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INTRODUCTION 
 
Breast cancer (BC) is most commonly malignancy and 
lead to main cancer death among females worldwide  
[1–4]. Although the improvement of BC prognosis has 
been made, most of BC-related deaths are caused by 
tumor relapse or progression [5]. BC has been 
recognized as a heterogeneous disease that displays 
distinct differences in respect of biological behavior, 
gene expression profiles and survival outcome, even  
in the same tumor-node-metastasis (TNM) stage [6].  

 

Traditionally, the TNM classification is important tool 
for prognostic assessment and treatment decisions. 
However, the TNM system has some limitations. First, 
patients with equivalent anatomical spread yet variable 
survival outcome are assigned into the same stage, 
ignoring the heterogeneity of BC [7]. Second, the TNM 
system is unable to integrate other important prognostic 
risk factors, such as lymphovascular invasion (LVI), 
histological grade, Ki67, and molecular markers. Third, 
the TNM system could not achieve individualized risk 
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ABSTRACT 
 
Increasing evidence has revealed that microRNAs (miRNAs) play vital roles in breast cancer (BC) prognosis. Thus, 
we aimed to identify recurrence-related miRNAs and establish accurate risk stratification system in BC patients. A 
total of 381 differentially expressed miRNAs were confirmed by analyzing 1044 BC tissues and 102 adjacent 
normal samples from The Cancer Genome Atlas (TCGA). Then, based on the association between each miRNAs 
and disease-free survival (DFS), we identified miRNA recurrence-related signature to construct a novel prognostic 
nomogram using Cox regression model. Target genes of the four miRNAs were analyzed via Gene Ontology and 
KEGG pathway analyses. Time-dependent receiver operating characteristic analysis indicated that a combination 
of the miRNA signature and tumor-node-metastasis (TNM) stage had better predictive performance than that of 
TNM stage (0.710 vs 0.616, P<0.0001). Furthermore, risk stratification analysis suggested that the miRNA-based 
model could significantly classify patients into the high- and low-risk groups in the two cohorts (all P<0.0001), and 
was independent of other clinical features. Functional enrichment analysis demonstrated that the 46 target genes 
mainly enrichment in important cell biological processes, protein binding and cancer-related pathways. The 
miRNA-based prognostic model may facilitate individualized treatment decisions for BC patients. 
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prediction of survival for each patient. Hence, there is  
 
an urgent clinical need to establish a practical tool 
incorporating molecular markers and other prognostic 
factors for accurately predicting survival in BC patients. 
 
MicroRNAs (miRNAs) are small, noncoding RNAs that 
regulate multiple cellular processes, such as cell 
differentiation, apoptosis, and cell-cycle progression  
[8, 9]. A growing number of researches have shown that 
the differentially expressed miRNAs (DEMs) might 
serve as prognostic molecular biomarkers for various 
tumors [10–20]. Traditional clinicopathological risk 
factors were unable to clearly distinguish between BC 
patients who have a low or high risk of relapse. Thus, a 
comprehensive approach of integrating DEMs and other 
prognostic factors to achieve reliable risk stratification is 
highly necessary. Nomogram, which is a visual statistical 
model, can provide a numerical probability of a clinical 
event for each patient [21]. Furthermore, nomogram 
enables to make individualized estimates of survival to 
aid clinical decision making. 
 
Consequently, we aimed to develop and validate a novel 
multi-miRNA-based model incorporating recurrence-
related miRNAs and other risk factors for evaluating 
disease-free survival (DFS) and make effective risk 
stratification in BC patients. 
 
RESULTS 
 
Patient characteristics 
 
In this study, a total of 897 patients with invasive BC 
from The Cancer Genome Atlas (TCGA) database were 
selected. Table 1 showed baseline characteristics of the 
derivation, and the internal validation sets. No significant 
difference of baseline characteristics were observed 
between the two data sets (all P > 0.05). The median age 
of the patients were 58 year (interquartile range [IQR]: 
48–66) and 56 year (IQR: 47–66) in the two independent 
cohorts. The 5-year DFS rates of the patients were 0.823 
(95% CI: 0.780–0.858) and 0.864 (95% CI: 0.809–0.905) 
in the derivation and the internal validation cohort, 
respectively. 
 
