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INTRODUCTION 
 
Renal cell carcinoma (RCC) has become one of the most 
common genitourinary tumors, with an estimated 73,820 
new cases and 14,770 deaths occurring in the United 
States in 2019 [1]. RCC incidence accounts for 
approximately 5% of new cancer cases in males and 3% 
of female cases [1]. As the major subtype of kidney 
cancer, clear cell renal cell carcinoma (ccRCC) is one of 
the most malignant urinary tumors with a global annual 
mortality rate of approximately 90,000 [2]. Metastasis is 
found in 25%–30% patients at initial diagnosis of 
ccRCC. Cytokine and checkpoint inhibitor immuno-
therapy have been demonstrated to promote  

 

active immune responses via different mechanisms, 
including genetic aberrations, epithelial–mesenchymal 
transition, and metabolism [3, 4]. Although extensive 
researches have been conducted on the mechanisms of 
cancer development and progression, the etiology and 
carcinogenesis of ccRCC remain unclear [5]. Therefore, 
considering the high morbidity and mortality of ccRCC, 
it is essential to explore molecular signatures with 
prognostic value that affect immune response in ccRCC 
patients.  
 
The tumor microenvironment (TME) is a mixture of 
fluids, immune cells, stromal cells, extracellular matrix 
molecules, and numerous cytokines and chemokines. The 
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ABSTRACT 
 
Growing evidence has highlighted the immune response as an important feature of carcinogenesis and 
therapeutic efficacy in clear cell renal cell carcinoma (ccRCC). This study categorized ccRCC cases into high and low 
score groups based on their immune/stromal scores generated by the ESTIMATE algorithm, and identified an 
association between these scores and prognosis. Differentially expressed tumor environment (TME)-related genes 
extracted from common upregulated components in immune and stromal scores were described using functional 
annotations and protein–protein interaction (PPI) networks. Most PPIs were selected for further prognostic 
investigation. Many additional previously neglected signatures, including AGPAT9, AQP7, HMGCS2, KLF15, 
MLXIPL, PPARGC1A, exhibited significant prognostic potential. In addition, multivariate Cox analysis indicated that 
MIXIPL and PPARGC1A were the most significant prognostic signatures, and were closely related to immune 
infiltration in TCGA cohort. External prognostic validation of MIXIPL and PPARGC1A was undertaken in 380 ccRCC 
cases from a real-world cohort. These findings indicate the relevance of monitoring and manipulation of the 
microenvironment for ccRCC prognosis and precision immunotherapy. 
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cells and molecules in the TME are in a dynamic process, 
reflecting the evolutionary nature of cancer, and jointly 
promote tumor immune escape, tumor growth and 
metastasis [6]. Although multiple genetic mutations 
increase the incidence of cancer, researchers are not aware 
of the impact of the TME on tumor progression or 
immune response [7]. Li reviewed that the TME can 
impose metabolic stress on immune cell infiltration, 
leading to local immunosuppression and limited 
reinvigoration of antitumor immunity [8]. Therefore, 
understanding the molecular composition and function of 
the TME is critical to effectively manage cancer 
progression and immune response [9–11].  
 
Bioinformatics analysis generates large and complex 
biological data through the comprehensive use of biology, 
computer science, and information technology. Its rapid 
development, such as The Cancer Genome Atlas (TCGA) 
database, provides researchers with a more user-friendly 
and convenient platform, guiding the implementation of 
basic experiments [12, 13]. In 2013, Yoshihara et al. 
calculated specific molecular biomarker expression in 
immune and stromal cells, and thus generated an 
ESTIMATE algorithm with immune/stromal/ESTIMATE 
scores to predict the TME [9]. Based on the ESTIMATE 
algorithm, researchers have performed prognostic 
assessments and exploration of genetic alterations in 
many neoplasms [11, 14, 15]. However, the value of 
immune/stromal scores for ccRCC remains to be 
elucidated.  
 
In this current work, to investigate potential signatures 
for ccRCC patients, we obtained a list of TME-related 
genes of prognostic value using immune/stromal scores 
after ESTIMATE algorithm-processing in multiple 
cohorts. Functional annotations and immune infiltration 
correlation were analyzed for significant hub genes. We 
hypothesized that the possible oncogenic activity of hub 
genes correlates with poor prognosis and might reveal 
potential immune therapies by providing insights into 
the molecular mechanisms of ccRCC. 
 
RESULTS 
 
Elevated immune and stromal score significantly 
correlated with advanced clinicopathological 
indicators and poor prognosis 
 
Transcriptional expression profiles and phenotype data 
was download and integrated in 533 ccRCC patients from 
TCGA cohort. 64.7% (n=345) patients were male and 
35.5% (n=188) were female. T1-T2 stage patients 
accounted for 64.1% (n=342) of the total number. N0 and 
N1 patients accounted for 45% (n=240) and 3% (n=16), 
respectively. M0 and M1 patients accounted for 79.2% 
(n=422) and 14.8% (n=79). In addition, after ESTIMATE 

algorithm was processed, stromal scores and immune 
scores were obtained, ranging from -2,716.84 to 4,773.7 
and -1,158.94 to 3,076.7, respectively. Estimate score was 
significantly associated with higher ISUP grade and 
AJCC stage (Figure 1A, p<0.001, Figure 1B, p=0.0005). 
The highest Estimate score was found in the most 
progressive clinicopathological stage, G4 and stage IV. 
Immune score indicated significant prognostic 
implications, associated with elevated ISUP grade and 
AJCC stage (Supplementary Figure 1A–1B, p<0.0001). 
Stromal score significantly correlated with advanced 
ISUP grade (Supplementary Figure 1C, p=0.0463), while 
showed no association with AJCC stage (Supplementary 
Figure 1D, p=0.0674). 
 
To detect potential correlation between immune/ 
stromal/Estimate score and survival benefits, we 
divided 533 patients into high and low score groups. 
Survival curves indicated that elevated immune score 
significantly correlated with poor overall survival 
(Figure 1C; p=0.001, 1165 vs. 1217 days). Increased 
stromal score significantly associated with shorter OS 
(Figure 1D; p=0.002, 1117.5 vs. 1230 days). 
Significant Estimate score also predict significant OS 
for ccRCC patients (Figure 1E; p=0.003, 1172.5 vs. 
1223.5 days). 
 
