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INTRODUCTION 
 
Artificial insemination (AI) plays an essential role in 
goat breeding and is one of the most important means to 
improve the production traits and increase the rate  
of genetic progress [1–3]. Successful preservation of 
spermatozoa, as a vital technique of AI, would  
greatly increase the efficiency of AI [1]. Although 
cryopreservation can prolong the storage time of 
spermatozoa, the frozen-thawed spermatozoa possess the 
disadvantages of serious injuries in structure, poor 
fertilizing capacity and additional costs [4]. Liquid 
storage of spermatozoa at a reduced temperature is a 
practical alternative to cryopreservation when AI is 
performed within a relatively short time [3, 5]. 
Numerous studies are focusing on the preservation of  

 

spermatozoa utilizing liquid storage to improve the 
quality of spermatozoa in different species, such as the 
goat, boar and bull [2, 3, 6–8]. However, a rapid decline 
in the viability and fertilizing potential of spermatozoa 
during liquid storage usually occurs with the increase in 
storage time [3, 5], limiting the widespread use of this 
technology.  
 
One of the major factors for the decline in viability and 
fertility is attributed to apoptosis in liquid-stored 
spermatozoa [5, 6]. Apoptosis is a physiologically 
programmed cell death mechanism that involves 
multiple cell death signaling and regulatory pathways. 
Earlier studies have considered that spermatozoa exhibit 
little transcriptional activity and, thus, do not undergo 
apoptosis [9–11]. Nevertheless, recent considerable 
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ABSTRACT 
 
Liquid storage of spermatozoa is important for artificial insemination and herd genetic breeding. However, the 
extended time of storage inducing the rapid decline in spermatozoa quality limits the development of this 
technology. The molecular mechanisms underlying liquid storage of spermatozoa remain largely unexplored. In 
this study, the effects of liquid storage on functional quality of spermatozoa were assessed in goat (Capra 
hircus). The time-dependent decline in spermatozoa motility showed a strong correlation with the significant 
increase in apoptosis. Moreover, apoptosis-related ultrastructural changes were observed, especially the defects 
in mitochondria. A significant decrease in mitochondrial membrane potential and changes in the expression of 
mitochondrial apoptosis-related proteins indicated mitochondrial dysfunction and mitochondrial apoptotic 
pathway activation. Notably, the abnormally high level of reactive oxygen species (ROS) caused by liquid storage 
resulted in oxidative damage to mitochondria and accelerated mitochondria-dependent apoptosis, as 
demonstrated by the addition of ROS scavenger N-acetylcysteine. Furthermore, critical differentially expressed 
proteins involved in mitochondria-dependent apoptosis and antioxidant defense were identified and profiled by 
quantitative proteomic analysis, facilitating the understanding of molecular regulation of ROS-induced 
mitochondria-dependent apoptosis. These outcomes provide insights into the mechanisms underlying liquid 
storage of goat spermatozoa and enhance the progress of semen storage technology. 
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evidences have strongly demonstrated the occurrence of 
apoptosis in spermatozoa, exhibiting signs of 
phosphatidylserine exteriorization, caspase activation, 
and DNA damage [11–14]. Clinical studies and 
laboratory findings have reported that apoptosis impacts 
the functional quality of spermatozoa [15, 16]. 
Spermatozoa in infertile men display apoptosis-like 
ultrastructural changes and the expression of typical 
markers of apoptosis [11, 16]. Furthermore, apoptosis 
seems to have a negative impact on the spermatozoa 
oocyte penetration potential, suggesting a negative 
association between apoptosis and spermatozoal fertility 
[17]. Remarkably, the activation of apoptosis is 
documented following the in vitro preservation of 
spermatozoa [7, 15, 18]. Studies in cryopreserved 
spermatozoa have observed the typical features of 
apoptosis, such as a decrease in the mitochondrial 
membrane potential and activation of caspases [18, 19]. 
Moreover, a time-dependent loss of viability and 
motility and alteration of membrane permeability in 
stored spermatozoa have been shown to exhibit a strong 
correlation with the induction of apoptosis [15, 20]. 
Additionally, the supplementation of specific inhibitors 
of apoptotic markers within the extender of preservation 
clearly improves the quality of spermatozoa [20, 21]. It 
is speculated that apoptosis may be a critical element to 
determine the storage of spermatozoa [7, 22, 23]. 
However, few studies have focused on the underlying 
mechanisms of apoptosis regulating the liquid storage of 
spermatozoa, especially in the goat.  
 
Several extrinsic and intrinsic factors are responsible for 
apoptosis in spermatozoa. Reactive oxygen species 
(ROS), including superoxide anion (O2−∙), hydrogen 
peroxide (H2O2), and hydroxyl radical (∙OH), are 
considered a normal consequence of cellular metabolism 
in germ cells [24]. The physiological level of ROS exerts 
a vital function in the development and capacitation of 
normal germ cells [25, 26], whereas excessive production 
of ROS results in oxidative stress and apoptosis in 
spermatozoa [26, 27]. Liquid storage of spermatozoa was 
reported to disrupt the cellular oxidant-antioxidant 
balance, causing increased ROS production and directly 
leading to ROS-mediated damage to spermatozoa [6, 26]. 
Considerable studies have suggested that the over-
production of ROS accelerates the process of apoptosis 
and induces the loss of spermatozoal functional 
competence [27–29], such as DNA damage, the loss of 
fertility, and change in the mitochondrial membrane 
architecture. Mitochondria, as the major site of 
intracellular ROS formation, are particularly susceptible 
to oxidative stress and mediate the intrinsic apoptotic 
pathway [30]. An abnormally high level of ROS can 
cause mitochondrial dysfunction, triggering the 
mitochondrial apoptotic pathway [24, 27, 29]. Moreover, 
spermatozoa mitochondria under preservation appear to 

be the most vulnerable cellular organelle to oxidative 
attack [31]. The defective function of preserved 
spermatozoa may be due to ROS-mediated mitochondrial 
damage and apoptosis [18, 19, 24]. However, the 
molecular roles of ROS-induced mitochondria-dependent 
apoptosis remain unclear in the liquid storage of goat 
spermatozoa.  
 