Construction of miRNA-based risk score and 
prognostic model 
 
After edgeR filtering (false discovery rate [FDR] < 0.05 
and log2 fold change [log2FC] ≥ 1) between 1044 BC 
samples and 102 adjacent normal tissues, we screened 
out 381 DEMs from 1601 miRNAs expression profiles. 
Of these DEMs, 273 miRNAs were upregulated, and 
108 miRNAs were downregulated. And the 1601 
miRNAs were visualized via volcano plot in Figure 1. 

Firstly, we found 13 DEMs (hsa-miR-488, hsa-miR-
6125, hsa-miR-3651, hsa-miR-5691, hsa-miR-1276, 
Table 1. Baseline characteristics of study patients. 

Variables 
Derivation 

cohort  
Validation 

cohort P value 
No. (%) No. (%) 

No. of patients 897 449  
Age (years) 58 (48, 66) 56 (47, 66) 0.572 
T stage    0.730 

T1 242 (27.0) 122 (27.2)  
T2 524 (58.4) 266 (59.2)  
T3 111 (12.4) 48 (10.7)  
T4 20 (2.2) 13 (2.9)  

N stage    0.980 
N0 426 (47.5) 214 (47.6)  
N1 305 (34.0) 149 (33.2)  
N2 94 (10.5) 47 (10.5)  
N3 66 (7.3) 35 (7.8)  
Nx 6 (0.7) 4 (0.9)  

TNM stage   0.806 
I 159 (17.7) 86 (19.1)  
II 523 (58.3) 255 (56.8)  
III 205 (22.9) 105 (23.4)  
IV 10 (1.1) 3 (0.7)  

ER status   0.998 
Negative 187 (20.8) 93 (20.7)  
Positive  676 (75.4) 339 (75.5)  
Unknown 34 (3.8) 17 (3.8)  

PR status   0.801 
Negative 241 (26.9) 117 (26.1)  
Positive  551 (61.4) 274 (61.0)  
Unknown 105 (11.7) 58 (12.9)  

Her2 status    
Negative 634 (70.7) 316 (70.4) 0.945 
Positive  136 (15.1) 71 (15.8)  
Unknown 127 (14.2) 62 (13.8)  

TNM, tumor-node-metastasis; ER, estrogen receptor; PR, 
progesterone receptor; Her2, human epithelial growth 
factor receptor 2. 
 

hsa-miR-5008, hsa-miR-3178, hsa-miR-4522, hsa-miR-
3145, hsa-miR-597, hsa-miR-1293, hsa-miR-219a-2, 
hsa-miR-4533) in univariate Cox proportional hazards 
regression (CPHR) analysis (P < 0.05). Finally, in light 
of multivariate CPHR analysis, four independent 
recurrence-related miRNAs (three risky miRNAs:  
hsa-miR-1293, hsa-miR-3145, hsa-miR-3178; one 
protective miRNA: hsa-miR-4522) were identified to 
construct a risk score in the derivation cohort (Table 2). 
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Risk score = 0.495 × expressionhsa-miR-3145 + 0.245 × 
expressionhsa-miR-3178 + 0.100 × expressionhsa-miR-1293 – 
0.409 × expressionhsa-miR-4522. The results of the univariate 
and multivariate CPHR analyses in the derivation cohort 
were listed in Table 3. On the basis of multivariate CPHR 
analysis, we confirmed two independent risk factors for 
DFS (P < 0.05), including TNM stage, and miRNA 
recurrence-related signature. It should be pointed out that 
T stage and N stage were associated with TNM stage, 
known as multicollinearity, could affect the beta 
coefficients on multivariate CPHR analysis, giving rise to 
spurious associations and unreliable results [21]. 
Therefore, T stage and N stage were not entered into 
multivariate CPHR analysis. To help clinicians with a 
quantitative tool for individualized risk prediction of 
DFS, we developed a novel prognostic nomogram that 
incorporated the miRNA recurrence-related signature  
and TNM stage to predict 5-year DFS in BC patients 
(Figure 2). 
 