Differential expressed genes with immune and 
stromal score in ccRCC 
 
To explore differential expressed genes (DEGs) profiles 
with immune and/or stromal scores, we performed 
transcriptional microarray analysis of 533 ccRCC cases 
from TCGA cohort. Based on immune score 
comparison, 162 genes were up-regulated and 747 
genes down-regulated in the high score than the low 
score group after propensity analysis using limma 
package algorithm (Figure 2A). Similarly, for high 
stromal score compared with low score, 261 up-
regulated genes and 1198 down-regulated genes were 
obtained (Figure 2B). A total of 77 DEGs were 
commonly upregulated in the high scores groups 
(Figure 2C), and 787 genes were synchronously 
downregulated using Venn algorithm (Figure 2D).  
 
In addition, functional enrichment analysis including GO: 
BP, GO: CC, GO: MF and KEGG pathways, was 
performed in 864 commonly DEGs in Figure 2E. After –
Log (FDR) sorting, we listed the top 10 function 
annotations of each part. As illustrated in Supplementary 
Figure 2, DEGs were mostly enriched in immune defense, 
plasma membrane, cytokine binding and cytokine-
cytokine receptor interaction. Cluster analysis and heat 
map including 77 up-regulated DEGs suggested distinct 
mRNA expression profiles of DEGs in 533 ccRCC 
samples (Figure 2F).  
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Significant modular analysis based on PPI network 
 
PPI network was constructed using a total of 77 
commonly up-regulated DEGs in Figure 3A. MCODE, 
plug-in of Cytoscape, was used to detect most 
significant co-regulated modular. It indicated four 
closely related subgroups displayed in different color, 
and the most significant modular including AGPAT9, 
AQP7, HMGCS2, KLF15, MLXIPL, PPARGC1A, was 
marked in yellow. Survival curves of other nodes were 
illustrated in Supplementary Figure 3. It suggested that 
decreased SLC27A2, G6PC, MGAM, TRPM3, PKHD1, 
MYL3, MAPT, SLC22A6, TRHDE, TMEM174, 
SLC22A8, OGDHL, SCGN, SLC51B, SLC22A12, REN, 
PAH, GABRG1, SLC13A2, SST, KCNJ11 significantly 
correlated with poor OS, while elevated TUBB4A and 

RGS7 expression significantly predicted poor prognosis 
(p<0.05). 
 
As shown in Figure 3B, functional annotations indicated 
that 77 DEGs were mostly involved in carbohydrate 
digestion and absorption, fatty acid transmembrane 
transport activity, PPAP signaling pathway, response to 
methionine, insulin resistance, water channel activity, 
enamel mineralization, negative regulation of 
mitochondrial fission, etc. 
 
Survival analysis of significant DEGs in ccRCC from 
TCGA database 
 
After integrating mRNA expression profile of six 
significant hub genes (AGPAT9, AQP7, HMGCS2, 

 

 
 

Figure 1. Association between immune/stromal/Estimate score and prognosis in TCGA after ESTIMATE algorithm processed. 
(A–B) Estimate score was significantly associated with higher ISUP grade and AJCC stage (p<0.001). The highest Estimate score was found in 
the most progressive clinicopathological stage, G4 and stage IV. (C) Survival curves indicated that elevated immune score significantly 
correlated with poor overall survival in 533 ccRCC patients (p=0.001, 1165 vs. 1217 days). (D) Increased stromal score significantly associated 
with shorter OS (p=0.002, 1117.5 vs. 1230 days). (E) Significant Estimate score also predict significant OS for ccRCC patients (p=0.003, 1172.5 
vs. 1223.5 days). 
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KLF15, MLXIPL, PPARGC1A) and clinical information, 
univariate regression analysis of overall survival were 
performed in TCGA cohort. As shown in Table 1, stromal 
score (ref. low), Immune score (ref. low), pT stage (ref. 
T1-T2), pN stage (ref. N0), pM stage (ref. M0), AJCC 
stage (ref. I-II), ISUP grade (ref. 1-2), AGPAT9, AQP7, 
HMGCS2, KLF15, MLXIPL and PPARGC1A expression 

(ref. low) were demonstrated as independent prognostic 
indicators for ccRCC patients (p<0.05). Multivariate Cox 
analysis showed that poor OS was significantly associated 
with pM stage (ref. M0; HR=2.807, p<0.001), ISUP grade 
(ref. 1-2; HR=1.765, p=0.029), MLXIPL expression (ref. 
low; HR=2.537, p=0.005) and PPARGC1A expression 
(ref. low; HR=0.468, p=0.009). 

 

 
 

Figure 2. Differential expressed genes with immune and stromal score and related functional annotations in ccRCC. (A) Based 
on immune score comparison, 162 genes were up-regulated and 747 genes down-regulated in the high score than the low score group after 
propensity analysis using limma package algorithm. (B) Similarly, for high stromal score compared with low score, 261 up-regulated genes 
and 1198 down-regulated genes were obtained. (C–D) A total of 77 DEGs were commonly upregulated in the high scores groups, and 787 
genes were synchronously downregulated using Venn algorithm. (E) functional enrichment analysis including GO: BP, GO: CC, GO: MF and 
KEGG pathways, was performed in 864 commonly DEGs. (F) Cluster analysis and heat map including 77 up-regulated DEGs suggested distinct 
mRNA expression profiles of DEGs in 533 ccRCC samples. 
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As demonstrated in Figure 4, among 6 significant hub 
genes, significantly decreased AGPAT9, AQP7, 
HMGCS2, KLF15, PPARGC1A mRNA expressions 
were found in ccRCC tissues compared with adjacent 
normal tissues, while MLXIPL mRNA expression was 
significantly elevated in tumor samples compared with 
normal samples. Kaplan-Meier method indicated that 
decreased AGPAT9, AQP7, HMGCS2, KLF15, 
PPARGC1A mRNA expression significantly correlated 
with poor OS (p<0.001), and elevated MLXIPL mRNA 
expression was significantly associated with shorter OS 
for ccRCC patients (p=0.012).  
 
Prognostic validation of MLXIPL and PPARGC1A 
in FUSCC cohort 
 
To validate AQP9 mRNA expression profile in ccRCC 
tissues, we performed RT-qPCR using 380 paired tumor 
and normal samples with available clinical follow-up 
data from a real-world cohort. It revealed dramatically 
increased MLXIPL and decreased PPARGC1A mRNA 
expression in ccRCC samples than normal tissues 
(Figure 5A–5B). Survival curves suggested that patients 
with elevated MLXIPL and decreased PPARGC1A 
mRNA levels significantly correlated with poorer PFS 
and OS (p<0.001; Figure 5C–5F). 
 
Cox regression analysis and ROC curves 
 
Multivariate Cox regression analysis of PFS and OS were 
performed in FUSCC cohort using mRNA expression 
profile of MLXIPL and PPARGC1A and clinico-
pathological information. As shown in Table 2, 
multivariate Cox analysis showed that poor PFS and OS 
were significantly associated with pT stage (ref. T1-T2), 

pN stage (ref. N0), pM stage (ref. M0), AJCC stage (ref. 
I-II), ISUP grade (ref. 1-2) and gene (MLXIPL or 
PPARGC1A) expression (ref. low) for ccRCC patients of 
FUSCC cohort (p<0.05). 
 