The recent development of proteomics technologies has 
enabled the molecular studies of germ cells at the protein 
level and contributes to better understanding of the 
molecular mechanisms controlling spermatozoa quality 
and function [32, 33]. In this study, the occurrence of 
apoptosis was first assessed in liquid-stored spermatozoa 
of the goat (Capra hircus), and then the potential roles 
of ROS in inducing mitochondria-dependent apoptosis 
were explored. Furthermore, tandem mass tag (TMT)-
based quantitative proteomic analysis was used to 
investigate the expression changes of critical proteins, 
facilitating uncovering the underlying molecular 
mechanisms of ROS-induced mitochondria-dependent 
apoptosis in the liquid storage of goat spermatozoa. The 
results of this study could provide rich insights into the 
improvement of semen storage technology and 
reproductive biotechnologies in the goat and other herd. 
 
RESULTS 
 
Assessment of goat spermatozoa motility and 
apoptosis during liquid storage 
 
The motility of goat spermatozoa declined gradually 
with the increase in the liquid storage time (Figure 1A). 
The initial motility of spermatozoa was more than 90% 
at 0 h of storage. A significant reduction (P < 0.05) of 
spermatozoa motility at 48 h and 72 h was detected 
compared with that at 0 h and 24 h under liquid storage. 
Similarly, the spermatozoa motility was significant 
decreased at 96 h and 120 h (P < 0.05). The obvious 
inflection points of spermatozoa motility alterations 
were observed at 48 h and 96 h, respectively. 
Additionally, when the storage duration was further 
prolonged (> 120 h), the spermatozoa motility was less 
than 60% (data not shown).  
 
Flow cytometric analysis using Annexin V-FITC and PI 
double staining was performed to detect apoptosis in 
liquid-stored spermatozoa. The percentage of apoptotic 
spermatozoa was significantly higher at 48 h than that at 
0 h and was gradually increased until 120 h (Figure 
1B). Furthermore, TUNEL staining assays revealed that 
the number of TUNEL-positive spermatozoa was 
significantly increased until 120 h compared with that at 
0 h with the increase in the liquid storage time (Figure 
1C), suggesting the increase in apoptosis in liquid-
stored spermatozoa. The time-dependent increase in 
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apoptosis was closely related to the reduction of 
spermatozoa motility during liquid storage. Based on 
the results by assessing the spermatozoa motility and 
apoptosis, the stored spermatozoa at the three time 
points of 0 h, 48 h, and 96 h were selected and used for 
further studies.  
 
Ultrastructural changes in goat spermatozoa during 
liquid storage 
 
The ultrastructural characteristics of spermatozoa were 
detected at 0 h, 48 h, and 96 h under liquid storage  
by transmission electron microscopy (TEM). Most 
spermatozoa exhibited a normal ultrastructure at 0 h, 
with an intact and smooth membrane that stayed tightly 
with the nuclear envelope (Figure 2A, 2B). Moreover, 
the complete nucleus was filled with evenly distributed 
chromatin, and the intact acrosome exhibited a smooth 
and complete acrosomal membrane and structure (Figure 
2A, 2B). The mitochondria, which are tightly packed in 
the midpiece of spermatozoa, exhibited a clearly visible 
intact inner membrane, an outer membrane, and a  

well-defined intermembrane space (Figure 2C, 2D). 
With a prolonged storage time to 48 h and 96 h, some 
spermatozoa exhibited different types of apoptosis-
related morphologic changes, such as plasma membrane 
blebbing (Figure 2E, 2I), apoptotic body formation 
(Figure 2I), defects in the nuclear envelope (Figure 2F), 
and nuclear fragmentation (Figure 2J). Notably, specific 
ultrastructural changes in the mitochondria, including 
swelling, vacuolation, deformity, and the partial absence 
or additional accumulations, were also observed (Figure 
2G, 2H, 2K, 2L). 
 
Analysis of mitochondrial membrane potential 
(MMP) and expression changes in mitochondria-
dependent apoptosis proteins  
 
The effect of liquid storage on MMP in goat spermatozoa 
was measured using JC-1 staining. Compared with the 
control group (0 h), JC-1 aggregation (red) was 
decreased, and JC-1 monomer (green) was increased at 
48 h and 96 h (Figure 3A), indicating the decline in 
MMP. Analysis by flow cytometry showed that the 

 

 
 

Figure 1. Effects of liquid storage on the motility and apoptosis of goat spermatozoa. (A) Spermatozoa motility was measured 
using Computer-Assisted Semen Analysis. The apoptosis rate was evaluated by the Annexin V-FITC/PI Apoptosis assay (B) and TUNEL staining 
(C) Scale bar = 50 μm. Values with different letters are significantly different from each other (P < 0.05). 
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fluorescence ratio of red (JC-1 aggregates) to green (JC-1 
monomers) was significantly reduced (P < 0.05) at 48 h 
and 96 h compared with that at 0 h (Figure 3B). 
Significant changes in MMP with prolonged storage time 
indicate that liquid storage causes the damage of 
mitochondria in spermatozoa. Furthermore, western blot 
analysis was performed to validate the relative levels of 
key proteins of the mitochondrial apoptotic pathway, 
such as Cleaved caspase-9, Cleaved caspase-3, and 
Cytochrome c (CytC). The protein levels of Cleaved 
caspase-9 and Cleaved caspase-3 in spermatozoa were 
significantly increased (P < 0.05) at 48 h and 96 h 
compared with those at 0 h (Figure 3C). The CytC level 
exhibited a significant increase (P < 0.05) in the 
cytoplasm at 48 h and 96 h compared with that at 0 h, as 
well as a decrease in the mitochondria. The results 
suggest that apoptosis in spermatozoa is upregulated with 
the increase in the liquid storage time and is involved in 
the mitochondrial apoptotic pathway.  

