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INTRODUCTION 
 
Stroke, which kills more than 2 million people every 
year in China, is the second leading cause of death [1]. 
According to the different causes, stroke can be divided 
into several subtypes, including transient ischemic 
attack (TIA), cerebral infarction and hemorrhage [2]. 
Most strokes are caused by ischemic stroke (IS) and 
cerebral embolism, but not every patient has symptoms. 
Some patients have transient symptoms due to TIA [3]. 
Previous studies have shown that there are many major 
risk factors for cerebral ischemic infarction, including 
hypertension, diabetes, early family history, and other 
atherosclerosis-related diseases, such as hyperlipidemia 
[4]. According to the latest epidemiological studies,  

 

approximately 10 to 15% of strokes occur in young 
people aged 18 to 49 [5]. Therefore, a detailed 
understanding of the pathogenesis of ischemic stroke 
can provide a detailed theoretical basis for treatment. 
 
In recent years, with the continuous improvement of 
research technology, there is a new understanding of the 
relationship between epigenetics and disease, and DNA 
methylation is a very important field in epigenetics 
research [6]. DNA methylation usually occurs on CpG 
islands, mostly in the proximal promoter region of the 
human genome [7]. DNA methylation alters an 
individual’s biological function by regulating gene 
expression or genome sequence stability [8]. It can keep 
transcription factors out of two gene promoters, inhibit 
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ABSTRACT 
 
To assess DNA methylation sites as well as gene expression related to ischemic stroke (IS) and comprehensively 
reveal their correlation and possible pathological mechanisms, we implemented (1) genome-wide DNA 
methylation profiling from the GEO repository related to IS with and without symptoms; (2) identification of 
differentially methylation positions (DMPs) and genes (DMGs), functional enrichment analysis along with DMG 
regulatory network construction; (3) validation tests of 2 differential methylation positions of interest as well as 
analogous gene expression in other datasets and in IS patients and controls; and (4) correlation analysis of DNA 
methylation and mRNA expression data. In total, 870 DMPs were physically located within 693 DMGs. After 
disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, gene ontology (GO), 
protein-protein interaction (PPI) network construction as well as module analysis, HLA-DRB1 and HLA-DQB1 
were identified. Their expression was validated in 4 other datasets but was significant in only 1, and the 
expression was lower in the IS group (P < 0.05). After validation in IS patients and controls, we found that these 
two genes showed more hypermethylation and lower expression levels in the IS group (P < 0.001). The 
methylation of genes was negatively associated with their expression (P < 0.05). The current study recognized a 
connection among DNA methylation and gene expression and emphasized the prominence of HLA-DRB1 and 
HLA-DQB1 in IS pathogenesis. 

mailto:drweijinru@163.com
mailto:drweijinru@163.com


www.aging-us.com 7664 AGING 

transcription factor binding and change chromatin 
structures. Gene promoters might be available to vital 
cis-acting regulatory elements that initiate and control 
gene expression [9]. Methylation usually occurs rapidly 
and can usually be observed before the onset of disease. 
This important finding indicates that DNA methylation 
can also be used as an indicator of early screening for 
early or potential diseases [10]. 
 
At present, some studies have confirmed that abnormal 
methylation of gene promoters is associated with IS 
[11]. To classify new IS-related DNA methylation sites, 
we incorporated several microarray datasets from the 
Gene Expression Omnibus (GEO) repository and 
carried out analysis as well as validation to analyze the 
probable DNA methylation–mRNA expression–IS 
regulatory impact. 
 
RESULTS 
 
Data preprocessing and identified DMPs 
 
First, we determined DNA methylation levels at 485578 
methylation sites in carotid plaques in GSE66500. After 
quality control and screening, 20019 methylation 
positions were subjected to differential analysis. In total, 
1290 DMPs (|Δβ| > 0.05 and detection P < 0.05), 
including 608 hypermethylated and 682 hypomethylated 
DMPs, were recognized. As per the annotation, 870 
DMPs were actually found within 693 unique genes 
(DMGs). The heatmap and volcano plot of the DMPs are 
presented in Figure 1. The details of these 870 DMPs can 
be found in Supplementary Table 1. 
 