After integrating all the significant clinicopathological 
parameters and gene expression profiles in the 
multivariate Cox regression models of FUSCC cohort, 
we generated the formula: Integrated score(MLXIPL) = 
2.105×pT stage (ref. T1-T2) + 1.922×pN stage (ref. 
N0) + 1.771×pM stage (ref. M0) + 2.413×AJCC stage 
(ref. I-II) + 1.934×ISUP grade (ref. 1-2) + 
1.963×MLXIPL expression (ref. low) for PFS; 
Integrated score(MLXIPL) = 1.840×pT stage (ref. T1-T2) 
+ 1.832×pN stage (ref. N0) + 2.001×pM stage (ref. 
M0) + 3.434×AJCC stage (ref. I-II) + 1.764×ISUP 
grade (ref. 1-2) + 1.545×MLXIPL expression (ref. 
low) for OS. For PPARGC1A, we generated formula: 
Integrated score(PPARGC1A) = 1.931×pT stage (ref. T1-
T2) + 2.029×pN stage (ref. N0) + 1.641×pM stage (ref. 
M0) + 2.721×AJCC stage (ref. I-II) + 1.823×ISUP 
grade (ref. 1-2) + 0.524×PPARGC1A expression (ref. 
low) for PFS; Integrated score(PPARGC1A) = 1.862×pT 
stage (ref. T1-T2) + 1.821×pN stage (ref. N0) + 
1.912×pM stage (ref. M0) + 3.511×AJCC stage (ref. I-
II) + 1.749×ISUP grade (ref. 1-2) + 
0.665×PPARGC1A expression (ref. low) for OS. The 
AUC index of MLXIPL and PPARGC1A for the 
FUSCC-PFS and FUSCC-OS were 0.765, 0.768 and 
0.778, 0.799, respectively (p<0.001; Figure 6A–6B). 
External validation was implemented in TCGA cohort. 
The AUC index of MLXIPL and PPARGC1A for the 
TCGA-PFS and TCGA-OS were 0.753, 0.750 and 
0.748, 0.737, respectively (p<0.001; Figure 6C–6D). 
Survival curves suggested that integrated scores of 

 

 
 

Figure 3. Significant modular analysis and function enrichment analysis based on PPI network. (A) PPI network was constructed 
using a total of 77 commonly up-regulated DEGs. MCODE, plug-in of Cytoscape, was used to detect most significant co-regulated modular. 
The most significant modular including AGPAT9, AQP7, HMGCS2, KLF15, MLXIPL and PPARGC1A, was marked in yellow. (B) functional 
annotations indicated that 77 DEGs were mostly involved in carbohydrate digestion and absorption, fatty acid transmembrane transport 
activity, PPAP signaling pathway, response to methionine, insulin resistance, water channel activity, enamel mineralization, negative 
regulation of mitochondrial fission, etc. 
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Table 1. Univariate and multivariate Cox logistic regression analysis of overall survival in TCGA cohort. 

Covariates 
Univariate analysis  Multivariate analysis 

HR 95% CI P value  HR 95% CI P value 
Stromal score (ref. low) 1.459 1.070-1.990 0.017  1.512 0.908-2.516 0.112 
Immune score (ref. low) 1.628 1.207-2.196 0.001  1.092 0.688-1.731 0.710 
pT stage (ref. T1-T2) 3.155 2.332-4.268 <0.001  1.274 0.549-2.954 0.573 
pN stage (ref. N0) 2.887 1.535-5.429 0.001  1.265 0.636-2.516 0.503 
pM stage (ref. M0) 4.396 3.234-5.974 <0.001  2.807 1.606-4.908 <0.001 
AJCC stage (ref. I-II) 3.856 2.814-5.285 <0.001  1.276 0.495-3.287 0.614 
ISUP grade (ref. 1-2) 3.056 2.166-4.311 <0.001  1.765 1.060-2.939 0.029 
AGPAT9 expression (ref. low) 0.449 0.333-0.605 <0.001  0.832 0.500-1.384 0.479 
AQP7 expression (ref. low) 0.551 0.407-0.746 <0.001  1.150 0.694-1.903 0.588 
HMGCS2 expression (ref. low) 0.487 0.362-0.656 <0.001  0.883 0.550-1.418 0.607 
KLF15 expression (ref. low) 0.567 0.409-0.787 0.001  0.782 0.461-1.328 0.363 
MLXIPL expression (ref. low) 1.893 1.246-2.875 0.003  2.537 1.333-4.827 0.005 
PPARGC1A expression (ref. low) 0.288 0.206-0.405 <0.001  0.468 0.264-0.828 0.009 

TCGA: the Cancer Genome Atlas. 
 

 
 

Figure 4. Survival analysis of significant DEGs in 533 ccRCC from TCGA database. Among 6 significant hub genes, significantly 
decreased AGPAT9, AQP7, HMGCS2, KLF15, PPARGC1A mRNA expressions were found in ccRCC tissues compared with adjacent normal 
tissues, while MLXIPL mRNA expression was significantly elevated in tumor samples compared with normal samples. Kaplan-Meier method 
indicated that decreased AGPAT9, AQP7, HMGCS2, KLF15, PPARGC1A mRNA expression significantly correlated with poor OS (p<0.001), and 
elevated MLXIPL mRNA expression was significantly associated with shorter OS for ccRCC patients (p=0.012). 
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MLXIPL and PPARGC1A expression significantly 
correlated prognosis in FUSCC cohort, and were 
validated significant in predicting prognosis in TCGA 
cohort (Supplementary Figure 4). 
 
Immune infiltration of MLXIPL and PPARGC1A 
 
After identifying prognostic value of MLXIPL and 
PPARGC1A, we performed correlation analysis between 
MLXIPL and PPARGC1A and immune infiltration level 
for ccRCC in Figure 7. Scatter plots were generated with 
partial Spearman’s correlation and statistical significance. 
MLXIPL and PPARGC1A expression were significantly 
associated purity (correlation=0.207 and 0.287, 
respectively). In addition, elevated MLXIPL and 
PPARGC1A significantly correlated with B cell, CD8+ T 
cell, macrophage, neotrophil, and dendritic cell infiltration 

(p<0.05), prompting a general decline in immune 
infiltration level. 
 