Evaluate the predictive performance of the miRNA-
based prognostic model 
 
The established miRNA-based prognostic nomogram 
was shown in Figure 2. The area under the curve (AUC) 
values of the miRNA-based model at 5 years were 0.710 
(95% CI: 0.655–0.765) and 0.722 (95% CI: 0.604–
0.841) in the derivation and internal validation cohort, 
which indicated good predictive accuracy of this 
nomogram (Figure 3A–3B). Moreover, the calibration 
plots of the miRNA-based nomogram fitted well in the 
two independent cohorts, which demonstrated good 
calibration ability of the model (Figure 3C–3D). Based 
on the nomogram scoring system, each patient acquired  
 

 
 

Figure 1. Volcano plot of 273 up-regulated and 108 down-
regulated. miRNAs in breast cancer patients. Blue color 
represents up-regulated expression, and red color reveals down-
regulated expression. 
a total nomogram score. With the optimal cutoff total 
scores (1.7255) determined via X-tile software [22], 
patients were stratified into the low-risk group (n=778) 
and high-risk group (n=119) in the derivation set. With 
the same cutoff scores, patients were divided into the 
low-risk group (n=397) and high-risk group (n=52) in the 
internal validation set. We also observed the distribution 
of risk scores, DFS, DFS statuses in the two independent 
data sets (Figure 4A–4B). In addition, on the basis of risk 
stratification system, Kaplan–Meier curves were 
performed in both the derivation and the internal 
validation cohort, which demonstrated that patients in the 
high-risk group had poorer DFS than those in the low-
risk group (P < 0.0001, Figure 4C–4D). The 5-year DFS 
rates of 897 patients were 0.862 (95% CI: 0.820–0.895) 
and 0.506 (95% CI: 0.339–0.652) in the low- and high-
risk groups, respectively (P < 0.0001). Besides, we 
conducted effective risk stratification analyses in BC 
patients with T stage, N stage, TNM stage, hormone 
receptor (HR) and human epithelial growth factor 
receptor 2 (Her2) status. And patients in the low-risk 
group had significantly better DFS than those in the high-
risk group in T1 (P < 0.0001), T2 (P = 0.0056), T3/T4  
(P = 0.00011), TNM stage III (P = 0.00024), N1 (P = 
0.00033), N2/N3 (P = 0.014), HR– (P < 0.0001), HR+  
(P < 0.0001), Her2– (P < 0.0001) and Her2+ (P = 0.032) 
(Figure 5). Additionally, time-dependent receiver 
operating characteristic (ROC) analyses indicated that the 
miRNA-based prognostic model had better predictive 
performance than any clinical risk factors, or single 
prognostic miRNA alone in Figure 6. In terms of 
predictive accuracy, the miRNA-based prognostic 
nomogram was distinctly greater than that of the TNM 
stage (AUC: 0.710 vs 0.667, P < 0.0001). 
 
Functional enrichment analysis of predicted target 
genes 
 
To further identify the potential cellular biological 
functions and mechanisms of the four prognostic 
miRNAs, 46 target genes were predicted using three 
databases, including TargetScan, miRTarBase and 
miRDB. Gene ontology (GO) analysis revealed that 
these genes were related with protein binding, cytoplasm 
and nucleus (Figure 7A). Kyoto Encyclopedia of Genes 
and Genomes analysis (KEGG) pathways analyses 
found that these genes mainly enrichment in cancer-
related pathways and Epstein-Barr virus infection 
(Figure 7B). 
 
DISCUSSION 
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Prognostic evaluation is vital for making appropriate 
treatment decisions. Because the traditional TNM stage 

is mainly based on anatomical information, it is unable 
to achieve adequate assessment of disease recurrence in 

Table 2. miRNA recurrence-related signature in the derivation cohort. 

Name Coefficient Type HR 95%CI P value 
hsa-miR-1293 0.100 Risky 1.105 1.041–1.172 0.001 
hsa-miR-3145 0.495 Risky 1.640 1.250–2.151 <0.001 
hsa-miR-3178 0.245 Risky 1.277 1.114–1.465 <0.001 
hsa-miR-4522 −0.409 Protective 0.664 0.481–0.918 0.013 

CI, confidence interval; HR, hazard ratio. 
 

Table 3. Univariate and multivariate analyses in the derivation cohort. 

Variables 
Univariate analysis  Multivariate analysis 

Hazard ratios (95%CI) P value  Hazard ratios (95%CI) P value 
Age  1.008 (0.991–1.024) 0.362    
T stage      

T1 Referent     
T2 1.738 (0.903–3.346) 0.098    
T3/T4 3.665 (1.875–7.164) <0.001    

N stage      
N0 Referent     
N1 1.596 (0.995–2.560) 0.053    
N2 2.125 (1.117–4.044) 0.022    
N3/Nx 5.454 (3.010–9.884) <0.001    