Analysis of the intracellular ROS levels and 
mitochondrial antioxidant enzyme activities 
 
The intracellular ROS was detected using the fluorescent 
probe DCFH-DA. The percentage of DCF-positive cells 
(increase of fluorescence) was significantly increased (P 
< 0.05) at 48 h (23.27%) and 96 h (53.83%) compared 
with that at 0 h (8.36%), suggesting that liquid storage 
enhances ROS generation in spermatozoa (Figure 4A). 
Superoxide dismutase (SOD), catalase (CAT), and 
glutathione peroxidase (GSH-Px) are three important 
enzymes in the antioxidant defense system, while 
malondialdehyde (MDA) is regarded as a major marker 
of lipid peroxidation in spermatozoa. The activities of 
SOD, CAT, and GSH-Px, as well as the content of 
MDA, were evaluated in the mitochondria of liquid-
stored spermatozoa (Figure 4B). A similar variation 
trend among the SOD, CAT, and GSH-Px activities was 
observed at different time points of liquid storage. The

 

 
 

Figure 2. Transmission electron microscopy images of morphologic changes in goat spermatozoa at 0 h (A–D), 48 h (E–H), and 96 h (I-L) of 
liquid storage. (A, B) Spermatozoa exhibited the normal ultrastructure. (C, D) Morphologically intact mitochondria. (E) Membrane blebbing. (F) 
Nuclear envelope defects. (G, H) Mitochondrial swelling, vacuolation, and deformity. (I) Membrane blebbing and apoptotic body formation. (J) 
Nuclear fragmentation. (K, L) Mitochondrial swelling, vacuolation, deletion, and disordered arrangement. Nuclear (N), acrosome (Ac), 
spermatozoa tail (St), and mitochondria (Mt). Scale bar = 1 μm (C, D, E, K), 500 nm (A, B, F, G, I, J, L), and 200 nm (H). 
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levels of SOD and CAT were significantly decreased  
(P < 0.05) at both 48 h and 96 h compared with those at 
0 h, and the level of GSH-Px was significantly decreased 
(P < 0.05) at 96 h. A significant increase (P < 0.05) in 
the MDA level was detected both at 48 h and 96 h 
compared with that at 0 h. These results suggest that the 
increase in ROS induced by liquid storage results in the 
damage to mitochondria in goat spermatozoa. 

Validation of ROS-induced mitochondria-dependent 
apoptosis during the liquid storage of goat 
spermatozoa 
 
To further validate the relationship between excess ROS 
production and mitochondria-dependent apoptosis 
during the liquid storage of goat spermatozoa, the ROS 
scavenger N-acetylcysteine (NAC) with different 

 

 
 

Figure 3. Effects of liquid storage on the mitochondrial membrane potential (MMP) and expression changes in mitochondria-
dependent apoptosis proteins in goat spermatozoa. JC-1 staining with a fluorescence microscope (A) and flow cytometric analysis  
(B) showed change in the MMP. (C) Western blot analysis of Cleaved caspase-9, Cleaved caspase-3, and Cytochrome c (CytC) protein 
expressions in goat spermatozoa. *P < 0.05 compared to 0 h. 
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concentrations (0, 5, and 10 mM) was added to the semen 
extenders and the ROS level was detected at 96 h of 
storage. Compared with the control group (0 mM NAC), 
the percentage of DCF-positive cells (intracellular ROS 
level) was significantly decreased (P < 0.05) in the 5 mM 
and 10 mM NAC groups in a dose-dependent manner 
(Figure 5A). Meanwhile, the motility of goat 
spermatozoa was significantly increased (P < 0.05) in the 
5 mM and 10 mM NAC groups (Figure 5B). Moreover, 
TUNEL staining analysis showed that the rate of 
apoptosis in stored spermatozoa was significantly 
decreased (P < 0.05) in the 5 mM and 10 mM NAC 
groups (Figure 5C). JC-1 staining analysis showed that 
MMP was significantly increased (P < 0.05) in the 5 mM 
and 10 mM NAC groups (Figure 5D). Additionally, 
protein expression by western blot analysis showed that 
the levels of Cleaved caspase-9 and Cleaved caspase-3 
proteins were significantly decreased (P < 0.05) in the 5 
mM and 10 mM NAC groups (Figure 5E). Meanwhile, 
the CytC protein level exhibited a significant decrease in 
the cytoplasm (Figure 5E). The decrease in apoptosis, 
increase in MMP, and expression changes in 
mitochondrial apoptosis-related proteins were coincident 
with the inhibition of intracellular ROS in the NAC 
treatment groups, indicating that the excess generation of 
ROS stimulates the mitochondrial apoptotic pathway in 
liquid-stored goat spermatozoa. 

Identification of differentially expressed proteins 
(DEPs) by proteomic analysis 
 
In this study, TMT-based quantitative proteomic 
analysis was performed to identify differentially 
expressed proteins (DEPs) that regulate the liquid 
storage of goat spermatozoa. Samples at three different 
storage times, including 0 h (group A), 48 h (group B), 
and 96 h (group C), were separately used for analyses 
(Figure 6A). In total, 2,779 proteins with 2,336 
quantified proteins were identified in the three sample 
groups of spermatozoa. The reliability of data from the 
replicated samples was validated through principal 
component analysis (PCA) and Pearson correlation 
coefficients (PCC) analyses (Figure 6B, 6C). After 
comparing the protein expression levels and filtering  
by a threshold value of a fold change > 1.5 or < 0.67  
and a p-value < 0.05, 129, 168, and 191 upregulated  
proteins and 120, 41, and 36 downregulated proteins  
were identified in B/A, C/A, and C/B comparisons  
(Figure 6A), respectively. The number of upregulated  
proteins was obviously more than that of 
downregulated proteins in the three comparisons. The 
Venn diagrams of the identified DEPs showed that 43 
upregulated and 15 downregulated proteins were 
commonly identified in both B/A and C/A comparisons 
(Figure 6D). 

 

 
 

Figure 4. Assessment of intracellular ROS levels (A), and the activities of mitochondrial SOD, CAT, and GSH-Px enzymes and the 
concentration of MDA in the mitochondria of liquid-stored goat spermatozoa (B). *P < 0.05 compared to 0 h. 
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Figure 5. Validation of ROS-induced mitochondria-dependent apoptosis during the liquid storage of goat spermatozoa by the 
addition of the ROS scavenger NAC (0 mM, 5 mM, and 10 mM) at 96 h of storage. (A) Change in the intracellular ROS levels.  
(B) Assessment of spermatozoa motility. (C) Evaluation of the apoptosis rate by TUNEL staining. (D) Change in the MMP by JC-1 staining.  
(E) Protein expression of Cleaved caspase-9, Cleaved caspase-3, and Cytochrome c (CytC) by western blot analysis. *P < 0.05 compared to 0 mM. 
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To further explore the biological functions of the 
identified DEPs, functional enrichment analysis was 
performed based on Gene Ontology (GO) categories and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. The results showed that these identified  
DEPs were enriched in 23 (B/A) and 24 (C/A) GO 
categories (Figure 6E). Several GO terms were related  
to the process of reproductive development, such  
as ‘reproductive process’ (GO: 0022414), ‘sexual 
reproduction’ (GO: 0019953), ‘fertilization’ (GO: 
0009566), and ‘reproduction’ (GO: 0000003). Moreover, 
specific GO terms, such as ‘antioxidant activity’ (GO: 

0016209), ‘cell redox homeostasis’ (GO: 0045454), 
‘oxidoreductase activity’ (GO: 0016684), and ‘response 
to stress’ (GO: 0006950), were involved in the stress 
response and antioxidant system (Figure 6E). KEGG 
pathway analysis showed that these identified DEPs were 
assigned to 15 (B/A) and 13 (C/A) pathways (Figure 6F). 
Several enriched KEGG pathways were involved in the 
process of cell death, such as ‘MAPK signaling pathway’ 
(chx04010), ‘Necroptosis’ (chx04217), ‘p53 signaling 
pathway’ (chx04115), and ‘Apoptosis’ (chx04210), 
which may participate in the control of spermatozoa 
survival and quality (Figure 6F). 

