -2.5 (1E-02) -3.4 (6E-04) 

cg12798040* XRCC3 14 - Body -8.5 (2E-17) -5.4 (8E-08)* -5.4 (8E-08)* -4.1 (4E-05) -2.2 (2E-02) 

cg02194129 XRCC3 14 - Body -8.3 (1E-16) -4.9 (1E-06) -5.0 (5E-07) -4.3 (2E-05) -2.6 (9E-03) 

cg19841423* ZGPAT;LIME1 20 S_Shore Body;TSS1500 -8.4 (3E-17) -5.0 (6E-07) -5.5 (5E-08)* -3.7 (2E-04) -2.7 (8E-03) 

cg02810967 NCAPG;DCAF16 4 S_Shore Body;TSS1500 8.3 (9E-17) 4.4 (1E-05) 5.4 (9E-08) 4.1 (4E-05) 2.8 (5E-03) 

cg19935065 DNTT 10 - TSS1500 -8.1 (4E-16) -3.5 (4E-04) -4.9 (1E-06) -5.0 (5E-07) -3.2 (1E-03) 

cg11093760 CILP 15 - 5′UTR;1stExon -8.1 (5E-16) -5.9 (4E-09) -4.1 (5E-05) -3.3 (1E-03) -3.1 (2E-03) 

cg19097500 NFIA 1 N_Shore TSS1500 -8.1 (6E-16) -5.4 (7E-08) -3.7 (2E-04) -3.7 (2E-04) -3.6 (3E-04) 

cg09626867 EXOSC7 3 - Body -8.1 (7E-16) -5.2 (2E-07) -4.1 (3E-05) -4.5 (6E-06) -2.8 (5E-03) 

cg04509882 EIF4G1 3 - Body;1stExon;5′UTR -8.1 (8E-16) -5.5 (4E-08) -4.3 (2E-05) -3.3 (1E-03) -3.1 (2E-03) 

cg23661483 ILVBL 19 S_Shelf Body -8.0 (9E-16) -3.7 (2E-04) -4.3 (2E-05) -5.4 (7E-08) -3.3 (1E-03) 

cg01012082 NCOA2 8 - 3′UTR -8.0 (1E-15) -4.7 (3E-06) -4.0 (7E-05) -4.4 (1E-05) -3.4 (8E-04) 

cg21461082 PRMT2 21 Island Body 8.0 (2E-15) 2.9 (4E-03) 4.4 (9E-06) 4.5 (6E-06) 4.4 (1E-05) 

cg25921609 MYH10 17 N_Shore Body -7.9 (3E-15) -5.2 (3E-07) -3.6 (3E-04) -4.5 (6E-06) -3.1 (2E-03) 

cg24420089* PTDSS2 11 N_Shore Body -7.8 (8E-15) -3.4 (7E-04) -5.8 (7E-09)* -2.3 (2E-02) -3.5 (5E-04) 

cg07414525 CHL1 3 - Body -7.8 (9E-15) -3.5 (4E-04) -3.0 (3E-03) -3.5 (5E-04) -5.8 (6E-09) 

cg14817906 CNNM4 2 - Body -7.7 (1E-14) -4.4 (1E-05) -4.1 (4E-05) -3.9 (8E-05) -3.2 (1E-03) 

cg04860432* PTGER2 14 S_Shore Body -7.7 (2E-14) -5.8 (7E-09)* -4.3 (1E-05) -2.3 (2E-02) -2.7 (7E-03) 

cg23570810 IFITM1 11 N_Shore Body 7.7 (2E-14) 4.2 (3E-05) 4.2 (2E-05) 4.2 (2E-05) 3.0 (2E-03) 

* The CpGs were more strongly associated with LTL in one or two sex and ethnicity specific groups than in the rest of the 
groups. 
 

their annotated gene names. Among the top 30 CpGs, six 
were in VARS, two were in YPEL2 and two were in 
XRCC3. The CpGs highlighted by an asterisk in Table 1 
were more strongly associated with LTL in one or two 
sex and ethnicity-specific groups than in the rest of the 
groups. Specifically, the LTL-DNAm correlations at 
cg27343900 (in ERGIC1) and cg12798040 (in XRCC3) 
were stronger in men of European ancestry than in 
women of African ancestry. The LTL-DNAm correlation 

at cg27106909 near YPEL3 was stronger in men of 
European ancestry than in women of European ancestry. 
 