TNM stage      
I Referent   Referent  
II 1.738 (0.903–3.346) 0.098  1.743 (0.904–3.358) 0.097 
III/IV 3.665 (1.875–7.164) <0.001  3.477 (1.763–6.856) <0.001 

ER status      
Negative Referent   Referent  
Positive  0.622 (0.404–0.960) 0.032  0.833 (0.462–1.501) 0.542 
Unknown 1.030 (0.361–2.938) 0.956  0.923 (0.272–3.126) 0.897 

PR status      
Negative Referent   Referent  
Positive  0.598 (0.387–0.921) 0.020  0.706 (0.394–1.267) 0.243 
Unknown 1.035 (0.555–1.929) 0.913  1.057 (0.508–2.200) 0.882 

Her2 status      
Negative Referent     
Positive  0.768 (0.394–1.496) 0.437    
Unknown 1.590 (0.973–2.600) 0.064    

miRNA signature 1.300 (1.181–1.431) <0.001  1.207 (1.091–1.336) <0.001 

Bold values indicate statistical significance (P<0.05). CI: confidence interval; ER: estrogen receptor; PR: progesterone 
receptor; Her2: human epithelial growth factor receptor 2. 
 

BC patients. Therefore, in the current study, we built  
and validated a novel model integrating miRNA 

recurrence-related signature and TNM stage to improve 
individualized risk prediction of DFS in BC patients. 
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This tool conducted well as supported by the good 
predictive accuracy (AUC > 0.7) in the derivation and 

internal validation sets, respectively. Moreover, the 
calibration curves illustrated the good agreements 

 
 

Figure 2. miRNA-based prognostic model to predict 5-year disease-free survival in breast cancer patients. 
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Figure 3. Time-dependent receiver operating characteristic curves at 5-years based on the miRNA-based prognostic model in 
the derivation cohort (A) and validation cohort (B). Calibration curves of the miRNA-based prognostic model in the derivation cohort (C) 
and validation cohort (D). 
between nomogram prediction and actual observations. 
Combination of miRNA recurrence-related signature and 
TNM stage was superior to TNM stage, indicating that 
the miRNA recurrence-related signature added the 
prognostic value of TNM stage. Furthermore, this 
miRNA-based nomogram could significantly stratify 
patients into the low- and high-risk group independent of 
the same TNM stage. Such accurate risk stratification 
could allow oncologists to identify the high-risk patients 
for aggressive therapy to improve BC prognosis. 
 
Previous researches about miRNAs demonstrated that the 
miRNA-based signature is a crucial predictor for tumor 
recurrence [14, 16, 19, 20, 23–30]. Gong et al constructed 
a 10-miRNA-based classifier to predict recurrence in 
hormone receptor (HR)+ Her2- BC patients [19]. 
However, this study did not combine 10-miRNA 

signature with TNM stage to build a prognostic 
nomogram and was limited by small miRNA expression 
profiling. Prognostic nomogram, which comprise the 
visualization of statistical models, has potential to 
achieve a more individualized risk prediction of survival 
outcomes on the basis of combination of different 
prognostic variables [7, 21]. A large dataset of TCGA 
project provides us with a comprehensive foundation to 
mine multi-miRNA-based prognostic signature. Thus, a 
novel prognostic nomogram based on TCGA database, 
which incorporates multi-miRNA-based and TNM  
stage, is essential to make individualized estimates of 5-
year DFS in BC patients. On the other hand, some 
previous studies have been limited by small number of 
miRNAs screened, small sample sizes and lack of 
independent validation [31–33]. It should be pointed out 
that the sample size influences the result of statistical 
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Figure 4. The distribution of risk score, DFS, and DFS status in the derivation cohort (A) and validation cohort (B). The black line 
indicates the optimal cutoff point of the nomogram score used to stratify patients into the low- and high-risk group. Kaplan–Meier curves of 
the low- and high-risk patients based on the miRNA-based prognostic model in the derivation cohort (C) and validation cohort (D). DFS, 
disease-free survival. 
significance [21]. As a result, these previous studies  
may not have an adequate sample size to identify a 
significant effect estimate. Thus, our study is more 
reliable and relevant from those published in several 
previous studies [31–33]. 
 
There are some limitations in the study. Firstly, we  
lack of experimental study to explain the biological 
implications of the miRNA recurrence-related signature. 
Thus, the molecular mechanism of these miRNAs should 
be investigated in further study. Secondly, the miRNA-
based prognostic nomogram needs to be further validated 
by a prospective, large-scale multicenter study before it 
can be applied in clinical practice. Thirdly, the TCGA 
database lacks of postoperative information (adjuvant 

chemotherapy, radiotherapy). Hence, we could not 
identify the low-risk patients to tailor adjuvant therapy 
and foresee which patients are likely to benefit from 
adjuvant chemotherapy. 
 