 

 
 

Figure 6. Characterization of differentially expressed proteins (DEPs) involved in the liquid storage of goat spermatozoa 
by TMT-based quantitative proteomic analysis. (A) The workflow of proteomic analysis and identification of DEPs. B/A, 48h/0h; 
C/A, 96h/0h; C/B, 96h/48h. (B) Analyses of principal component analysis (PCA) in different replicated protein samples. (C) Analyses of 
Pearson correlation coefficients (PCC) in different replicated protein samples. (D) Venn diagrams of DEPs in the B/A and C/A 
comparisons. (E) GO enrichment analysis of DEPs in the B/A and C/A comparisons. (F) KEGG enrichment analysis of DEPs in the B/A and 
C/A comparisons. 
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Analysis of critical DEPs regulating the liquid 
storage of spermatozoa 
 
To investigate the critical DEPs regulating the liquid 
storage of goat spermatozoa, the putative functions of 
DEPs were analyzed based on the results of annotation 
and functional classification. In total, 26 critical  
DEPs were identified and mainly involved in vital 
biological processes, such as the apoptosis regulation 
and oxidative phosphorylation (Table 1). The protein-
protein interaction analysis of critical DEPs revealed that 
eight interacted proteins were involved in the response to 
oxidative stress, and nine interacted proteins were 
involved in the processes of apoptosis regulation (Figure 
7A). These critical proteins may play important roles in 
the molecular regulation of liquid storage in goat 
spermatozoa.  
 
Most DEPs were significantly differentially expressed 
in the comparisons of B/A and C/A, exhibiting a time-
dependent pattern (Table 1, Figure 7B). Notably, 
several DEPs belonging to Bcl-2 family proteins were 
identified in this study: Bcl-xL was downregulated,  
and BAX and BAD were upregulated. Moreover, 
critical proteins (such as CytC and AIFM1), as the 
known promoter of apoptosis, were upregulated  
in the comparisons of B/A and C/A. Additionally, 
significantly downregulated levels of NDUFA9, 
NDUFS2, and NDUFS8 proteins, belonging to the 
subunits of Complex I in mitochondrial electron 
transport chain (ETC), as well as those of a major 
Complex II subunit SDHB, were detected. The protein 
expression levels of these critical DEPs were further 
validated by western blot analysis (Figure 7C). Most 
selected proteins exhibited similar expression profiles to 
that by TMT analysis, suggesting the dependability of 
results by proteomic analysis. 
 
DISCUSSION 
 
The ROS-induced mitochondrial apoptotic pathway 
is implicated in the liquid storage of goat 
spermatozoa 
 
The development of semen storage technology offers 
more opportunities for the successful application of AI 
in herd breeding [1, 2]. Liquid storage of spermatozoa is 
a practical and effective method to minimize the 
spermatozoa injuries that is generated seriously by the 
freezing and thawing method [1]. In recent decades, 
many studies have tried to prolong the time of liquid 
storage through optimizing the environmental 
conditions, greatly improving the in vitro viability and 
fertilizing potential of spermatozoa [2, 3, 5, 8]. In fact, 
the results of liquid storage remain unsatisfactory in 
many species, especially in the goat. An inevitable 

consequence of liquid storage is the rapid deterioration 
of spermatozoa quality, when the period of storage is 
extended [3, 5]. Previous studies reported that long term 
liquid storage of ram semen caused significant decrease 
of spermatozoa motility [2, 3, 5, 34]. Similarly, in this 
study, the motility of liquid-stored goat spermatozoa was 
assessed and showed a significant decrease with the 
increase in storage time. Various extrinsic and intrinsic 
factors influence the storage of spermatozoa. 
Nevertheless, the underlying mechanisms involved in 
the liquid storage of spermatozoa remain largely 
unexplored. 
 
Increasing numbers of studies have demonstrated that 
apoptosis, as an ongoing physiological phenomenon, 
seems to exert a strong influence on the decrease in 
spermatozoa quality [5, 6]. In stored spermatozoa, 
apoptosis may directly affect the changes in typical 
spermatozoa quality parameters, including motility, 
acrosome status, membrane integrity, and 
phosphatidylserine distribution [14–16]. Previous studies 
revealed that freezing and thawing-induced apoptosis is 
inversely correlated with spermatozoa motility and 
plasma membrane integrity during cryopreservation [15, 
19, 22]. Moreover, for liquid storage, the increase in 
apoptosis exhibiting a significant relationship with the 
decrease in spermatozoa quality was reported in many 
species, such as the boar, bull, and stallion [6–8, 35]. In 
the current study, the occurrence of apoptosis in liquid-
stored goat spermatozoa was detected both by TUNEL 
staining and Annexin-V-FITC/PI staining, which are 
considered as routine and effective methods to validate 
spermatozoa undergoing apoptosis and have been 
utilized in many similar studies [36, 37]. Similar to 
previous studies [3, 7], the rate of apoptosis exhibited a 
significant time-dependent increase and was 
significantly related to the reduction of spermatozoa 
motility, indicating that apoptosis negatively affects the 
liquid storage of goat spermatozoa. Additionally, similar 
results suggested that the reduction of apoptosis can 
cause significant enhancement of spermatozoa motility 
and viability [20, 21]. Hence, apoptosis may be a critical 
mechanism involved in the liquid storage of 
spermatozoa and can be considered a useful index to 
assess the spermatozoa quality in the goat.  
 