Subsequently, to recognize a set of CpGs that may 
differentiate symptomatic from asymptomatic patients, 
depending on the differentially methylated CpGs, we 
implemented shrunken centroid classifier analysis  
and found 4 hypermethylated CpGs in symptomatic 
patients (cg01601712, cg05269323, cg19825410 and 
cg21885112) that best discriminated between patients 
with and without symptoms (Figure 2A). These four 
differentially methylated loci correspond to three genes 
in the genome. The details can be found in Table 1. 
Then, we analyzed these four hypermethylated CpG sites 
and found that there were significant differences 
between them (P < 0.01–0.001) (Figure 2B). The 
methylation of these four differentially methylated CpG 
sites in the dataset is shown in Figure 2C. The 
proportion of differentially methylated CpG sites in the 
whole genome and the proportion of CpG island 
distribution of promoter differentially methylated CpG 
sites are displayed in Figure 2D. 
 
The chromosome distribution of differentially methylated 
intergenic CpGs is shown in Figure 3. Regions in red are 

hypermethylated regions, and regions in green are 
hypomethylated regions. 
 
Functional enrichment analysis for DMGs 
 
As shown in Figure 4, the most important items in the 
development of IS and all of the detailed information 
can be found in Supplementary Table 2. In the analysis 
of GO functions, 50 biological processes, 58 cellular 
components as well as 46 molecular functions were 
recognized with adjusted-P < 0.05. Approximately 18 
pathways were enriched in the KEGG pathway analysis, 
and none of the DO items were analyzed for the 
screened DMGs with adjusted-P < 0.05. However, if the 
threshold value was set at P < 0.05, we could include 39 
DO items for further analysis. 
 
Among these terms, GO:0035637 multicellular 
organismal signaling, GO:0007265 Ras protein signal 
transduction, hsa04659 Th17 cell differentiation, 
hsa05321 Inflammatory bowel disease (IBD), hsa04024 
cAMP signaling cascade, hsa04151 PI3K-Akt signaling 
cascade and hsa05320 Autoimmune thyroid disease 
were confirmed in previous references to be associated 
with IS, and the genes associated with these terms were 
chosen for additional evaluation. 
 
PPI network construction and submodule analysis 
 
Data analysis was done on the STRING database, which 
revealed 1463 protein pairs and 552 nodes with a 
combined score > 0.9. Figure 5A shows the network 
analysis in Cytoscape software. When detected by the 
MCODE app, three modules with a score > 7 were 
identified and are represented in Figure 5B–5D. After 
synthesizing the data of GO, DO, and KEGG analyses, 
we selected 2 DMGs (HLA-DRB1 and HLA-DQB1) as 
hub genes correlated to the onset of IS with a high 
degree and included them in the submodule analysis at 
the same time. 
 
Hub gene validation 
 
First, we validated these two genes in different 
microarray datasets. As shown in Figure 6, differences 
between the two genes were found only in GSE16561 
but not in other datasets. The expression of HLA-DRB1 
and HLA-DQB1 was lesser in stroke patients than in 
normal controls (P < 0.05). 
 
Then, we implemented a correlation analysis to 
distinguish if DNA methylation caused IS through 
regulation of gene expression. Generally, the increase in 
DNA methylation affects the binding of transcription 
factors, leading to abnormal gene transcription,  
usually inhibiting transcription and resulting in the 
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Figure 1. The heatmap and volcano plot for DMPs. (A) For the heatmap, the red strip represents symptomatic samples and the green 
strip represents asymptomatic samples. (B) For the volcano plot, the two vertical lines are the 0.05-fold change boundaries, and the 
horizontal line is the statistical significance boundary (P < 0.05). Items with statistical significance as well as hypermethylation are presented 
as red dots, and hypomethylation is presented as green dots in the volcano plot. 
 