Figure 2 displays regional test statistics of LTL-associated 
CpGs on top of the local DNAm correlation structure for 
the top four genes listed in Table 1. VARS showed a 
cluster of CpGs above and right below the threshold of 
significance, while MAN2A2, C7orf41 (current name, 
MTURN) and ERGIC1 had one or two significant CpGs. 
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The clusters detected in VARS might be because of the 
high probe density on the array and the strong inter-CpG 
correlations. 
 
The group-specific meta-analyses also detected several 
significant (P<1E-07) CpGs associated with the fully 
adjusted LTL. Figure 3 shows that 25 CpGs were 
significant in men of European ancestry, three CpGs in 
men of African ancestry, 19 CpGs in women of European 
ancestry, and four CpGs in women of African ancestry. 

Figure 4 displays scatter plots across the four group-
specific meta-analyses. The correlation coefficient of 
each scatter plot was lowest between African American 
females and European males (r=-0.02) and highest 
between European females and European males (r=0.40). 
Population and sample size differences between strata 
may influence the correlations. The black dots in the 
panels refer to the top 30 CpG sites detected through the 
global meta-analysis. Across the 30 CpGs, we did 
observe high correlations (r≈0.92). 

 

 
 

Figure 2. Regional Manhattan plots and inter-CpG correlations for the top four genes identified in the global meta-analysis. 
(A) VARS; (B) MAN2A2; (C) C7orf41 (MTURN); (D) ERGIC1. 
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Functional enrichment analysis of LTL-associated 
CpG sites 
 
To infer the biological meaning underlying LTL-
associated CpG sites, the Genomic Regions Enrichment 
of Annotations Tool (GREAT) was used to associate 
differentially methylated probes (DMPs) with nearby 
genes of known pathway annotations. We performed 
both a gene-based and a region-based enrichment 
analysis for (1) all DMPs (n=850), (2) hypermethylated 
probes (n=95), and (3) hypomethylated probes (n=755). 
 
Analyzing all DMPs, we found 11 biological 
annotations to be significantly enriched with both the 
gene-based as well as the region-based test 
(Supplementary File 2, Figure S1, Table S1). Of these, 
five annotations showed a region-fold enrichment > 1.5; 
the circadian clock (3.9x), blood coagulation (1.9x), 
hemostasis (1.9x), wound healing (1.8x), and response 
to wounding (1.7x). Other annotations also related to 
circadian rhythm, blood coagulation and wound healing, 

further strengthening the main observations 
(Supplementary File 2, Tables S1, S2). 
 
Next, analyzing hypomethylated probes only, we found 
that CpGs negatively correlated with LTL mainly explain 
the above-mentioned functional enrichment. In contrast, 
hypermethylated probes led to less significant enrichment 
p values, a finding likely due to the lower number of CpGs 
(Supplementary File 3). We observed an enrichment of 
genes involved in mitogen-activated protein kinase 
phosphatase activity and immune regulation 
(Supplementary File 2, Figure S1). As part of a 
robustness/sensitivity analysis, we repeated the enrichment 
study after excluding CpGs with single-nucleotide 
polymorphisms (SNPs) in the extension base (global minor 
allele frequency > 1%) or probes prone to mapping to 
multiple regions in the genome. Across overlapping 
annotations (n=1,590), we found high concordance with 
our initial findings (r=0.97, P<2.2E-16), indicating that our 
results are highly robust against potentially faulty probes. 
Details can be found in Supplementary File 3. 

