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INTRODUCTION 
 
Obesity differs in women and men for several aspects. 
First, the prevalence of obesity is higher in women 
(38.3%) than in men (34.3%) and gender difference in  

 

prevalence of obesity is constant across different age and 
race groups [1]. Second, the phenotype of female obesity 
is different from that of male obesity [2]. The gender 
difference in body composition might be due to 
hormonal, environmental, psychological and/or dietary 
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ABSTRACT 
 
There are reported gender differences in brain connectivity associated with obesity. In the elderlies, the neural 
endophenotypes of obesity are yet to be elucidated. We aim at exploring the brain metabolic and connectivity 
correlates to different BMI levels in elderly individuals, taking into account gender as variable of interest.  
We evaluated the association between BMI, brain metabolism and connectivity, in elderly females and males, 
by retrospectively collecting a large cohort of healthy elderly subjects (N=222; age=74.03±5.88 [61.2-85.9] 
years; M/F=115/107; BMI=27.00±4.02 [19.21-38.79] kg/m2). Subjects underwent positron emission tomography 
with [18F]FDG. We found that, in females, high BMI was associated with increased brain metabolism in the 
orbitofrontal cortex (R=0.44; p<0.001). A significant BMI-by-gender interaction was present (F=7.024, p=0.009). 
We also revealed an altered connectivity seeding from these orbitofrontal regions, namely expressing as a 
decreased connectivity in crucial control/decision making circuits, and as an abnormally elevated connectivity 
in reward circuits, only in females. Our findings support a link between high BMI and altered brain metabolism 
and neural connectivity, only in elderly females. These findings indicate a strong gender effect of high BMI and 
obesity that brings to considerations for medical practice and health policy. 

mailto:livio.luzi@unimi.it


www.aging-us.com 8574 AGING 

factors [2]. Finally, consistent evidence supports the theory 
that dietary patterns are different among sexes, as shown 
by Forster et al. [3]. According to Westenhoefer [4], food 
choices and eating behavior show gender differences. It 
was also shown that males and females crave for 
different foods [5]. Response to sweet taste was reported 
stronger in men than women, with different degrees of 
activation of the caudate nucleus across sexes, as shown 
by functional magnetic resonance imaging (fMRI) [6]. 
 
The explanation for gender differences in dietary habits is 
still under debate. The most likely reasons imply either 
the effects of sex hormones on brain response to food [6] 
or an intrinsic gender difference in astrocytes physiology 
[7] or in brain wiring, as shown by a study on white 
matter morphology [8]. Different dietary habits between 
sexes may determine the different prevalence rates in the 
overall population of women and men with obesity. 
 
Former fMRI neuroimaging studies reported sex/gender 
differences in neural correlates of food stimuli. Chao et 
al. reported higher activation in women with obesity 
than in men with obesity in frontal, limbic, striatal areas 
and fusiform gyrus brain regions in response to visual 
food cues [9]. These consistent findings suggest a 
female-specific impairment in the inhibitory control 
systems in obesity. Exposure to appetitive food stimuli is 
known to activate human brain as shown also by [18F] 
Fluoro Deoxy Glucose (FDG) PET [10]. Using the same 
methodology, Wang and colleagues were able to 
demonstrate a gender difference in cognitive inhibition 
capacity [11], with males more effective than females in 
voluntary constraining food intake. 
 
Only few studies investigated obesity-related changes in 
brain metabolism in healthy adults [12]. For example, 
Volkow et al. [13] reported a negative correlation between 
Body Mass Index (BMI) levels and brain metabolism of 
prefrontal cortex and cingulate gyrus in a group of young 
and healthy subjects. Wang et al. [14] reported higher 
metabolic activity in obese than lean subjects in postcentral 
gyrus of the parietal cortex. However, to the best of our 
knowledge, the relation between BMI levels and brain 
metabolic changes in heathy elderlies has not been 
explored yet. 
 
Based on the quoted literature evidence, we aimed to 
explore the brain metabolic correlates to different BMI 
levels in elderly individuals. Especially, we investigated 
the gender differences in the association between BMI 
and FDG-PET measures in a group of 222 elderly 
subjects, as part of the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI). We hypothesized a significant 
relationship between BMI levels and brain metabolism, 
and connectivity in the elderly population, with gender-
specific differences. 

RESULTS 
 
Gender-specific association between brain 
metabolism and BMI 
 
Voxel-based analysis 
ANCOVA showed no significant association between 
brain metabolism and BMI in the male group. In the 
female group instead, we found that BMI significantly 
predicted brain metabolism, with higher BMI associated 
with increased brain metabolism in orbitofrontal regions, 
peaking in the right superior orbitofrontal gyrus at MNI 
coordinates (x, y, z) 8 44 -28, and remaining significant 
at p<0.05 FWE-corrected at the cluster-level. This 
cluster encompassed the right lateral orbitofrontal cortex, 
and extended dorsally to the rostro-polar portions of the 
right middle and superior frontal gyri (BA 9; 10; 46) (see 
Figure 1A, Table 1). Thus, in this cluster, high BMI 
levels were associated with increased metabolism 
(partial R=0.44; p<0.001), also surpassing the critical 
threshold for hypermetabolism (T>1.65) in a subject 
with morbid obesity (BMI = 38.79 kg/m2) (Figure 1B).  
 