 
 

Figure 2. Differential methylation between symptomatic and asymptomatic samples. (A) Methylation levels of the 4 CpGs in 
asymptomatic (green circle) as well as symptomatic (red circle) samples from the GEO; (B) The differences in methylation levels of the 4 CpGs 
in asymptomatic and symptomatic patients; (C) Heat map indicating methylation of the 4 CpGs in asymptomatic and symptomatic patients; 
(D) Promoter region distribution of differentially methylated promoter CpG sites. 
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Table 1. The details for DMPs. 

SYMBOL CpG site MAPINFO CHR Δβ P values 
HLA-DQB1 cg01601712 32635948 6 1.90E-01 3.91E-04 
REPIN1 cg05269323 150067712 7 1.26E-01 1.57E-04 
- cg19825410 106092151 14 1.27E-01 3.21E-04 
HLA-DRB1 cg21885112 32557970 6 2.85E-01 3.68E-04 

CHR: chromosome; Δβ: difference of methylation between symptomatic patients and asymptomatic controls; DMP: 
differential methylation position; MAPINFO: position in Build 37. 
 

downregulation of gene expression. However, it was not 
absolute. In any case, changes in methylation can cause 
changes in gene expression. 
 
With these conditions, we selected these 2 significantly 
correlated methylation–mRNA pairs for testing a total of 
322 samples (161 healthy control and 161 IS). The 322 

validation samples were coordinated for age and sex. 
The weight, BMI, waist circumference, smoking status, 
serum TC and LDL-C levels were higher in IS patients 
compare to controls (Table 2). Initially, we examined the 
methylation of these 2 genes in two samples and 
established that all of them showed increased 
hypermethylation compared with that in the IS group

 

 
 

Figure 3. Chromosome distribution of differentially methylated intergenic CpGs. The plot presents the distribution of differential 
intergenic CpG sites at 22 autosomes and the X chromosome. Regions in red are hypermethylated regions, and regions in green are 
hypomethylated regions. The value is the logFC of the M value among asymptomatic and symptomatic patients. 
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(Figure 7C–7D). Next, we found that the relative 
expression of these two genes was lower in stroke 
samples (Figure 7A–7B). This result also coincided with 
GSE16561. Then, we implemented correlation analysis 
among DNA methylation and gene expression in the 
similar samples and established that HLA-DRB1 and 
HLA-DQB1 gene methylation levels were negatively 
associated with their expression (Figure 8). This result 
indirectly confirmed that modifications in the 
methylation of the promoter region of HLA-DRB1 and 
HLA-DQB1 caused atypical gene expression, causing the 
beginning of IS. 
 
DISCUSSION 
 
Ischemic stroke (IS) is a complicated disorder with great 
mortality as well as long-term disability outcomes. In 

spite of many concerns about stroke risk factors as well 
as prophylactic treatment, the number of stroke cases has 
been increasing recently, probably due to the increasing 
age of the population [12]. The pathogenesis of stroke 
involves many different disease processes and 
interactions between the central nervous system and 
environmental, systemic, genetic and vascular factors. 
Approximately 80% of strokes were ischemic, and the 
other 20% were hemorrhagic. At present, our studies 
focused on IS and its most usual subtypes: cardiac aortic 
embolism (CE), arteriolar disease (SAD) and 
arteriosclerosis (LAA) [13]. A large body of evidence 
from twin, family, and animal model studies [14] 
suggested that genetic risk components are connected 
with stroke; additionally, latest genome-wide association 
reports have found novel variants related to IS along 
with IS subtype-specific genetic variations [15]. These 

 

 
 

Figure 4. Functional annotation of DMGs. (A) GO analysis of DMGs; (B) KEGG analysis of DMGs; (C) DO analysis of DMGs. 
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Table 2. Comparison of demographics, lifestyle characteristics and serum lipid levels between the normal and IS 
groups. 