Notably, in this study, the occurrence of apoptosis was 
accompanied by ultrastructural changes in spermatozoa, 
including plasma membrane blebbing, apoptotic body 
formation, defects in the nuclear envelope, and nuclear 
fragmentation. The defined signs of apoptosis were 
similar to the previous observations in human 
spermatozoa [11], further providing evidence for liquid-
stored spermatozoa undergoing apoptosis. Particularly, 
the distinct alteration of the mitochondrial ultrastructure 
was observed in the current study. It was reported that 
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Table 1. Critical DEPs involved in the liquid storage of goat spermatozoa. 

Protein ID Name Description B/A, type C/A, type 

apoptosis-related protein    

XP_005686508.1 Bcl-xL bcl-2-like protein 1 0.799, no 0.529, down 

XP_017918239.1 BAX BCL2 associated X, apoptosis regulator 1.602, up 1.728, up 

XP_017898279.1 BAD BCL2 associated agonist of cell death 1.832, up 1.934, up 

XP_005700436.1 AIFM1, PDCD8 apoptosis-inducing factor 1, mitochondrial isoform X2 1.127, no 1.546, up 

XP_005675975.1 CytC cytochrome c 2 2.259, up 2.427, up 

XP_017905952.1 STK11, LKB1 serine/threonine-protein kinase STK11 isoform X3 0.901, no 0.531, down 

XP_005678500.1 FAF1 FAS-associated factor 1 1.358, no 1.707, up 

XP_017897284.1 BAG4 BAG family molecular chaperone regulator 4 0.818, no 0.519, down 

XP_017895731.1 TRAP1, HSP75 heat shock protein 75 kDa, mitochondrial isoform X2 0.563, down 0.592, down 

XP_017921573.1 PPP1R13B, ASPP1 apoptosis-stimulating of p53 protein 1 isoform X2 1.081, no 1.517, up 

MAPK signaling pathway    

XP_017908818.1 TAB2, MAP3K7IP2 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 0.961, no 0.537, down 

XP_017907112.1 JNK mitogen-activated protein kinase 9 isoform X6 1.129, no 1.825, up 

XP_017906682.1 PKA cAMP-dependent protein kinase catalytic subunit alpha 1.214, no 1.526, up 

Oxidative phosphorylation    

XP_005681037.1 NDUFA9 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 0.529, down 0.519, down 

XP_013831079.1 NDUFS2 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2 0.678, no 0.341, down 

XP_017898410.1 NDUFS8 NADH dehydrogenase [ubiquinone] iron-sulfur protein 8 0.829, no 0.619, down 

XP_017910172.1 SDHB succinate dehydrogenase [ubiquinone] iron-sulfur subunit 0.508, down 0.713, no 

Peroxisome    

XP_017908917.1 SOD2 superoxide dismutase 0.712, no 0.652, down 

XP_017916592.1 MVK mevalonate kinase 1.635, up 1.347, no 

XP_005678591.1 PRDX1 peroxiredoxin-1 0.973, no 0.549, down 

XP_005696754.2 GPX6 glutathione peroxidase 6 0.651, down 0.923, no 

XP_017921728.1 HSP90A heat shock protein HSP 90-alpha 0.845, no 0.534, down 

PPAR signaling pathway    

XP_017904483.1 CPT1B carnitine O-palmitoyltransferase 1 1.396, no 1.528, up 

XP_005676309.1 ACBP acyl-CoA-binding protein 1.927, up 2.305, up 

XP_017913867.1 FABP5 fatty acid-binding protein 0.887, no 0.551, down 

XP_017895849.1 PDPK1 3-phosphoinositide-dependent protein kinase 1 0.741, no 0.601, down 
 

structural defects in mitochondria represent a main 
feature of mitochondrial dysfunction and may be strongly 
associated with mitochondria-dependent apoptosis  
[38, 39]. Previous studies demonstrated that changes  
in the mitochondrial structure can be used as  
early apoptotic markers in human spermatozoa [11, 40]. 
Our morphological observations implied that the 
mitochondrial apoptotic pathway may be implicated in 
the liquid storage of goat spermatozoa. Moreover, further 
assessments of the MMP and expression levels in 

mitochondrial apoptosis-related proteins were employed 
to confirm the speculation. As expected, analysis by JC-1 
staining showed a significant decline in MMP, which 
exhibits an early sign of the intrinsic mitochondrial 
pathway leading to apoptosis [41]. Western blot analysis 
also showed changes in the levels of critical proteins 
involved in the mitochondrial apoptotic pathway, 
including significant increases in Cleaved caspase-9 and 
Cleaved caspase-3 and the large release of CytC from the 
mitochondria to the cytoplasm. These molecular 
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evidences clearly indicate that liquid storage results in 
activation of the intrinsic mitochondrial apoptotic 
pathway in goat spermatozoa.  
 
Numerous reports have suggested that an imbalance of 
antioxidant defenses usually follows the impairment of 
mitochondrial function, which is responsible for 
mitochondria-dependent apoptosis [27, 42]. Oxidative 

stress by ROS seems to significantly contribute to the 
damage to mitochondria and apoptosis of spermatozoa 
[3, 26, 42]. Studies in semen disorders have 
demonstrated the putative vital roles of ROS in inducing 
mitochondrial apoptotic signaling [43]. He et al. [44] 
reported that alleviating ROS-driven mitochondrial 
dysfunction can inhibit the apoptosis of germ cells. 
Falch et al. [34] found a gradual increase of ROS 

 

 
 