In Table 3, Spearman’s correlation and estimated 
statistical significance between MLXIPL, PPARGC1A 
expression and immune cell signature infiltration were 
displayed in detail. Correlation analysis between MLXIPL 
and PPARGC1A and immune cell infiltrations in ccRCC 
and normal samples were assessed in TCGA cohort in 
Supplementary Table 1. Partial correlation and correlation 
adjusted by tumor purity were also provided. Important 
signatures of a variety of immune cells include CD8+ T 
cell, T cell (general), B cell, Monocyte, tumor-associated 
macrophage (TAM), M1 Macrophage, M2, Macrophage, 
Neutrophils, Natural killer cell, Dendritic cell, Th1, Th2, 
Tfh, Th17, Treg, T cell exhaustion, were illustrated. (*p< 
0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001). 

 

 
 

Figure 5. Prognostic validation of MLXIPL and PPARGC1A in FUSCC cohort. (A–B) To validate AQP9 mRNA expression profile in 
ccRCC tissues, we performed RT-qPCR using 380 paired tumor and normal samples with available clinical follow-up data from a real-world 
cohort. It revealed dramatically increased MLXIPL and decreased PPARGC1A mRNA expression in ccRCC samples than normal tissues. (C–F) 
Survival curves suggested that patients with elevated MLXIPL and decreased PPARGC1A mRNA levels significantly correlated with poorer PFS 
and OS (p<0.001). 
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Table 2. Multivariate Cox logistic regression analysis of PFS and OS in FUSCC cohort. 

Covariates 

MLXIPL  PPARGC1A  
PFS  OS  PFS  OS 

HR 95% CI P value  HR 95% CI P value  HR 95% CI P value  HR 95% CI P value 

pT stage  
(ref. T1-T2) 

2.105  1.243-3.567 0.006   1.840  1.067-3.172 0.028   1.931 1.141-3.266 0.014   1.862 1.082-3.206 0.025  

pN stage  
(ref. N0) 

1.922  1.234-2.994 0.004   1.832  1.163-2.885 0.009   2.029 1.304-3.156 0.002   1.821 1.162-2.854 0.009  

pM stage  
(ref. M0) 

1.771  1.107-2.834 0.017   2.001  1.206-3.321 0.007   1.641 1.034-2.606 0.036   1.912 1.160-3.150 0.011  

AJCC stage 
(ref. I-II) 

2.413  1.244-4.679 0.009   3.434  1.723-6.845 <0.001  2.721 1.425-5.197 0.002   3.511 1.776-6.942 <0.001 

ISUP grade 
(ref. 1-2) 

1.934  1.419-2.636 <0.001  1.764  1.210-2.571 0.003   1.823 1.340-2.481 <0.001  1.749 1.199-2.551 0.004  

Gene 
expression 
(ref. Low) 

1.963  1.460-2.640 <0.001   1.545  1.102-2.166 0.012    0.524  0.379-0.726 <0.001   0.665  0.457-0.967 0.033  

PFS: progression-free survival; OS: overall survival; FUSCC: Fudan University Shanghai Cancer Center 
 

 
 

Figure 6. ROC curves were generated to validate the ability of the logistic model to predict prognosis. After integrating all the 
significant clinicopathological parameters and gene expression profiles in the multivariate Cox regression models of FUSCC cohort, we 
generated the formulas for MLXIPL and PPARGC1A to predict prognosis in FUSCC cohort, and validated prognostic ability in TCGA cohort.  
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DISCUSSION 
 
With the rapid development of microarray sequencing, 
researchers are increasingly exploring new targets and 
performing external validations using statistical 
algorithms in ccRCC [12, 16]. However, most current 
studies have not effectively classified and analyzed the 
components of cancer cells and the TME, which may 
markedly affect the characteristics of cancer treatment 
response, especially precision immunotherapy [8]. In this 
study, we attempted to explore TME components, 
extracting significant DEGs of large prognostic value to 
understand aggressive tumor progression in ccRCC 
patients. By comparing transcriptional expression profiles 
in 533 ccRCC patients with high versus low 
stromal/immune scores, a total of 77 upregulated DEGs 
involved in extracellular matrix components and immune 
response were identified. Besides significant gene penal, 
transcriptional SLC27A2, G6PC, MGAM, TRPM3, 
PKHD1, MYL3, MAPT, SLC22A6, TRHDE, TMEM174, 
SLC22A8, OGDHL, SCGN, SLC51B, SLC22A12, REN, 
PAH, GABRG1, SLC13A2, SST, KCNJ11, TUBB4A and 
RGS7 expression significantly predicted overall survival 
for ccRCC patients. Subsequently, the expression of eight 
hub genes including AGPAT9, AQP7, HMGCS2, KLF15, 
MLXIPL, and PPARGC1A were enrolled in multivariate 
analysis for overall survival in ccRCC. Importantly, 
MLXIPL and PPARGC1A mRNA expression was 
significantly correlated with immune cell infiltration by 
Person’s correlation analysis. 
 
Human 1-acylglycerol-3-phosphate O-acyltransferase 9 
(AGPAT9, also known as GPAT3 or LPCAT1) catalyzes 

the acyltransferase activity of glycerol-3-phosphate to 
lysophosphatidic acid [17]. Elevated AGPAT9 
expression was identified in omental adipose tissue, 
spleen, and lung, participating in human inflammatory 
stimulation and body lipid homeostasis [18]. Previous 
studies indicated that AGPAT9 is involved in fatty acid 
metabolism, and is correlated with the TME and 
aggressive tumor progression [19, 20]. 
 
Aquaporin 7 (AQP7), a permeation protein of cell 
aquaporin membrane channels, promotes the transport 
of water and glycerol and is critical for fatty acid 
metabolism [21]. AQP7 has been identified as possible 
major route of arsenite uptake into cells in humans [22]. 
Subsequently in several real-world cohorts, increased 
AQP7 mRNA expression demonstrated a significant 
association with advanced tumor grade, stage, and 
lymphatic metastasis events, as well as poor prognosis 
in breast [23] and liver [24] cancers. 
 
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA 
synthase 2 (HMGCS2) is implicated as having onco-
genetic activity in many human neoplasms [25, 26]. 
An integrated analysis focused on lipid metabolism 
and local immune response indicated HMGGCS2, 
CD36, and GPX2 as differential hub genes of lipid 
metabolism in the pan-cancer immune micro-
environment [26]. Transcription factor Krüppel-like 
factor 15 (KLF15) is involved in RNA polymerase II-
specific DNA-binding transcription factor activity and 
has various functional annotations, including adipo-
genesis, cell cycle transition, and cell proliferation 
[27]. 