Parameter Control IS test-statistic P 
Number 161 161   
Male/female 49/112 51/110 0.058 0.810 
Age (years)1 58.21±9.45 58.88±9.23 0.824 0.406 
Height (cm) 156.13±6.92 155.58±7.12 1.594 0.222 
Weight (kg) 51.94±7.22 60.73±11.44 18.439 1.23E-005 
Body mass index (kg/m2) 28.21±3.08 31.43±6.17 28.204 2.52E-008 
Waist circumference (cm) 71.41±6.53 88.01±9.96 22.122 6.17E-005 
Smoking status [n (%)] 42(26.3) 57(35.8) 3.282 0.070 
Alcohol consumption [n (%)] 39(24.3) 41(25.8) 0.067 0.796 
Systolic blood pressure (mmHg) 127.43±15.13 129.47±22.18 4.533 0.023 
Diastolic blood pressure (mmHg) 80.51±10.21 83.24±14.13 5.223 0.015 
Pulse pressure (mmHg) 49.67±12.13 50.27±13.24 1.452 0.263 
Glucose (mmol/L) 5.84±1.53 5.92±2.73 2.783 0.137 
Total cholesterol (mmol/L) 4.94±1.13 5.38±1.26 7.333 0.010 
Triglyceride (mmol/L)2 1.49(0.51) 1.53(1.22) 2.137 0.187 
HDL-C (mmol/L) 1.56±0.43 1.21±0.38 7.137 0.011 
LDL-C (mmol/L) 2.96±0.81 3.73±1.92 11.228 3.53E-004 
ApoA1 (g/L) 1.22±0.21 1.13±0.24 0.382 0.509 
ApoB (g/L) 0.84±0.19 0.93±0.30 1.568 0.223 
ApoA1/ApoB 1.68±0.51 1.65±0.53 0.088 0.722 

IS, ischemic stroke; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Apo, 
Apolipoprotein. 1Mean ± SD determined by t-test. 2Because of nonnormally distribution, the triglyceride value was 
presented as median (interquartile range), and the difference between the two groups was determined by the Wilcoxon-
Mann-Whitney test. 
 

genetic factors can lead to traditional risk factors, for 
example homocysteine concentrations (with recognized 
genetic components) or diabetes, and hypertension might 
interrelate with environmental factors, such as smoking 
and drinking, or lead to intermediary phenotypes, such 
as atherosclerosis. Epidemiological data have offered 
several lines of proof for a genetic component of the 
disease, but with limited awareness of its incidence and 
characteristics. Hence, it was necessary to uncover novel 
biomarkers for stroke risk. Moreover, the participation 
of epigenetics was still mostly unidentified. 
 
Epigenetics is receiving increasing attention as it might 
contribute to the research of complex diseases and 
might also produce valuable biomarkers. Epigenetic 
mechanisms, for example DNA methylation, control 
higher-order DNA structure as well as gene expression. 
In recent years, with the continuous development of 
technology, the correlation between genome-wide 
methylation and IS has gradually been confirmed [16]. 
Shen et al. found that methylation of MTRNR2L8 was a 

diagnostic biomarker for stroke and may also be a 
potential therapeutic target [17]. Fujii et al. found that 
eating a large amount of vegetables every day can 
reduce the methylation of the ABCA1 gene and promote 
the reverse flow of cholesterol, weakening the trend of 
atherosclerosis. Interestingly, the study was validated 
only in women [18]. 
 
HLA, which is defined as the human major 
histocompatibility complex, functions as an essential 
element of the immune system. The major HLA antigens 
are HLA-A, HLA-B, HLA-C, HLA-DR, HLA-DP, and 
HLA-DQ. HLA molecules have an imperative role in the 
transplantation reaction and immune response to various 
immunogens as well as infections [19]. In addition, there 
was evidence that HLA was associated with ischemic 
disease, atherosclerosis and cancer [20]. Murali et al had 
found that HLA-DRB1*/DQB1* alleles and haplotypes 
strongly predispose South Indian population to ischemic 
stroke. But large sample size or the meta-analysis are 
needed to explain the exact mechanism of associations of 
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HLA gene(s) with IS [21]. Moreover, the HLA complex 
gene was a genetic risk factor for idiopathic ischemic 
stroke in children, suggesting that HLA molecules were 
involved in ischemic stroke [22]. HLA-DRB1 and HLA-
DQB1 belong to the HLA class II beta chain paralogs. 
These class II molecules form a heterodimer comprising 
of an alpha and a beta chain, both attached in the 
membrane. It has a vital function in the immune system 

by presenting peptides resulting from extracellular 
proteins. Recently, more and more studies have 
supported that atherosclerosis as a chronic inflammatory 
disease, and its inflammatory response was related to 
immune system dysfunction. When inflammation 
occurred, vascular endothelium was damaged, and a large 
number of macrophages engulfed lipids and contributed 
to the formation of arterial plaques. HLA-DRB1 and 