Figure 7. Validation of critical differentially expressed proteins (DEPs) involved in apoptosis regulation and oxidative stress 
in goat spermatozoa. (A) Protein-protein interaction analysis of critical DEPs. (B) Heat map of the protein expression of critical DEPs.  
(C) Western blot analysis of critical DEP expressions. *P < 0.05 compared to 0 h. 
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production throughout the 96 h of liquid storage of ram 
semen. In this study, the endogenous ROS level in  
goat spermatozoa was significantly increased with  
the extension of storage time, which is similar to the 
previous result [34], and the decrease in the 
mitochondrial SOD, CAT, and GSH-Px levels was also 
detected, indicating that liquid storage induced the 
excessive generation of ROS and decrease in antioxidant 
properties. It is well known that high levels of ROS 
cause lipid peroxidation of plasma membranes, resulting 
in alteration of spermatozoa functional quality [39, 45]. 
Previous study in boar spermatozoa revealed that an 
increase in lipid peroxidation was associated with 
decrease in motility and viability [6]. The occurrence of 
lipid peroxidation in mitochondria adversely affects 
mitochondrial integrity and function, which is one of 
major factors to explain the reduction of spermatozoa 
motility [6, 46]. Importantly, lipid peroxidation causes 
the loss of MMP, directly inducing the release of 
apoptotic factor CytC protein and then activating 
apoptosis in spermatozoa [39, 46]. In the present study, 
the concentration of mitochondrial MDA was 
significantly increased, suggesting that lipid 
peroxidation was significantly accelerated by liquid 
storage and resulted in the damage of mitochondria. 
Moreover, our observations of alteration of MDA were 
closely associated with the above results on 
mitochondrial structural alterations and expression 
changes of mitochondrial apoptotic proteins, implying 
that the long period of liquid storage causes ROS-
mediated oxidative stress that is associated with 
mitochondria-dependent apoptosis. More importantly, 
our further analysis by inhibition of ROS validates the 
axis of the regulatory process. In the current study, the 
supplementation of the ROS scavenger NAC obviously 
suppressed the generation of ROS in a dose-dependent 
manner and enhanced the spermatozoa motility, 
followed by apoptosis inhibition, increase in MMP, and 
decrease in Cleaved caspase-9, Cleaved caspase-3, and 
CytC protein levels. Taken together, these findings 
support the conclusion that liquid storage causes an 
abnormal high level of ROS, resulting in mitochondrial 
damage, which then stimulates mitochondria-dependent 
apoptosis in goat spermatozoa [27, 43].  
 
Putative molecular mechanism of ROS-induced 
mitochondria-dependent apoptosis in goat 
spermatozoa during liquid storage 
 
Considerable evidences have demonstrated the 
prominent role of mitochondria-dependent apoptosis in 
germ cells [39, 47, 48]; however, the molecular basis 
and underlying mechanism of ROS-induced 
mitochondria-dependent apoptosis has not been clearly 
explored in spermatozoa during liquid storage. In this 
study, TMT-based quantitative proteomic analysis was 

used to profile the critical proteins involved in the 
mitochondrial apoptotic pathway during the liquid 
storage of goat spermatozoa. It is well known that Bcl-2 
family proteins are the essential sentinels of the 
mitochondrial apoptotic pathway to control the first 
regulatory step of mitochondria-dependent apoptosis 
[49]. Studies have revealed that the coordinated 
expression levels of pro- and anti-apoptotic Bcl-2 family 
proteins ultimately decide germ cell apoptosis [48–50]. 
Our studies by proteomic analysis identified several 
DEPs belonging to the Bcl-2 family, such as the 
downregulated Bcl-xL (anti-apoptotic protein) and 
upregulated BAX and BAD (pro-apoptotic proteins), 
suggesting that these Bcl-2 family proteins may play 
pivotal roles in the mitochondrial pathway of apoptosis. 
Upon apoptotic stress, the interplay of pro- and anti-
apoptotic members of Bcl-2 family regulates the 
mitochondrial apoptotic pathway through controlling the 
permeabilization of the outer mitochondrial membrane 
(OMM) and subsequent release of CytC into the 
cytoplasm to activate the caspase cascade [39, 50, 51]. 
Importantly, in the current study, both proteomic 
analysis and western blot analysis showed the 
upregulation of CytC protein, which co-occurred with 
the induction of the mitochondrial permeability 
transition, strongly indicating the activation of 
mitochondrial apoptotic pathway [41]. Additionally, 
AIFM1, a downstream molecule of the mitochondrial 
apoptotic pathway, also exhibited significant 
upregulation. Previous studies have shown that AIFM1 
can induce the release of the mitochondrial protein 
CytC, activate caspase proteins and then induce 
apoptosis [52]. Moreover, the increase in cytoplasmic 
AIFM1 promotes the release of more AIFM1 from the 
mitochondria, further accelerating apoptosis [53]. The 
expression alterations of these apoptosis-related proteins 
may initiate mitochondria-dependent apoptosis during 
the liquid storage of goat spermatozoa.  
 
Oxidative stress induced by excessive ROS generation is 
indispensable for mitochondria-dependent apoptosis [3, 
26, 42]. The inner mitochondrial membrane (IMM) 
includes multiple complexes that make up mitochondrial 
ETC, which promotes ROS production [39]. Previous 
comparative proteomic analysis has suggested that the 
expression of subunits in ETC complexes was altered in 
spermatozoa exposed to excessive oxidative stress [54, 
55]. Inhibition of mitochondrial complex I can induce a 
further increase in ROS production, eventually leading 
to apoptosis [56]. In the present study, several DEPs, 
including NDUFA9, NDUFS2, and NDUFS8, were 
involved in ETC complex I and exhibited significant 
downregulation during liquid storage, indicating the 
defects in mitochondrial complex I. Additionally, our 
study identified a downregulated SDHB protein, which 
is a key subunit of mitochondrial complex II and has 
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evolved a role in apoptosis induction [57]. These 
subunits with decreased expression may be attributed to 
excess ROS generation and are potential contributors to 
mitochondria-dependent apoptosis in liquid-stored goat 
spermatozoa. Moreover, the effective scavenging of 
ROS is an essential process to protect germ cells from 
oxidative stress [39, 58]. In this study, several proteins 
related to ROS scavenging, such as SOD2 and PRDX1, 
were markedly repressed, and may contribute to 
antioxidant system disorders. The low expression of 
SOD2 protein agrees with our above results on the 
decreased enzyme activity of SOD. Additionally, 
PRDX1 is regarded as an antioxidant and functions in 
reducing ROS and inhibiting cell apoptosis [59]. In 
general, these differentially regulated proteins involved 
in the antioxidant defense system disturb the balance 
between ROS generation and scavenging, directly 
triggering the mitochondrial apoptotic pathway in goat 
spermatozoa.  
 
Furthermore, ROS-activated MAPK signaling regulating 
the progression of apoptosis complicates the mechanisms 
of ROS-induced apoptosis [58, 60, 61]. Previous studies 
have shown that increased ROS, a vital second 
messenger, could activate MAPK signaling, which 
mediated the regulation of many biological processes in 
spermatozoa [60–62]. Moreover, the ROS-activated 
MAPK signaling pathway contributes to expression 
changes in Bcl-2 family proteins, leading to activation of 
the mitochondrial apoptotic pathway [63, 64]. As 
expected, in the present study, functional enrichment 
analysis showed that the ‘MAPK signaling pathway’ 
(chx04010) was significantly enriched. Being similar to 
the differential expression of critical Bcl-2 family 
proteins, several DEPs, including TAB2, JNK, and  
PKA, were identified and involved in the MAPK 
signaling pathway. These results implied another  
critical mechanism that ROS, as a second messenger, 
may regulate mitochondria-dependent apoptosis by 
modulating the MAPK signaling cascade during the 
liquid storage of goat spermatozoa, which clearly require 
further researches. 
 