 

 
 

Figure 7. Immune infiltration of MLXIPL and PPARGC1A. After identifying prognostic value of MLXIPL and PPARGC1A, we performed 
correlation analysis between MLXIPL and PPARGC1A and immune infiltration level for ccRCC. Scatter plots were generated with partial 
Spearman's correlation and statistical significance. MLXIPL and PPARGC1A expression were significantly associated purity (correlation=0.207 
and 0.287, respectively). In addition, elevated MLXIPL and PPARGC1A significantly correlated with B cell, CD8+ T cell, macrophage, neotrophil, 
and dendritic cell infiltration (p<0.05), prompting a general decline in immune infiltration level. 
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Table 3. Correlation analysis between MLXIPL and PPARGC1A and immune cell infiltrations for ccRCC. 

Description Gene markers 
MLXIPL  PPARGC1A 

None  Purity  None  Purity 
Cor P  Cor P  Cor P  Cor P 

CD8+ T cell CD8A -0.078 0.073  -0.055 0.24  -0.346 ****  -0.283 **** 
 CD8B -0.035 0.423  -0.009 0.853  -0.348 ****  -0.283 **** 
T cell (general) CD3D -0.059 0.176  -0.036 0.444  -0.422 ****  -0.358 **** 
 CD3E -0.062 0.153  -0.038 0.418  -0.397 ****  -0.336 **** 
 CD2 -0.076 0.08  -0.05 0.289  -0.393 ****  -0.328 **** 
B cell CD19 -0.121 **  -0.096 *  -0.325 ****  -0.257 **** 
 CD79A -0.155 ***  -0.143 **  -0.362 ****  -0.309 **** 
Monocyte CD86 -0.244 ****  -0.226 ****  -0.266 ****  -0.181 **** 
 CD115 (CSF1R) -0.249 ****  -0.21 ****  -0.214 ****  -0.139 ** 
TAM CCL2 0.079 0.068  0.059 0.207  -0.134 **  -0.062 0.183 
 CD68 -0.073 0.092  -0.072 0.12  -0.225 ****  -0.184 **** 
 IL10 -0.236 ****  -0.189 ****  -0.24 ****  -0.167 *** 
M1 Macrophage INOS (NOS2) -0.034 0.436  -0.023 0.629  0.048 0.264  0.088 0.059 
 IRF5 0.221 ****  0.199 ****  -0.196 ****  -0.173 *** 
 COX2 (PTGS2) -0.284 ****  -0.268 ****  -0.083 0.054  -0.04 0.39 
M2 Macrophage CD163 -0.285 ****  -0.241 ****  -0.079 0.068  -0.033 0.474 
 VSIG4 -0.294 ****  -0.249 ****  -0.237 ****  -0.183 **** 
 MS4A4A -0.285 ****  -0.243 ****  -0.208 ****  -0.146 ** 
Neutrophils CD66b (CEACAM8) 0.1 *  0.09 0.053  0.073 0.094  0.051 0.276 
 CD11b (ITGAM) -0.131 **  -0.093 *  -0.167 ***  -0.094 * 
 CCR7 -0.125 **  -0.109 *  -0.307 ****  -0.236 **** 
Natural killer cell KIR2DL1 0.147 ***  0.137 **  -0.094 *  -0.1 * 
 KIR2DL3 0.108 *  0.103 *  -0.085 0.051  -0.08 0.084 
 KIR2DL4 0.028 0.512  0.033 0.475  -0.284 ****  -0.267 **** 
 KIR3DL1 0.149 ***  0.119 *  -0.056 0.199  -0.076 0.105 
 KIR3DL2 0.133 **  0.094 *  -0.193 ****  -0.211 **** 
 KIR3DL3 0.005 0.912  -0.016 0.738  -0.105 *  -0.081 0.082 
 KIR2DS4 0.077 0.074  0.072 0.124  -0.139 **  -0.162 *** 
Dendritic cell HLA-DPB1 -0.095 *  -0.062 0.184  -0.28 ****  -0.213 **** 
 HLA-DQB1 0.056 0.195  0.085 0.069  -0.249 ****  -0.18 *** 
 HLA-DRA -0.143 ***  -0.114 *  -0.23 ****  -0.159 *** 
 HLA-DPA1 -0.144 ***  -0.115 *  -0.247 ****  -0.169 *** 
 BDCA-1 (CD1C) -0.002 0.966  0.052 0.268  -0.085 *  -0.009 0.841 
 BDCA-4 (NRP1) -0.14 **  -0.121 **  0.002 0.968  0.042 0.368 
 CD11c (ITGAX) 0.113 **  0.118 *  -0.207 ****  -0.165 *** 
Th1 T-bet (TBX21) 0.106 *  0.1 *  -0.308 ****  -0.291 **** 
 STAT4 0.027 0.532  0.023 0.623  -0.394 ****  -0.356 **** 
 STAT1 -0.285 ****  -0.269 ****  -0.222 ****  -0.152 ** 
 IFN-γ (IFNG) -0.07 0.108  -0.051 0.272  -0.38 ****  -0.325 **** 
 TNF-α (TNF) -0.005 0.906  0 0.998  -0.177 ****  -0.132 ** 
Th2 GATA3 -0.159 ***  -0.128 **  -0.216 ****  -0.191 **** 
 STAT6 0.267 ****  0.234 ****  -0.026 0.552  -0.057 0.218 
 STAT5A -0.124 **  -0.091 0.051  -0.251 ****  -0.172 *** 
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 IL13 0.209 ****  0.162 ***  -0.176 ****  -0.153 *** 
Tfh BCL6 -0.011 0.804  -0.052 0.262  -0.13 **  -0.156 *** 
 IL21 -0.131 **  -0.122 **  -0.104 *  -0.095 * 
Th17 STAT3 -0.323 ****  -0.29 ****  -0.023 0.604  0.047 0.309 
 IL17A -0.01 0.816  -0.031 0.509  -0.026 0.545  0.02 0.667 
Treg FOXP3 -0.08 0.064  -0.064 0.168  -0.422 ****  -0.346 **** 
 CCR8 -0.12 **  -0.095 *  -0.271 ****  -0.184 **** 
 STAT5B 0.107 *  0.075 0.106  0.222 ****  0.209 **** 
 TGFβ (TGFB1) -0.237 ****  -0.233 ****  -0.387 ****  -0.361 **** 
T cell exhaustion PD-1 (PDCD1) 0.02 0.645  0.03 0.516  -0.363 ****  -0.308 **** 
 CTLA4 -0.006 0.894  0.003 0.949  -0.309 ****  -0.23 **** 
 LAG3 -0.03 0.489  -0.021 0.649  -0.433 ****  -0.372 **** 
 TIM-3 (HAVCR2) 0.083 0.054  0.084 0.072  -0.01 0.822  0.055 0.234 
 GZMB 0.031 0.481  0.025 0.587  -0.387 ****  -0.348 **** 

TAM, tumor-associated macrophage; Th, T helper cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R value of 
Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity. 
* p< 0.05; ** p< 0.01; *** p< 0.001; **** p< 0.0001. 
 