 

 
 

Figure 3. EWAS Manhattan plots of the fully adjusted LTL. 
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DNA methylation in subtelomeric regions 
 
We observed a higher proportion of the positive LTL-
DNAm correlations in subtelomeric regions than in non-
subtelomeric regions when we focused on the 823 
significant CpGs that were associated with the fully 
adjusted LTL. The proportion of the positive LTL-
DNAm correlations was 17.1% in the subtelomeric 
regions and 9.9% in the non-subtelomeric bodies (Chi-
squared test, P=0.01; Supplementary File 2, Table S3). 
The subtelomeric regions were defined as each 
chromosome’s head and tail, each of which was 5% of 
each chromosome’s length. However, this approach may 
not be optimal for the following reasons: 1) the inter-
CpG correlations may differ between the non-
subtelomeric and subtelomeric regions; 2) one cannot 
clearly dichotomize genomic loci into non-subtelomeric 
and subtelomeric regions; and 3) the LTL measurements 
were not chromosome-specific but averaged across all 
chromosomes. 

Summary-data-based Mendelian randomization  
 
We calculated the causal effects of the 823 CpGs 
(significantly associated with the fully adjusted  
LTL) on LTL using summary-data-based Mendelian 
randomization (SMR) [30] and found that 16 CpGs  
had a significant (P<0.05) causal effect on LTL 
(Supplementary File 2, Table S5). The causal effect of 
cg00622799 near RTEL1 led to the lowest p-value (P= 
6E-4) among the 823 CpGs when SNP rs909334 was 
used as an instrumental variable. A non-significant p-
value (P=0.21) for the test for heterogeneity in 
independence instruments (HEIDI) is desirable because it 
indicates that rs909334 (instrumental variable) is the only 
SNP that influences LTL through the DNAm level at 
cg00622799. A GWAS of LTL [21] and cis methylation 
quantitative trait locus (cis-mQTL, a reduced GWAS of 
DNAm) [31] were used to obtain the SMR causal effects 
(betas), p-values and HEIDI p-values. The SMR p-value 
identifies possible methylation sites via which genetic 

 

 
 

Figure 4. Scatter plots between the group-specific meta-Z scores. (A) European male vs African male; (B) European male vs European 
female; (C) European male vs African female; (D) African male vs European female; (E) African male vs African female; (F) African female vs 
European female; The black dots in the panels refer to the top 30 CpG sites detected by the global meta-analysis, whereas the grey dots 
indicate the remaining CpG sites. Pearson correlation coefficients (red font) reveal strong agreement (r=0.4) between males and females of 
European ancestry. 
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variants (SNPs) might be influencing LTL. The HEIDI p-
value then indicates the evidence that there is (1) a single 
causal SNP whose effect on LTL is mediated through the 
methylation CpG site (HEIDI P>0.05) or (2) different 
SNPs linked to the methylation level and LTL (HEIDI 
P<0.05). 
 
Additionally, we examined whether the 823 CpGs 
overlapped significantly with 54,942 known cis-
methylation QTLs. Strikingly, a highly significant 
number of CpGs (188 CpGs out of 823 CpGs) were 
known cis-mQTLs (hypergeometric test P= 1.02E-16). 
To carry out this overlap analysis, we retrieved 188 SNPs 
each of which corresponded to the 188 CpGs from the 
cis-mQTL summary statistics. Next, we looked up each 
of the 188 SNPs in the most recent GWAS catalogue 
database (v1.02, https://www.ebi.ac.uk/gwas/docs/file-
downloads). 22 SNPs were associated with complex 
traits (Supplementary File 2, Table S6). Among these 22 
SNPs, rs2540949 in CEP68 was associated with atrial 
fibrillation, and rs17708984 in TPM4 (GWAS P=6E-16) 
was associated with platelet count (Supplementary File 2, 
Table S6). Platelet count is related to blood coagulation 
and wound healing, which were identified through the 
functional gene enrichment analysis of the LTL-
associated CpGs described above. 
 