CONCLUSIONS 
 
Liquid storage causes the decrease in the functional 
quality of spermatozoa in the goat. Notably, a 
significant increase in apoptosis strongly affected the 
storage of spermatozoa, which was implicated in the 
regulation of the intrinsic mitochondrial apoptotic 
pathway. Moreover, excessive generation of 
intracellular ROS led to oxidative damage to 
mitochondria and accelerated mitochondria-dependent 
apoptosis. These findings indicated that ROS-induced 
mitochondria-dependent apoptosis is of great 
importance. Furthermore, TMT-based quantitative 

proteomic analysis identified critical DEPs involved in 
mitochondria-dependent apoptosis and antioxidant 
defense, which will contribute to uncover the molecular 
regulatory mechanisms underlying the liquid storage of 
goat spermatozoa. 
 
MATERIALS AND METHODS 
 
Ethics statement 
 
In this study, all experimental procedures and animal 
care were conducted according to the guidelines of the 
Animal Research Institute Committee (Northwest A & 
F University, Shaanxi, China). The protocol was 
approved by the Science and Technology Agency of 
Shaanxi Province under permit NO. SYXK (SN) 2016-
004, and all efforts were made to minimize animal 
suffering. 
 
Semen collection and liquid storage 
 
Semen samples were collected from six mature 
Guanzhong dairy goats (2-3 years of age) using an 
artificial vagina. The initial semen quality was assessed 
for each ejaculate: only semen with a volume > 0.5 mL, 
spermatozoa concentration > 3 × 109/mL, and normal 
motility > 90% was accepted. All acceptable semen was 
diluted to a final spermatozoa concentration of 3 × 
108/mL with a pre-warmed Tris-based extender (Tris: 
3.63 g/100 mL; fructose: 0.50 g/100 mL; citric acid: 
1.99 g/100 mL; egg yolk: 10 mL/100 mL; penicillin: 
5000 IU/100 mL; streptomycin: 0.1 g/100 mL; pH 6.8) 
as previously described [2]. For the experiments of ROS 
inhibition, NAC (ROS scavenger) was added to the 
semen extender at the concentrations of 0 (control), 5, 
and 10 mM, respectively. The diluted semen was 
allowed to adapt to room temperature for 30 min and 
was maintained in the refrigerator at 4 °C. 
 
Evaluation of spermatozoa motility 
 
A computer-assisted semen analysis (CASA) system 
(HTM-IVOS 12, Hamilton Thorne, Beverly, USA) was 
used to assess spermatozoa motility with default 
parameters as previously described [65]. Briefly, a pre-
warmed chamber slide was loaded with 3 μL of diluted 
sample (concentration of 3 × 106/mL) at 37 °C and was 
observed using a Nikon phase contrast microscope  
(TE-2000U, Nikon Co., Tokyo, Japan) at 200× 
magnification. Five fields of each group of samples 
were captured, and at least 1,000 spermatozoa were 
counted. The motility of spermatozoa that were stored 
at 4 °C was examined at 0 h and every 24 h of storage 
thereafter. The preservation time with spermatozoa 
motility above 60% was recorded as the effective 
survival period.  
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Evaluation of apoptosis 
 
An Annexin V-FITC apoptosis detection kit (ab14085, 
Abcam Inc., Cambridge, USA) was employed to 
quantify the changes of apoptosis in spermatozoa 
according to the manufacturer’s instructions. Briefly, 1 
× 106 spermatozoa were washed in PBS, resuspended in 
500 μL of binding buffer, and stained with 5 μL of 
Annexin V-FITC and 5 μL of PI at room temperature 
for 5 min in the dark. After incubation, the samples 
were centrifuged (800 × g, 10 min, 4 °C) and the pellet 
was resuspended with binding buffer. The apoptosis of 
spermatozoa was analyzed by flow cytometry (FACS 
Calibur, BD Biosciences, San Jose, USA). The amount 
of DNA fragmentation was determined by a terminal 
deoxynucleotidyl transferase-mediated nick end 
labeling (TUNEL) assays kit (S7111, Millipore, 
Billerica, USA) according to the manufacturer’s 
instructions. Briefly, the fixed spermatozoa on the slides 
were permeabilized with 0.1% (v/v) Triton X-100 for 2 
min on ice and then were incubated in 50 µL of the 
TUNEL reaction mixture for 1 h at 37 °C in the dark. 
For the negative control, slides were incubated with the 
TUNEL reagent in the absence of TdT enzyme. The 
nuclei were counterstained using 4’-6-diamidino-2-
phenylindole (DAPI; Roche Diagnostics, Basel, 
Switzerland). The percentage of apoptotic cells was 
calculated as a ratio of the number of TUNEL-positive 
cells to the total number of DAPI-positive cells. Five 
fields per section were randomly examined at 400× 
magnification under a fluorescence microscope (BX51; 
Olympus, Tokyo, Japan).  
 
Transmission electron microscopy (TEM) 
 
Spermatozoa were fixed with 2% glutaraldehyde in 0.2 
M PBS (pH 7.4) at 4 °C for 48 h and were centrifuged 
for 10 min at 800 × g. The pellet was then post-fixed in 
ice-cold 1% OsO4 for 2 h. The samples were dehydrated 
in increasing ethanol concentrations and were 
embedded in epoxy resin. Ultrathin sections (50 nm 
thick) were mounted on copper grids, counterstained 
with Reynolds lead citrate and examined with a Tecnai 
G2 Spirit TEM (FEI, Czech Re-public) at 80 kV. 
 
Measurement of MMP 
 
The spermatozoa MMP was determined using the  
dye 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazol 
carbocyanine iodide (JC-1; ab113850, Abcam Inc., 
Cambridge, USA). Briefly, 1 × 106 spermatozoa were 
washed in dilution buffer and were stained with 10 µM 
JC-1 for 30 min at 37 °C. The spermatozoa were 
washed again with dilution buffer, analyzed by flow 
cytometry (FACS Calibur, BD Biosciences, San Jose, 
USA) and imaged by fluorescence microscopy (BX51; 

Olympus, Tokyo, Japan). Spermatozoa emitting green 
fluorescence (JC-1 monomer) indicated low MMP, and 
spermatozoa emitting red fluorescence (JC-1 
aggregation) indicated high MMP. 
 