CONCLUSIONS 
 
In summary, a novel prognostic nomogram incorporating 
miRNA recurrence-related signature and TNM stage was 
established and internally validated to improve 
individualized risk estimation of 5-year DFS and make 
accurate risk stratification in BC patients. This easy-to-
use tool can help clinicians to predict 5-year DFS and 
easily select proper patients who are in need of a specific 
therapeutic strategy. 
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Figure 5. Stratified analysis of the miRNA-based prognostic model for breast cancer patients in T stage, N stage, TNM stage, 
HR, and Her2 status. 

 
 

Figure 6. Comparisons of the predictive accuracy at 5-years DFS using time-dependent receiver operating characteristic curves 
in miRNA-based model with clinical risk factors (A), and miRNA-based model with single prognostic miRNA (B). DFS, disease-free survival.  
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Figure 7. Functional enrichment analysis for 46 target genes of the four miRNAs. (A) Gene ontology (GO) enrichment analysis.  
(B) Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) enrichment analysis. The x-axis indicates the number of genes, and the y-axis 
represents the GO terms and KEGG pathway names. The color represents the P value. 
MATERIALS AND METHODS 
 
Participants and study design 
 
Data for selected samples of 1044 BC samples and 102 
adjacent normal tissues were downloaded from TCGA 
database. Inclusion criteria were as follows: (i) histological 
diagnosis of invasive BC; (ii) complete follow-up data 
and miRNA expression profile available. Then, a total of 
897 patients were included in this study. According to a 
computer-generated allocation numbers, 449 patients as 
validation cohort were randomly selected from the 897 
patients (derivation cohort). Because the data were all 
publicly derived from the TCGA project, approval by our 
institutional ethics committees was not needed. 
 
Establishment of multi-miRNA-based risk score and 
prognostic nomogram 
 
To screen out the DEMs between 1044 BC samples and 
102 adjacent normal tissues, we defined DEMs with a 
FDR < 0.05 and |log2FC)| ≥1. Then, univariate CPHR 
analysis was conducted to found the association between 
each DEMs, clinical risk factors and DFS (P < 0.05). 
Multivariate CPHR analysis was used to confirm the 
independent variables (P < 0.05). Thus, independent 
prognostic DEMs were selected to build a multi-miRNA-
based risk score. And the multi-miRNA-based risk score 
= sum of coefficients × expression level of miRNAs. 
Furthermore, to make full use of the prognostic miRNAs, 
a novel model integrating the multi-miRNA-based 
signature and clinical factors to improve survival 
prediction in BC patients. 
 
Assessment of the multi-miRNA-based prognostic 
nomogram 
 
To further evaluate the risk stratification ability of the 
multi-miRNA-based nomogram, we classified patients 
into the high- and low-risk subgroups according to the 
optimal cutoff nomogram score determined by X-tile plot 
[22]. Moreover, the predictive accuracy of the multi-
miRNA-based model was calculated via AUC based on 
time-dependent ROC analysis [34]. Finally, calibration 
plot was performed to assess the calibration ability of the 
multi-miRNA-based nomogram. 
 
Target gene prediction and functional enrichment 
analysis 
 
We applied TargetScan, miRTarBase and miRDB to 
confirm the target genes of prognostic miRNAs [35–37]. 
Then, GO and KEGG pathway enrichment analyses 

were executed to analyze these target genes using the 
database for Annotation, Visualization, and Integrated 
Discovery 6.8 Bioinformatics Tool (DAVID 6.8) [38]. 
Statistical analysis 
 
The χ2 test and the Mann-Whitney U test were used to 
compare the differences of variables between the two 
data sets, when appropriate. Survival curves were 
conducted via the Kaplan-Meier method and compared 
via the log-rank test. A threshold P < 0.05 was 
determined as statistical significance. The optimal cut-
off values of prognostic nomogram scores were 
confirmed using X-tile software, version 3.6.1 (Yale 
University, New Haven, CT, USA) [22]. Stata/ 
MP, version 14.0 (StataCorp LP, College Station, TX) 
and R version 3.4.4 were applied to the statistical 
analyses. 
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