Weighted correlation network analysis (WGCNA) 
 
Weighted correlation network analysis (WGCNA) 
identified four important co-methylated modules (labeled 
black, red, ivory and yellow in Figure 5) using FHS, JHS 
and WHI (n=3,329). Hypermethylation in the black 
module was associated with increased age, shortened 
LTL, decreased CD8+ naïve T cell counts, and  
increased exhausted cytotoxic T cell counts, whereas 
hypermethylation in the red module showed opposite 
correlations. Elevated methylation levels in the yellow 
module were correlated with longer LTL and higher 
CD8+ naïve T cell counts. The ivory module had a 
pattern similar to the one in the black module. None of 
the modules revealed any strong correlation with the fully 
adjusted LTL, which is not surprising as this measure of 
LTL is adjusted for age and white blood cell type 
composition. The relationships between co-methylated 
module representatives and traits of interest (LTL, the 
partially adjusted LTL, fully adjusted LTL, age, and 
white blood cell counts) are displayed in Figure 6. 
 
DISCUSSION 
 
This multi-ethnic EWAS of LTL is the largest to date 
and revealed strong associations between LTL and 
DNAm levels in all groups defined by sex and 
ancestry. Our stratified analysis showed that the 
EWAS findings for women of African ancestry are 

distinct from those of three other groups: males of 
African ancestry, males and females of European 
ancestry. A detailed analysis reveals that this 
difference does not reflect differences in sample size, 
age distribution, or LTL. We analyzed 1,532 blood 
samples from women of African ancestry, 697 from 
men of African ancestry, 1,389 from men of European 
ancestry, and 2,095 from women of European 
ancestry. Although men of African ancestry had the 
smallest sample size, their EWAS results were 
consistent with those from the two European groups. 
 
Our unadjusted meta-analysis across the groups revealed 
profound relationships between TL and global DNA 
methylation levels, which largely reflect confounding by 
blood cell composition. However, one can observe 
genome-wide significant relationships between 
methylation levels and LTL even after adjusting for 
differences in blood cell composition. In particular, we 
report 823 CpGs (close to or within 557 genes) that are 
significantly correlated with the fully adjusted LTL. 
More than 88 percent (730 CpGs) of these 823 significant 
CpG sites exhibit a negative correlation with LTL, 
meaning that higher methylation levels are associated 
with shorter LTL at these CpG sites. 
 
Among the 823 CpGs, the top 10 CpGs were linked to 
seven genes/loci (VARS, MAN2A2, C7orf41, ERGIC1, 
TLL2, YPEL3 and XRCC3). VARS encodes the  
enzyme Valyl-tRNA synthetase that is critical in 
eukaryotic translation [32]. Mutations in VARS cause 
neurodevelopmental disorders, such as microcephaly, 
cortical dysgenesis, seizures, and progressive cerebral 
atrophy [32, 33]. MAN2A2 encodes alpha-mannosidase 2x 
that is active in N-glycan biosynthesis [34]. MAN2A2 null 
males were largely infertile in mouse studies [35]. C7orf41 
(current official name, MTURN), encodes Maturin, a 
protein that controls neurogenesis in the early nervous 
systems [36]. ERGIC1 encodes a cycling membrane 
protein that contributes to membrane trafficking  
and selective cargo transport between intermediate 
compartments [37, 38]. TLL2 encodes Tolloid-like protein 
2 [39] and is associated with attention-deficit/hyperactivity 
disorder [40]. YPEL3 codes for Yippee-like 3, a protein 
that suppresses tumor growth, proliferation and metastasis 
in several types of cancer [41, 42]. XRCC3 encodes a 
RecA/Rad51-related protein that maintains chromosome 
stability and repairs DNA damage [43, 44]. 
 
Functional enrichment studies demonstrate that the 
significant CpG sites were located near genes that play 
a role in circadian clock, blood coagulation, and wound 
healing, respectively. A rich literature links TL to 
circadian rhythm. For example, cellular senescence 
impairs circadian rhythmicity both in vitro and in vivo 
[45]. Sleep disorders and shorter sleep duration are 

https://www.ebi.ac.uk/gwas/docs/file-downloads
https://www.ebi.ac.uk/gwas/docs/file-downloads
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Figure 5. Hierarchical clustering of CpG sites by weighted gene co-expression network analysis (WGCNA). Each data point on 
the x-axis of the dendrogram refers to an individual CpG site. The color band ‘Consensus module’ displays co-methylated modules (clusters) 
in different colors. The other color bands highlight the degree of correlations between DNA methylation of CpG sites and traits of interest. 
Red represents a positive correlation, whereas blue represents a negative correlation. 