 

 
 

Figure 5. PPI network construction and hub item identification. (A) PPI network of the selected DMGs. Edges stand for the 
interaction between two genes. The significant modules recognized in the PPI network by the molecular complex detection technique with  
a score of > 7.0. (B) Molecular-1 with MCODE = 12; (C) Molecular-2 with MCODE = 9.8; (D) Molecular-3 with MCODE = 7.6. A degree  
was utilized to explain the prominence of protein nodes in the network; dark colors show a high degree, and light colors present a  
low degree. 
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Figure 6. Validation of mRNA expression of interest in different datasets. 
 

 
 

Figure 7. Validation of mRNA expression as well as DNA methylation of interest between IS and healthy samples. 
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HLA-DQB1 genes have been proved to play an important 
role in the process of immune inflammation. Changed in 
their expression levels may eventually resulted in 
inflammation of intracranial arteries, leading to IS. 
Previous studies have confirmed that these two genes are 
clearly associated with IS [23, 24]. 
 
We used other datasets for verification and found that 
these two genes were significantly expressed at low 
levels in the IS population. Interestingly, we validated 
this conclusion in only one dataset, and there was no 
difference in the relative expression of these two genes 
within 24 hours and 24–48 hours after symptom onset. 
The reason for this was related to the small sample size 
of the dataset. Therefore, we found IS patients and 
healthy people in order to extract peripheral blood and at 
the same time, to verify the methylation and relative 
expression of the promoter regions of these two genes. 
We found that when the methylation of the promoter 
region increased, the gene expression decreased 
significantly, and methylation and expression were 

clearly correlated. The above conclusions are consistent 
with previous research results. 
 
We have to admit the limitations of this study. First, the 
validation sample is small, and patients in this study are 
from two hospitals; hence, there may be differences 
with patients from diverse areas and of different  
races. Second, the precise mechanism of the (DNA 
methylation)–mediator (mRNA)–outcome (IS) network 
for controlling the pathological processes of IS has not 
been abundantly confirmed in vivo or in vitro. 
 
In brief, we acquired the GSE66500 dataset from GEO 
and identified DMPs and genes. We chose 2 DMGs for 
validation in additional datasets and acquired 322 
samples (161 IS patients and 161 healthy controls). 
HLA-DRB1 and HLA-DQB1 were found to exhibit 
hypermethylation and downregulated gene expression 
in IS patients. In addition, correlation analysis revealed 
that DNA methylation instigated IS through the 
regulation of gene expression. 

 

 
 

Figure 8. Correlation analyses for DNA methylation and mRNA expression. 
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MATERIALS AND METHODS 
 
Gene expression omnibus database 
 
GSE66500 [25] was retrieved from the GPL13534 
Illumina Infinium HumanMethylation 450 BeadChip for 
Genome-wide DNA methylation analysis. This dataset 
consisted of 19 asymptomatic and 19 symptomatic 
patients, and the sample source was carotid plaque. All 
data processing and differential methylation positions 
(DMPs) were identified in GEO2R. Moreover, CpG sites 
on the sex chromosomes were eliminated to prevent sex-
specific methylation bias. DMPs positioned in the gene 
region were allocated to the analogous genes that were 
defined as differentially methylated genes (DMGs). The 
threshold was set at |log2 fold-change| (Δβ) > 0.05 and P 
< 0.05. GSE118481, GSE16561 [26], GSE22255 [27] 
and GSE37587 [28] were also acquired from the GEO 
database and utilized as the validation sample. From 
these datasets, the functions of hub genes were verified 
from different dimensions. We employed the Affy 
package in R [29] to transform CEL files into an 
expression value matrix and RMA methods to normalize 
the matrix. Subsequently, we converted the probe data to 
gene with the Bioconductor package in R software [30]. 
If a gene corresponded to several probes, we chose the 
mean expression value for further analysis. 
 