Western blot analysis 
 
Western blotting was performed using equal amounts of 
protein (50 µg/lane) from the stored spermatozoa. The 
total proteins of spermatozoa were homogenized in ice-
cold RIPA buffer. The cytosolic and mitochondrial 
proteins were isolated from spermatozoa according to 
the protocols of a commercial Mitochondria Isolation 
Kit (89801, Thermo Scientific, Rockford, USA). 
Specific primary antibodies to Cleaved caspase-9 
(ab2324), Cleaved caspase-3 (ab49822), CytC 
(ab90529), β-Actin (ab8227), COX IV (ab16056), Bax 
(ab53154), Bad (ab32445), AIFM1 (ab99437), Bcl-xL 
(ab32370), SOD2 (ab13533), NDUFA9 (ab128744),  
and PRDX1 (ab41906) were obtained from Abcam,  
Inc. (Cambridge, MA, USA). The samples were 
incubated at 4 °C overnight with the corresponding 
primary antibodies and subsequently with peroxidase-
linked donkey anti-rabbit IgG (ab6802; Abcam  
Inc., Cambridge, MA, USA) for 2 h. An enhanced 
chemiluminescence (ECL) solution was used to visualize 
the target bands, and Quantity One software (Bio-Rad 
Laboratories) was employed to measure the relative 
band intensities. 
 
Detection of the intracellular ROS levels and 
activities of mitochondrial antioxidant enzymes 
 
The level of intracellular ROS in spermatozoa was 
measured using the fluorescent probe redox-sensitive-
fluoroprobe-2′,7′-dichlorofluorescein-diacetate (DCFDA; 
D6883, Sigma-Aldrich, St. Louis, USA). Briefly,  
1 × 106 spermatozoa were washed in PBS and were 
incubated with 100 mM DCFDA at 37 °C for 30 min. 
The fluorescence of DCF was measured on a flow 
cytometer at a wavelength of 485/535 nm.  
 
Mitochondrial protein was isolated from liquid-stored 
spermatozoa using a Mitochondria Isolation Kit (89801, 
Thermo Scientific, Rockford, USA) according to the 
manufacturer’s recommendations. The concentration of 
mitochondrial protein was determined using a BCA 
protein assay kits (23225, Thermo Fisher Scientific, 
Rockford, USA). The activities of mitochondrial SOD, 
CAT, and GSH-Px were measured using commercial 
assay kits (A001-3, A007-1, A005; Nanjing Jiancheng 
Bioengineering Institute, China) according to the 
manufacturer’s instructions. The SOD, CAT, and GSH-
Px activities were determined using a microplate reader 
(Multiskan Spectrum, Thermo) at 450 nm, 405 nm, and 
412 nm, respectively.  
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Assessment of mitochondrial lipid peroxidation  
 
The extraction and concentration determination of 
mitochondrial protein were performed according to the 
above description. Lipid peroxidation was assessed by 
MDA concentration using an MDA assay kit (A003-1, 
Nanjing Jiancheng Bioengineering Institute, China). 
The MDA level was determined by the thiobarbituric 
acid method and was measured at 535 nm using a 
microplate reader (Multiskan Spectrum, Thermo). 
 
TMT-based quantitative proteomic analysis  
 
The spermatozoa samples under liquid storage at 0 h 
(group A), 48 h (group B), and 96 h (group C) were used 
for quantitative proteomic analysis using three biological 
replicates. Protein was extracted from the stored 
spermatozoa in lysis buffer (8 M urea, 2 mM EDTA, and 
1% Protease Inhibitor Cocktail) using a high-intensity 
ultrasonic processor (Scientz Biotechnology, Ningbo, 
China), and the protein concentration was determined 
using the BCA kit according to the manufacturer’s 
instructions. The samples were then subjected to trypsin 
digestion, TMT labeling, HPLC fractionation, and LC-
MS/MS based on the previously reported methods [66]. 
The peptide sample was labeled using the 10-plex TMT 
kit (Thermo Fisher Scientific, Rockford, IL) according 
to the manufacturer’s protocol. The labeled peptides 
were then fractionated using high-pH reverse-phase 
HPLC (Agilent 300 Extend C18 column; 5 μm particles, 
4.6 mm ID, and 250 mm length). The graded sample was 
separated using the Easy-nLC 1000 UPLC system 
(Thermo Scienctific) and then was subjected to the NSI 
source followed by MS/MS in Q ExactiveTM Plus 
(Thermo Scienctific) coupled online to the UPLC. The 
raw MS/MS data were processed using the Maxquant 
search engine (v.1.5.2.8). Tandem mass spectra were 
searched against the Capra hircus protein database in 
NCBI (42,687 sequences). The proteomic data have 
been deposited in ProteomeXchange via the PRIDE 
database with the accession number PXD014609.  
 
Bioinformatics analysis 
 
R package was used for the analyses of PCA and PCC 
to detect the variations between different replicated 
protein samples. The protein false discovery rate (FDR) 
was adjusted to < 1%, and the minimum score for 
peptides was set at > 40. Only protein with a fold 
change > 1.5 (or < 0.67) and a p-value < 0.05 was 
considered to be DEPs between two sample groups. 
Protein functional annotation and classification were 
conducted according to GO and KEGG databases. 
Enrichment analysis of DEPs was further using a 
corrected p-value < 0.05 to determine a significant 
difference. GO annotation and classification were 

performed according to three major categories: 
biological process, cellular component, and molecular 
function. KEGG pathway annotation was performed 
using KEGG online service tools. A heat map of protein 
expression was generated by using MultiExperiment 
Viewer (MeV) software based on the values of fold 
change. Online STRING (version 10.5) software was 
employed for protein-protein interactions with a 
confidence score > 0.4.  
 
Statistical analysis 
 
The data are presented as the means ± standard error of 
mean (SEM). Statistical analysis was conducted with 
SPSS 16.0 software (SPSS, Inc., Chicago, IL, USA), 
and significance was assessed by one-way ANOVA. 
Statistical significance was defined as P < 0.05. 
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