 

 
 

Figure 6. Heat map of correlations between the co-methylated module representatives and LTL, the partially adjusted LTL, 
the fully adjusted LTL, age, and blood cell counts. The numbers in the cells refer to meta-Z scores and their corresponding p-values. 
Meta-Z scores were calculated based on biweight midcorrelations between DNAm and a trait of interest in the six strata. 1Partially adjusted 
LTL for age, sex and ethnicity. 2Fully adjusted LTL for age, sex, ethnicity, CD4+ naïve, CD8+ naïve and exhausted cytotoxic T cell. 
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associated with shorter telomeres [46, 47]. Telomerase 
and TERT mRNA expression are furthermore under  
the control of CLOCK-BMAL1 regulation (a core 
component of the circadian clock) and exhibit 
endogenous circadian rhythms [48]. CLOCK-deficient 
mice display shortened TL and abnormal oscillations of 
telomerase activity [48]. Our results are in line with 
these findings and support a relationship between LTL 
and circadian rhythm. 
 
TL has also been associated with wound healing and 
blood coagulation. For example, mice with longer 
telomeres show higher wound healing rates of the skin 
[49]. Furthermore, exogenous delivery of the human 
TERT gene significantly improved wound healing in an 
aged rabbit model [50]. In humans, poor wound healing 
has been reported in individuals with dyskeratosis 
congenita, a rare congenital disorder caused by a defect 
in telomere maintenance [51]. While assigning causality 
remains a challenge, our findings do provide evidence 
that telomere functioning is associated with the circadian 
clock, wound healing and blood coagulation through the 
DNA methylome in a population-based sample. Future 
work is needed to further understand the mechanisms by 
which this is regulated and how it impacts human health 
and diseases.  
 
Our findings were based on a considerably larger sample 
size (n=5,713) than previous studies. Buxton et al. (2014) 
used 24 blood and 36 Epstein-Barr virus cell-line samples 
of 44 to 45 years old males and identified 65 and 36 TL-
associated gene promoters, respectively [27]. Gadalla et 
al. (2012) was based on a sample of 40 cases with 
dyskeratosis congenita and 51 controls [28], and the 
authors reported a positive correlation between LTL and 
methylation at LINE-1 and subtelomeric sites only 
among the cases. Bell and colleagues performed an 
EWAS of age, TL and other age-related phenotypes 
using 172 samples of female twins [26]. Due to the small 
sample size, the authors could not find genome-wide 
significant associations between DNAm levels and TL. 
 
We adjusted LTL for imputed blood cell composition in 
addition to age, sex, and ethnicity, because blood cell 
composition confounds the relationship between DNAm 
[52, 53] and LTL [54]. Consistent with previous findings, 
our WGCNA analyses in Figure 5 also showed that the 
black, red, and yellow modules were highly related to 
both blood cell counts and LTL. One concern was that 
blood cell counts might be causally influenced by DNAm 
and LTL (i.e., blood cell counts might be a collider 
between DNAm and LTL), which may introduce bias in 
LTL-DNAm correlations. Thus, we ran another EWAS 
without considering blood cell counts and compared LTL-
DNAm correlations before and after adjustment for blood 
cell counts (Supplementary File 1). The correlations listed 

in Table 1 became slightly weaker after adjustment for 
blood cell counts but remained significant nonetheless. 
However, the number of associated CpG sites was greatly 
reduced after adjustment for blood cell counts. Cell type 
heterogeneity is thus an important variable to consider in 
studies of telomere length. Future work should be 
extended to cell type-specific analysis as well as to tissues 
beyond whole blood. 
 