Functional enrichment analysis 
 
We compared obese subjects with controls to explore 
the differentially expressed genes (DEGs) with the 
limma package in R [10]. The threshold values were set 
at |log2 fold-change| ≥ 2 and P < 0.05. Then, we used 
GEO2R to identify the differentially methylated 
positions (DMPs) by comparing the normal and obese 
subjects. DMPs positioned in the gene region were 
allocated to the analogous genes that were defined as 
differentially methylated genes (DMGs). The threshold 
was set at |log2 fold-change| (Δβ) > 0.05 and P < 0.05. 
Subsequently, we matched DEGs to DMGs, and simply 
the matched genes (DEMGs) were chosen for additional 
examination. 
 
Functional enrichment analysis 
 
Analyses on large-scale transcription data or genomic 
data were generally done depending on functional 
enrichment analyses. These include disease ontology 
(DO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway as well as gene ontology (GO) 
analyses. In the current study, we used clusterProfiler 
[31] along with the DOSE [32] package in R to analyze 
DMGs. The threshold for the analysis was set at adjust-P 
< 0.05 along with false discovery rate (FDR) < 0.05. To 
further determine the location of hub sites in the dataset, 

shrunken centroid classifier analysis was performed with 
the “pamr” package in R [33]. 
 
Protein-protein interaction (PPI) network creation 
as well as module analysis 
 
The protein prediction as well as experimental 
interactions was examined by the STRING database 
(version 11) [34]. Gene fusion, co-expression 
experimentations, databases, text mining, neighborhoods 
as well as co-occurrence are the usual prediction 
approaches for the database. Additionally, a combined 
fraction was utilized to demonstrate the interaction of 
proteins. In the current study, DMGs were mapped to 
PPIs, and a combined score > 0.9 was considered as the 
cutoff value [35] to evaluate main genes in the network. 
Degrees were used as a vital way to present the role of 
protein nodes. Network modules are one of the mainstays 
of protein networks and might have precise biological 
impacts. The Molecular Complex Detection (MCODE) 
of the Cytoscape software (version 3.71) [36] was 
utilized to recognize the main clustering modules as well 
as the most prominent clustering modules. After that, we 
selected EASE ≤ 0.05 and count ≥ 2 for the cutoff value 
and an MCODE score > 7 as the threshold for the 
additional succeeding evaluation. 
 
Validation of DMGs of interest 
 
First, we validated the hub genes in other expression 
datasets to explore the relationship between hub genes 
and IS in different dimensions. GSE118481 reflected the 
expression level of core genes in carotid plaques between 
cerebral ischemic symptoms and asymptomatic 
conditions. GSE16561 and GSE22255 indicated whether 
the comparative expression of hub genes was different 
among stroke patients and normal controls. GSE37587 
further evaluated the relative expression level of hub 
genes in patients with cerebral infarction at different time 
points after symptom onset. Next, we sought out stroke 
and healthy control groups to extract peripheral blood for 
core gene validation. 
 