MLX-interacting protein-like (MLXIPL; also known as 
ChREBP) is reported to be involved in energy 
microenvironment homeostasis and insulin resistance 
[28]. In collaboration with KLF15, MLXIPL facilitates 
RNA polymerase II-specific DNA-binding transcription 
factor activity in glucose-activated processes. Iizuka et 
al. inferred that MLXIPL probably links metabolic 
disorders and neoplasms [29]. As a promising biological 
candidate reflecting the microenvironment and cancers, 
MLXIPL transitivity stimulates aerobic glycolysis by 
regulating glucose and lipid metabolism hallmark-
related genes. 
 
Peroxisome proliferator-activated receptor gamma 
coactivator-1 (PPARGC1A; PGC-1α) is a transcriptional 
co-regulator, and its polymorphisms are proposed as 
obesity metabolic regulators and to be involved in 
epithelial–mesenchymal transition [30, 31]. It was 
revealed that mitochondrial biogenesis and oxidative 
phosphorylation induced by PGC-1α are indispensable for 
migratory tumor cell metastasis [31]. Based on the 
PGC1α–ERRα axis, cell sensitivity to mitochondrial 
alterations and oxidative stress were altered, leading to 
perturbed invasion ability for tumor cells [31, 32]. 
 
In this current study, we focused on differential gene 
profiles in the TME, which in turn impact clinico-
pathological characteristics and aggressive tumor 
progression in ccRCC patients. There are several 
limitations of this study. First, this study failed to 
explore the underlying mechanisms of signaling 
pathways in RCC, while functional annotations and 
enrichment analysis were investigated in different gene 
panels. Second, this study set a broader threshold to 

avoid neglected of potential DEGs and further 
explored unscreened prognostic biomarkers, including 
SLC27A2, G6PC, MGAM, TRPM3, PKHD1, MYL3, 
MAPT, SLC22A6, TRHDE, TMEM174, SLC22A8, 
OGDHL, SCGN, SLC51B, SLC22A12, REN, PAH, 
GABRG1, SLC13A2, SST, KCNJ11, TUBB4A and 
RGS7, in Supplementary Figure 3, whereas many 
potential DEGs still failed to be investigated due to 
limited research scope. Third, it would be effective to 
validate the significance of biomarkers to predict the 
immune response rate in real-world clinical ccRCC 
cohorts receiving immunotherapy. In addition, future 
research needs to explore the detailed mechanism 
between the expression of distinct biomarkers and the 
progression of ccRCC and reveal the mechanism of 
other carcinomas. 
 
In conclusion, after identification of stromal and 
immune scores using the ESTIMATE algorithm in 
TCGA cohort, a list of TME-related hub genes was 
generated. Many additional signatures that had 
previously been neglected were extracted. Besides 
significant gene penal, transcriptional SLC27A2, 
G6PC, MGAM, TRPM3, PKHD1, MYL3, MAPT, 
SLC22A6, TRHDE, TMEM174, SLC22A8, OGDHL, 
SCGN, SLC51B, SLC22A12, REN, PAH, GABRG1, 
SLC13A2, SST, KCNJ11, TUBB4A and RGS7 
expression significantly predicted overall survival for 
ccRCC patients. AGPAT9, AQP7, HMGCS2, KLF15, 
MLXIPL, and PPARGC1A exhibited significant 
prognostic potential, and MLXIPL and PPARGC1A 
were significantly correlated with immune cell 
signatures for ccRCC patients, thus revealing the 
relevance of monitoring and manipulating the TME  
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for ccRCC prognosis and precision immunotherapies. 
Additionally, it would be extremely interesting  
to validate whether this integrated gene panel  
predicts both prognosis and precision immunotherapy. 
Further investigation might provide comprehensive 
insights on the potential association of the TME and 
ccRCC prognosis. 
 
MATERIALS AND METHODS 
 
Ethics statement 
 
All of the study designs and test procedures were 
performed in accordance with the Helsinki Declaration 
II. Study protocols were obtained by Fudan University 
Shanghai Cancer Center (FUSCC) (Shanghai, China) 
included in this research. 
 
Raw biological microarray data  
 
KIRC patients with available RNA-sequence data from 
TCGA database (https://tcga-data.nci.nih.gov/tcga/) 
were consecutively recruited in analyses [33]. The gene 
expression profile was measured experimentally using 
the Illumina HiSeq 2000 RNA Sequencing platform by 
the University of North Carolina TCGA genome 
characterization center. Level 3 data was downloaded 
from TCGA data coordination center, with available 
clinicopathological and survival data. ESTIMATE 
algorithm was used to calculate immune and stromal 
scores using "estimate" package (http://r-forge.r-
project.org; repos=rforge, dependencies=TRUE) [9].  
 
Patients and transcriptional expression profile 
 
Clinicopathological parameters including ISUP grade 
and AJCC stage in 533 ccRCC patients from TCGA 
were analyzed and displayed according the immune, 
stromal and ESTIMATE score. One-way ANOVA test 
were utilized to measure statistically significance. X-
tile software was utilized to take the cut-off value of 
immune score, stromal score and ESTIMATE score, in 
concordance of which overall participants were 
divided to two groups, respectively [34]. Survival 
comparison between distinct three scores identified as 
binary variables (high vs. low) was analyzed in 533 
ccRCC patients. The primary end point for patients 
was progression-free survival (PFS), and overall 
survival (OS) was the secondary end point, which was 
evaluated from the date of first therapy to the date of 
death or last follow-up. The follow-up duration was 
estimated using the Kaplan-Meier method with 95% 
confidence intervals (95% CI) and log-rank test in 
distinct curves. All hypothetical tests were two- 
sided and P-values less than 0.05 were considered 
significant in all tests. 

A total of 380 ccRCC patients from the Department of 
Urology of Fudan University Shanghai Cancer Center 
(FUSCC, Shanghai, China) from April 2009 to July 2018 
were consecutively recruited in analyses. Tissue samples, 
including ccRCC and normal tissues, were collected 
during surgery and available from FUSCC tissue bank. 
 
Identification, normalization and elucidation of 
DEGs 
 
Preprocessing and normalization of raw biological data 
were the first step to process DNA microarray. This 
process removes bias from the microarray data to ensure 
its uniformity and integrity. Next, background 
correction, propensity analysis, normalization and 
visualization output of probe data were performed by 
robust multi-array average analysis algorithm in limma 
package [35]. Fold change > 1.5 and adj. p < 0.05 were 
set as the cut-offs to screen for differentially expressed 
genes (DEGs). Therefore, DEGs were identified based 
on |Log2FC (fold change)|<0.5849 as statistically 
significance. 
 