We did not adjust LTL for cigarette smoking in our main 
analyses because smoking had a non-significant effect on 
LTL (FHS: P=0.83 for never vs former smoker and 
P=0.76 for never vs current smoker; WHI: P=0.20 for 
never vs former smoker and P=0.24 for never vs current 
smoker), though suggestive associations could be found 
in JHS (P=0.08 for never vs former smoker and P=0.02 
for never vs current smoker). These results pointing to a 
very weak effect of smoking are consistent with those 
from Astuti and colleagues [55] who reported that 50 of 
84 studies found no association between smoking and 
TL, although their meta-analysis concluded that smokers 
may have shorter TL. Our sensitivity analyses also 
revealed that all the 823 CpGs remained significant 
regardless of smoking variables. Our EWAS summary 
statistics includes this sensitivity analysis with additional 
adjustment for smoking (see the names of columns 
starting with “aaa” in Supplementary File 1). 
 
One limitation of our study is that it does not elucidate 
the biological pathways or mechanisms linking DNAm 
and LTL. In other words, our findings do not explain 
whether DNAm shortens or lengthens LTL, or whether 
LTL regulates DNAm. Second, we did not include 
genotypic information in our analyses. Other studies have 
suggested that genomic variants might regulate DNAm 
[31] and LTL [21–24, 56]. Third, LTL measurement is 
sensitive to the methods used for DNA extraction and 
LTL estimation [57]. Fourth, we only used EWAS and 
WGCNA to analyze the data. A supervised machine-
learning approach for predicting TL based on DNAm 
levels will be described in a separate article [58]. 
 
This study represents the largest EWAS analysis of DNA 
methylation and LTL to date. We identified over 800 
genome-wide significant CpG sites that are located in or 
near genes with links to circadian rhythm, blood 
coagulation and wound healing. These findings link two 
hallmarks of aging: epigenetic changes and telomere 
biology. 
 
MATERIALS AND METHODS 
 
Study population 
 
The FHS Offspring Cohort started in 1971 to inaugurate 
epidemiological studies of young adults in Framingham, 
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Massachusetts, USA. The FHS recruited 5,124 
individuals and invited them to examinations at the FHS 
facilities [59]. The JHS recruited 5,306 African 
Americans from 2000 to 2004 in the Jackson metropolitan 
area, Mississippi, USA, to investigate risk factors for 
cardiovascular disease [60]. Participants provided medical 
history, social records and whole-blood samples. The 
WHI started in 1992 and enrolled 64,500 postmenopausal 
women aged between 50 and 79 years into either clinical 
trials or observational studies [61]. Among many sub-
studies, WHI “Broad Agency Award 23” has provided 
both blood-based LTL and DNAm array data. The BHS 
started in 1972 and has recruited multiple waves of 
participants from childhood, adolescence and adulthood  
in Louisiana, USA [62]. The LBC1921 and LBC1936 are 
longitudinal studies of 550 individuals born in Scotland in 
1921 and of 1091 individuals born in Scotland in 1936. 
The studies were set up in 1999 and 2004, respectively, 
with the aim of studying cognitive aging [63, 64]. The 
LSADT was initiated in 1995 and is a cohort-sequential 
study of Danish twins aged 70 years or more [65, 66]. 
Surviving twins were surveyed every second year until 
2005. In 1997, whole blood samples were collected from 
689 same-sex twins and the present study included all 
twin pairs who participated in the 1997 wave and for 
whom LTL measurements were available. 
 
The sample size of each cohort used in this study as 
follows: FHS (n=874), JHS (n=1,637), WHI (n=818), 
BHS (n=831), LBC1921 (n=403), LBC1936 (n=906), 
and LSADT (n=244). 
 
Measurement of LTL 
 
LTL was measured by either of two methods: Southern 
blot [67] or qPCR [9]. All cohorts used Southern blot, 
except for LBC1921 and LBC1936 that used qPCR. LTL 
measurement by Southern blot provides the mean of 
TRFs, whereas qPCR provides the ratio of telomeric 
template to glyceraldehyde 3-phosphate dehydrogenase. 
The average inter-assay coefficients of variation were 
2.4% in FHS, 2.0% in JHS, 2.0% in WHI, 1.4% in BHS, 
5.1% in LBC (LBC1921 and LBC1936 combined), and 
2.5% in LSADT. Further details on the measurement of 
LTL in each cohort are provided in Supplementary File 2. 
 