Sample authentication and diagnostic standards 
 
A total of 322 subjects with complaints related to the 
brain at the First People’s Hospital of Nanning City from 
Jan. 1, 2015, to Dec. 31, 2017, were recruited. The blood 
biochemistry levels were 3.10–5.17 (TC), 0.56–1.70 
(TG), 0.91–1.81 (HDL-C), 2.70–3.20 (LDL-C) mmol/L, 
1.00–1.78 (ApoA1), 0.63–1.14 g/L (ApoB), and 1.00–
2.50 (ApoA1/B), which were stated as the standard 
values [37]. All of the selected IS patients received a 
thorough neurological checkup along with brain 
magnetic resonance imaging. IS was diagnosed as per the 
International Classification of Diseases (9th Revision). 
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Subjects with an embolic brain infarction, stroke 
triggered due to inflammatory disease, cardioembolic 
stroke, autoimmune disease, or serious chronic conditions 
were omitted from the current study [38]. The controls 
were evaluated to be free of IS by questionnaires, 
medical history, along with medical investigation. All 
subjects were from the Han population in Guangxi, 
China. A standard questionnaire was utilized to 
determine overall information along with medical history 
from all patients. This study was approved by the Ethics 
Committee of the First People’s Hospital of Nanning 
City and Liuzhou People’s Hospital (No. Lunshen 2009-
Guike018; Jan. 7, 2009). Informed consents were 
acquired from all participants [39]. 
 
Quantitative DNA methylation 
 
Genomic DNAs from the 322 peripheral blood samples 
were obtained with a TaKaRa MiniBEST Universal 
Genomic DNA Extraction Kit Ver.5.0. DNA 
concentrations were determined by means of a 
NanoDrop2000 spectrophotometer (USA). The 
methylation levels of CpG sites were assessed through 
pyrosequencing. PyroMark Assay Design software 
(Qiagen) was utilized to design precise sets of primers 
for CpG PCR amplification as well as sequencing. The 
primers can be found in Supplementary Table 3. All 
protocols for bisulfite conversion, PCR and 
pyrosequencing were previously described [10]. DNA 
methylation of the hub gene promoter was computed by 
MassARRAY EpiTYPER assays (Sequenom, USA). 
Sequenom EpiDesigner software was used to design the 
primers. Procedures for methylation evaluations as well 
as quality controls have been published previously [40]. 
 
Real-time PCR analysis 
 
Total RNA from the 322 peripheral blood samples  
was extracted by means of an Axygen RNA Isolation  
Kit (USA) as per the supplier’s protocol. RNA 
concentrations were determined by means of a 
NanoDrop2000 spectrophotometer (USA). cDNA was 
synthesized from 1 µg of total RNA using a PrimeScript 
1st strand cDNA Synthesis Kit (TaKaRa, China) as per 
the supplier’s instructions. Real-time polymerase chain 
reactions were carried out to evaluate the mRNA 
expression levels of hub genes using SYBR Premix Ex 
Taq II (TaKaRa, China) by using a 7500 Real-Time PCR 
system (Applied Biosystems, USA). GAPDH served as 
an internal control. The primer sequences are mentioned 
in Supplementary Table 4. 
 
Statistical analysis 
 
Data analyses were done using SPSS 22.0 (SPSS Inc. 
USA) and Prism 8.0 (GraphPad Software). Chi-square 

analysis was implemented to evaluate differences in 
ratios amongst groups. Continuous data are presented 
as the means ± SD for those that were normally 
distributed; the median and interquartile ranges of TG 
were not normally distributed. The Mann-Whitney 
nonparametric test and Kruskal-Wallis test were 
utilized to compare continuous data sets. R software 
(version 3.6.0) was utilized for further bioinformatics 
analysis. To define if the methylation level was related 
to gene expression, we conducted a correlation test 
between methylation and expression using the ggplot2 
package in R. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1, 2. 
 
Supplementary Table 1. The details of DMPs. 

 

Supplementary Table 2. Functional annotation for DMGs. 

 

Supplementary Table 3. The primers designed for target bisulfite sequencing. 
 F R 
HLA-DRB1 atggcctgggcacaatgttaGAGTTCCCAAGACTTGCCCA ctccagcatggtgtgtctga GGGACACCCGACGTAAGTG 
HLA-DQB1 tctttgcgggcttctggaat GATTTCAGAGACCTCGCCCC acgccctgatccctctaagt GATTCCAGAAGCCCGCAAAG 
 

Supplementary Table 4. The primers designed for RT-PCR. 

 F R 
HLA-DRB1 AATGTGCACTTACGTCGGGT CCCTGAGTGAGACTTGCCTG 
HLA-DQB1 TTTGCGGGCTTCTGGAATCT GGGATTTCATGCGAGAACGC 
GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA 

 