DAVID (http://david.ncifcrf.gov, Version 6.8) online 
database was performed to explore the role of 
development-related signaling pathways in ccRCC [36]. 
P-value<0.05 was considered statistically significant. 
Function annotations including biological processes 
(BP), molecular functions (MF), and cellular component 
(CC) were extracted from Gene Ontology (GO) 
enrichment analysis [37] and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [38]. Hierarchical 
partitioning was performed using transcriptional 
expression profiles of selected positively-regulated 
DEGs in a heat map. Color gradients suggest high (red) 
or low (blue) expression level. 
 
Protein-protein interaction (PPI) network and 
functional annotations  
 
In this study, Search Tool for the Retrieval of 
Interacting Genes (STRING; http://string-db.org) 
(version 10.0) online database was used to predict PPI 
network of significantly positive DEGs and analyze the 
degree of interactions between proteins [39]. 
Statistically significant edger was considered as 
interaction combined score>0.4 (medium confidence). 
Cytoscape (version 3.5), an open-access bioinformatics 
software platform providing the possibility of molecular 
maps, was utilized to visualize interactive network data 
[40]. Molecular Complex Detection (MCODE) 
(version1.4.2) is a plug-in for Cytoscape used for 
clustering a given network based on topology to find 
densely connected regions [41], which is able to 
identify the most significant module in the PPI networks 
with selection as follows: MCODE scores>5, degree 

https://tcga-data.nci.nih.gov/tcga/
http://r-forge.r-project.org/
http://r-forge.r-project.org/
http://david.ncifcrf.gov/
http://string-db.org/
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cut-off=2, node score cut-off=0.2, Max depth=100 and 
k-score=2.  
 
ClueGO is a Cytoscape plug-in that visualizes the 
non-redundant biological terms for large clusters of 
genes in a functionally grouped network [42]. GO: 
biological process and KEGG pathways analysis of 
selected hub genes were enrolled and visualized using 
ClueGO (version 2.5.3) and CluePedia (version 1.5.3), 
a functional extension of ClueGO, plug-in of 
Cytoscape [43]. 
 
Real-time quantitative PCR analysis 
 
Total RNA sequence was extracted using TRIzol® reagent 
(Invitrogen Life Technologies, USA) from 380 paired 
tumor and para-carcinoma normal samples according to 
manufacturer’s protocol. Then, total RNA from each 
sample was reverse transcribed to cDNA using the 
PrimeScriptTM RT reagent Kit (Takara Bio Inc., Japan). 
Primers were diluted in ddH2O with SYBR Green PCR 
Master Mix (Applied Biosystems, Japan) according to the 
manufacturer’s instructions. The forward and reverse PCR 
primers for MLXIPL (ChREBP) are 5′- AAAACTGGGT 
TCTGGGTGTTC -3′ and 5′- AGGGAGTTCAGGACAG 
TTGG -3′, respectively. The forward and reverse primers 
for PPARGC1A are 5′- TGAACTGAGGGACAGTGAT 
TTC -3′ and 5′- CCCAAGGGTAGCTCAGTTTATC -3′, 
respectively. Transcriptional expression was determined 
and normalized to β-Actin expression, and then analyzed 
by the -ΔΔCt method. Relative expression in ccRCC was 
represented using the ratio in Tumor/Normal tissues (T/N) 
or Normal/Tumor tissues (N/T). 
 
Hub genes selection and statistics analysis in two 
cohorts 
 
The most co-regulated hub genes penal were strived from 
MCODE. Clinical and pathological parameters and 
transcriptional expression profiles of hub genes in 533 
ccRCC patients from TCGA cohort and 380 patients from 
FUSCC cohort were analyzed and displayed. Expression 
of hub genes was respectively identified as binary 
variables (high vs. low) referring to median expression 
taking the cut-off value of each hub genes. Partial 
likelihood test from Cox regression analysis was 
developed to address the influence of independent factors 
on PFS and OS. The follow-up duration was estimated 
using the Kaplan-Meier method with 95% confidence 
intervals (95%CI) and log-rank test in separate curves. 
Student’s t tests were utilized to compare differential hub 
genes expression between tumor and normal tissues 
(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). 
Univariate and multivariate analysis were performed with 
Cox logistic regression models to find independent 
variables, including stromal score (ref. Low), immune 

score (ref. Low), pT stage (ref. T1-T2), pN stage (ref. N0), 
pM stage (ref. M0), AJCC stage (ref. I-II), ISUP grade 
(ref. 1-2), and each hub genes expression (ref. Low).  
 
Integrated score was identified as sum of the weight of 
each significant hub gene and significant 
clinicopathological prognostic indicators. Tumor Immune 
Estimation Resource (TIMER, https://cistrome. 
shinyapps.io/timer/) and GEPIA (http://gepia.cancer-
pku.cn/detail.php) was used to perform comprehensive 
correlation analysis between tumor-infiltrating immune 
cells signatures and selected hub genes. All hypothetical 
tests were two-sided and p-values less than 0.05 were 
considered significant in all tests. All of these statistical 
analyses were performed in R or corresponding R 
packages survival and survminer. 
 
Ethics approval 
 
The Ethics approval and consent to participate of the 
current study was approved and consented by the ethics 
committee of Fudan University Shanghai Cancer center. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. (A–B) Immune score indicated significant prognostic implications, associated with elevated ISUP grade and AJCC 
stage (p<0.0001). (C–D) Stromal score significantly correlated with advanced ISUP grade (p=0.0463), while showed no association with AJCC 
stage (p=0.0674). 
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Supplementary Figure 2. After -Log (FDR) sorting, we listed the top 10 function annotations of each part. DEGs were mostly 
enriched in immune defense, plasma membrane, cytokine binding and cytokine-cytokine receptor interaction. 
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Supplementary Figure 3. Survival curves of other nodes of 77 commonly up-regulated DEGs were illustrated. It suggested that 
decreased SLC27A2, G6PC, MGAM, TRPM3, PKHD1, MYL3, MAPT, SLC22A6, TRHDE, TMEM174, SLC22A8, OGDHL, SCGN, SLC51B, SLC22A12, 
REN, PAH, GABRG1, SLC13A2, SST, KCNJ11 significantly correlated with poor OS, while elevated TUBB4A and RGS7 expression significantly 
predicted poor prognosis (p<0.05). 
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Supplementary Figure 4. Survival curves suggested that integrated scores of MLXIPL and PPARGC1A expression significantly 
correlated prognosis in FUSCC cohort, and were validated significant in predicting prognosis in TCGA cohort. 
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Supplementary Table 
 
Supplementary Table 1. Correlation analysis between MLXIPL and PPARGC1A and immune cell infiltrations in ccRCC 
and normal samples using GEPIA. 