Measurement of DNA methylation 
 
DNAm data were generated on either of two different 
Illumina array platforms: the Illumina Infinium 
HumanMehtylation450 Bead-Chip (Illumina, San Diego, 
CA, USA) or the Illumina Infinium MethylationEPIC 
Bead-Chip (Illumina, San Diego, CA, USA). Beta values 
were computed, which quantify methylation levels 
between 0 and 1, with 0 being unmethylated and 1 being 
fully methylated. Further details on normalization and 

quality control of the data can be found in Supplementary 
File 2. 
 
Statistical analysis 
 
We stratified the seven cohorts (FHS, JHS, WHI, BHS, 
LBC1921, LBC1936 and LSADT) by sex, ethnicity and 
batch, which resulted in 16 strata (Table 2). 
 
In each of the 16 strata, we applied two sets of 
adjustments on LTL using a regression: 1) partially 
adjusted for age alone, and 2) fully adjusted for age and 
DNAm-based estimated cell type proportions (CD4+ 
naïve, CD8+ naïve T cell and exhausted cytotoxic T cell). 
In FHS and LSADT, we used a linear mixed model to 
regress LTL on the adjusting variable(s) (fixed effect) 
and family structure (random effect). In JHS, WHI, BHS, 
LBC1921 and LBC1936, an ordinary linear regression 
was used. The blood cell type proportions were  
estimated using Horvath’s DNAm age calculator 
(https://dnamage.genetics.ucla.edu/home), with the 
exception of LSADT where the blood cell counts were 
estimated using Houseman et al. (2012)’s method [68]. 
 
The R package for weighted gene co-expression network 
analysis (WGCNA; [69]) was used to compute 
epigenome-wide biweight midcorrelations between 
DNAm levels and adjusted LTL in each of the 16 strata. 
The biweight midcorrelation is an attractive method for 
computing correlation coefficients because 1) it is more 
robust than Pearson correlation and 2) unlike the 
Spearman correlation, it preserves the biological signal as 
shown in large empirical studies [70]. We focused on 
441,870 autosomal probes that were shared between the 
450K and the EPIC array. We combined the 16 sets of 
EWAS summary statistics into four group-specific or one 
global meta summary statistics as described in Figure 1. 
Meta Z values and the corresponding p-values were 
computed as 2/i i iZ w w∑ ∑  and ( )meta2 1 Φ(| Z |)− , 
where wi is the square root of the sample size in the ith 
stratum, respectively. 
 
Genomic Regions Enrichment of Annotations Tools 
(GREAT, v3.0) was used to predict the biological 
function of DMPs by associating both proximal and distal 
genomic CpG sites with their putative target genes [71]. 
GREAT implements both a gene-based test and a region-
based test using the hypergeometric and binomial test, 
respectively, to assess enrichment of genomic regions in 
biological annotations. DMPs were uploaded to the 
GREAT web portal (http://great.stanford.edu/public/html/) 
and analyses were run using the hg19 reference annotation 
and the whole genome as background. Genomic regions 
were assigned to genes if they are between 5 Kb upstream 
and 1 Kb downstream of the TSS, plus up to 1 Mb distal.

https://dnamage.genetics.ucla.edu/home
http://great.stanford.edu/public/html/
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Table 2. Sample size of the 16 strata used in the meta-analyses. 

Cohort Stratum Sample size Mean age (range) Mean LTL2 (range) Age-LTL 
correlation3 