Description Gene markers 
MLXIPL  PPARGC1A 

Tumor  Normal  Tumor  Normal 
R P   R P  R P  R P 

CD8+ T cell CD8A -0.12 **  0.06 0.62  -0.15 ***  -0.47 **** 
 CD8B -0.11 *  0.2 0.086  -0.16 ***  -0.42 *** 
T cell (general) CD3D -0.14 **  0.022 0.86  -0.23 ****  -0.46 **** 
 CD3E -0.14 ***  0.057 0.63  -0.22 ****  -0.48 **** 
 CD2 -0.14 **  0.051 0.67  -0.2 ****  -0.48 **** 
B cell CD19 -0.043 0.33  -0.053 0.66  -0.047 0.28  -0.37 ** 
 CD79A -0.12 **  -0.062 0.6  -0.12 **  -0.37 ** 
Monocyte CD86 -0.21 ****  -0.05 0.68  -0.14 **  -0.37 ** 
 CD115 (CSF1R) -0.17 ****  0.098 0.41  -0.12 **  -0.32 ** 
TAM CCL2 0.012 0.78  -0.34 ***  -0.059 0.17  -0.17 0.15 
 CD68 -0.096 *  0.35 ***  -0.12 **  -0.41 *** 
 IL10 -0.15 ***  -0.17 0.16  -0.097 *  -0.019 0.11 
M1 Macrophage INOS (NOS2) 0.019 0.67  0.034 0.78  0.061 0.16  0.18 0.13 
 IRF5 0.21 ****  -0.6 ****  -0.095 *  0.35 ** 
 COX2 (PTGS2) -0.076 0.082  -0.35 ***  -0.01 0.82  -0.02 0.87 
M2 Macrophage CD163 -0.22 ****  -0.018 0.88  -0.12 **  -0.25 0.034 
 VSIG4 -0.19 ****  -0.016 0.89  -0.1 *  -0.36 ** 
 MS4A4A -0.19 ****  0.089 0.46  -0.12 **  -0.35 ** 

Neutrophils CD66b (CEACAM8) -0.002 0.97  -0.11 0.37  -0.011 0.8  0.3 ** 

 CD11b (ITGAM) 0.008 0.85  0.14 0.23  0.011 0.8  -0.34 ** 
 CCR7 -0.12 **  -0.047 0.69  -0.14 ***  -0.33 ** 
Natural killer cell KIR2DL1 0.12 **  0.14 0.25  -0.08 0.066  -0.19 0.12 
 KIR2DL3 0.11 *  0.21 0.084  -0.092 *  -0.26 * 
 KIR2DL4 -0.046 0.29  0.22 0.062  -0.12 **  -0.24 * 
 KIR3DL1 0.056 0.2  0.16 0.19  -0.063 0.15  -0.27 * 
 KIR3DL2 0.065 0.14  0.16 0.17  -0.12 **  -0.27 * 
 KIR3DL3 -0.073 0.096  -0.053 0.66  0.001 0.98  0.024 0.84 
 KIR2DS4 0.032 0.47  0.084 0.48  -0.077 0.078  -0.15 0.2 
Dendritic cell HLA-DPB1 -0.15 ***  -0.1 0.39  -0.18 ****  -0.36 ** 
 HLA-DQB1 -0.042 0.34  -0.27 *  -0.17 ****  -0.28 * 
 HLA-DRA -0.17 ****  -0.14 0.26  -0.17 ****  -0.33 ** 
 HLA-DPA1 -0.15 ***  -0.051 0.67  -0.15 ****  -0.29 * 
 BDCA-1 (CD1C) -0.052 0.25  -0.066 0.58  -0.036 0.41  -0.35 ** 
 BDCA-4 (NRP1) -0.072 0.1  0.13 0.26  0.025 0.57  -0.31 ** 
 CD11c (ITGAX) 0.079 0.072  0.12 0.32  -0.062 0.16  -0.29 * 
Th1 T-bet (TBX21) 0.067 0.12  0.2 0.094  -0.19 ****  -0.35 ** 
 STAT4 -0.038 0.38  0.068 0.57  -0.25 ****  -0.4 *** 
 STAT1 -0.19 ****  -0.52 ****  -0.076 0.081  0.084 * 
 IFN-γ (IFNG) -0.11 *  0.002 0.99  -0.11 **  -0.28 * 
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 TNF-α (TNF) 0.006 0.9  -0.21 0.079  -0.069 0.11  -0.13 0.29 
Th2 GATA3 -0.082 0.061  -0.53 ****  0.044 0.32  0.53 **** 
 STAT6 0.21 ****  -0.3 **  0.017 0.69  0.055 0.65 
 STAT5A -0.13 ***  0.13 0.29  -0.065 0.14  -0.024 0.84 
 IL13 0.095 *  -0.14 0.25  -0.1 *  -0.18 0.14 
Tfh BCL6 0.021 0.63  -0.57 ****  -0.025 0.57  0.17 0.16 
 IL21 -0.11 ***  0.007 0.95  -0.067 0.13  -0.13 0.27 
Th17 STAT3 -0.099 *  -0.53 ****  0.049 0.27  0.32 ** 
 IL17A -0.057 0.19  -0.006 0.96  -0.024 0.58  -0.15 0.22 
Treg FOXP3 -0.14 ***  -0.12 0.33  -0.23 ****  -0.16 0.18 
 CCR8 -0.12 **  0.24 *  -0.15 ***  -0.27 ** 
 STAT5B 0.1 *  0.024 0.84  0.17 ****  0.24 * 
 TGFβ (TGFB1) -0.18 ****  -0.28 *  -0.2 ****  -0.056 0.64 
T cell exhaustion PD-1 (PDCD1) -0.088 *  0.13 0.29  -0.14 **  -0.43 *** 
 CTLA4 -0.096 *  -0.018 0.88  -0.16 ***  -0.25 0.032 
 LAG3 -0.11 *  -0.36 **  -0.14 ***  0.013 0.91 
 TIM-3 (HAVCR2) 0.072 0.1  0.41 ***  -0.047 0.29  -0.39 *** 
 GZMB -0.039 0.37  0.15 0.2  -0.21 ****  -0.36 ** 

TAM, tumor-associated macrophage; Th, T helper cell; Tfh, Follicular helper T cell; Treg, regulatory T cell; Cor, R value of 
Spearman’s correlation; None, correlation without adjustment. Purity, correlation adjusted by purity. 
* P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. 