FHS European female 442 57 (33-81) 7.07 (5.51-8.7) -0.29 
 European male 432 58 (36-82) 6.92 (5.59-8.52) -0.34 
JHS African female 1034 56 (23-92) 7.22 (4.93-10.03) -0.39 
 African male 603 55 (22-93) 7.06 (5.12-9.24) -0.45 
WHI African female 342 63 (50-80) 7.12 (5.57-9.06) -0.24 
 European female 476 68 (51-80) 6.77 (5.24-8.49) -0.27 
BHS African female 156 44 (30-54) 7.34 (5.35-9.22) -0.08 
 African male 94 44 (33-49) 7.21 (5.60-9.47) -0.17 
 European female 315 43 (29-55) 6.82 (5.02-9.17) -0.08 
 European male 266 43 (28-52) 6.75 (5.27-8.54) -0.18 
LBC19211 European female 242 79 (78-80) 3.99 (3.00-4.72) -0.29 
 European male 161 79 (78-81) 4.26 (3.46-5.31) -0.29 
LBC19361 European female 448 70 (68-71) 4.05 (2.69-6.00) 0.01 
 European male 458 70 (68-71) 4.33 (2.99-7.12) 0.17 
LSADT European female 172 79 (73-90) 5.79 (3.94-7.38) -0.25 
 European male 72 79 (74-87) 5.60 (4.53-6.78) -0.17 

1 LBC recruited adults living in and around Edinburgh and who were born in 1921 and 1936. 
2 In kilobases; LTL measurement in TRF (Southern blot): FHS, JHS, WHI, BHS and LSADT; LTL measurement in T/S (qPCR): 
LBC1921 and LBC1936. 
3 Pearson correlation coefficients. 
 

Pathway annotations from GO Biological Processes, GO 
Cellular Component, GO Molecular Function, MSigDB, 
and PANTHER were used to infer the biological 
meanings behind the DMPs that were associated with 
LTL. GREAT outputs statistics of the gene-based and 
region-based tests, which were subsequently adjusted for 
multiple testing using the Bonferroni correction. 
 
The SMR executable software (https://cnsgenomics.com/ 
software/smr/#Download) was used to calculate the 
causal effects of the selected CpGs on LTL [30]. The 
SMR obtains a causal effect estimate ,

ˆ( CpG LTLb =

, ,
ˆ ˆ/ )SNP LTL SNP CpGb β  by dividing the effect of a SNP on LTL 

,
ˆ( )SNP LTLb  by the effect of a SNP on CpG ,

ˆ( )SNP CpGβ . 
GWAS of LTL summary data by Codd and colleagues 
[21] was downloaded from the European Network for 
Genetic and Genomic Epidemiology consortium 
(https://downloads.lcbru.le.ac.uk/engage). The mQTL 
data by McRae and colleagues [31] were downloaded 
from the SMR website (http://cnsgenomics.com/data/ 
SMR/LBC_BSGS_meta.tar.gz). 
 
WGCNA performed a consensus network analysis using 
FHS, JHS and WHI. 30,000 randomly selected CpG sites 

were used to improve readability (resulting in a single 
cluster tree) and offset computational limitations. 
WGCNA hierarchically clustered the 30,000 CpGs based 
on their similarities. The merging threshold of clusters 
(modules) was 0.15. All the statistical analyses were 
performed using R version 3.5.1. 
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polymorphism; SMR: summary-data-based Mendelian 
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instruments; mQTL: methylation quantitative trait locus; 
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SUPPLEMENTARY MATERIALS  
 
Please browse Full Text version to see the data of 
Supplementary Files 1, 2, 3. 
 
Supplementary File 1. Part of summary statistics of 
EWAS of adjusted LTL (global meta P<1E-05 with full 
adjustment). Each row corresponds to a single CpG site. 
The annotations are based on the Human genome 19 (NCBI 
37). The remaining columns indicate the biweight 
midcorrelations and their corresponding Z-scores, p-values 
and sample size. The suffix “a_” means that LTL was adjusted 
for age, sex and ethnicity. The suffix “aa_” means that LTL 
was adjusted for age, sex, ethnicity and blood cell counts. 

The suffix “aaa_” means that LTL was adjusted for age, sex, 
ethnicity, blood cell counts and smoking. 

Supplementary File 2.Additional analyses for 1) 
functional enrichment analysis, 2) the LTL-DNAm 
correlation in subtelomeric regions, 3) summary-data-
based Mendelian randomization, 4) sensitivity 
analyses, and 5) detailed descriptions of each study 
cohort. 

Supplementary File 3. GREAT gene enrichment 
analyses. 

 