Post-hoc analysis revealed a significant BMI x gender 
interaction on average cluster metabolism (F=7.024, 
p=0.009), suggesting that the effect of BMI on cluster 
metabolism is significantly stronger in females as 
compared to males (Figure 1B). No significant BMI x 
age interaction was found (F=2.342, p=0.127), even 
though both BMI and age were significant predictors of 
metabolism in the orbitofrontal BMI-related cluster (F= 
13.52, p<0.001; F=6.446, p=0.012, respectively) in the 
female cohort (Figure 1C). This suggests that age and 
BMI are both significant and independent predictors of 
metabolic function in orbitofrontal regions (only in 
females), and that their effects on metabolism combine 
in an additive fashion. 
 
Region of Interest (ROI)-based analysis 
Results of the ROI-based multivariate ANCOVA are 
reported in Table 2 and Figure 2. In the male group, 
BMI levels did not significantly predict brain 
metabolism in any of the a priori selected brain regions. 
In contrast, in the female group, BMI significantly 
predicted brain metabolism in the right gyrus rectus and 
right superior orbitofrontal gyrus (p<0.05, surviving 
Bonferroni-correction for multiple comparisons). 
Additional results, although not surviving Bonferroni-
correction, were present in further regions related to a) 
cognitive control/decision making processes (i.e. left and 
right medial orbitofrontal cortex; right dorsolateral 
prefrontal cortex), b) salience attribution (i.e. left and 
right superior orbitofrontal gyrus; right middle 
orbitofrontal gyrus; right anterior insula), c) gustatory 
integration (i.e. right anterior and posterior insula)(Table 
2). In the above-mentioned brain regions, whereas 
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female subjects with normal BMI levels presented with 
normal regional metabolism values (T≈0), female 
subjects with higher BMI levels showed increased 
regional metabolism (T>0) (Figure 2).  
 
At consistence with the voxel-based analysis, post-hoc 
analysis using ANCOVA revealed a significant BMI x 
gender interaction on metabolism of the right superior 
orbitofrontal gyrus (F=6.47, p=0.012), suggesting that 
the effect of BMI on orbitofrontal metabolism is 

significantly stronger in females as compared to males 
(Table 2). We also found that age significantly predicted 
metabolism in the orbitofrontal cortex (left and right 
superior orbitofrontal gyrus, right middle orbitofrontal 
gyrus: F=6.09; 15.57; 8.66; p=0.009, 0.000, 0.004, 
respectively) and right gyrus rectus in the female cohort; 
still, no significant BMI x age interaction was found in 
these regions (p<0.05). This confirms that age and BMI 
are both significant and independent predictors of 
metabolic function in the orbitofrontal regions. 

 

 
 

Figure 1. Gender-specific voxel-wise correlation between BMI levels and brain metabolism. (A) A significant positive correlation 
was found in orbitofrontal regions (partial R=0.44) in females. Statistical threshold was set at p<0.001 (uncorrected for multiple 
comparisons), with minimum cluster extent Ke:100 voxels (yellow). For visualization purposes, figure also shows voxels where correlation is 
significant at a more liberal threshold (p<0.01 uncorrected for multiple comparison; red). For both p<0.001 and p<0.01 voxel-level thresholds, 
only clusters surviving p<0.05 FWE-correction are shown. BrainNet Viewer (http://www.nitrc.org/projects/bnv/) was used for rendering [52]. 
(B) Scatter plot shows the significant BMI by gender interaction on orbitofrontal metabolism, with females showing a significant positive 
correlation between BMI levels (x axis) and average SPM-T values of glucose metabolism (y axis) (R=0.31, p<0.001; partial R=0.44, p<0.001) 
and males showing no correlation at all (R=-0.07, p=0.492; partial R=-0.01, p=0.881). Positive SPM-T values indicate higher-than-average 
mean orbitofrontal glucose metabolism: in females, higher BMI levels are associated with increased orbitofrontal glucose metabolism, 
crucially approaching critical hypermetabolism levels in the case with highest BMI levels (BMI ≈ 40kg/m2). Shaded areas represent confidence 
intervals for the regression line slope in each group. (C) Scatter plot shows the lack of a significant BMI by age interaction on orbitofrontal 
metabolism, despite a significant principal effect of age (partial R=0.32, p<0.001), in the female cohort. The slope of the regression lines in the 
different (normal, overweight and obese) BMI groups does not differ: there is no significant interaction effect between age and BMI, but both 
age and BMI have an independent effect on orbitofrontal metabolism. Age (years) is plotted on the x axis and metabolism on the y axis. 
Shaded areas represent confidence intervals for the regression line slope in each group.  

http://www.nitrc.org/projects/bnv/
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Table 1. Clusters where glucose metabolism is significantly predicted by BMI levels (female cohort). 

Cluster- level Voxel-level 
P-value 
(FWE-corr.) Extent P-value 

(unc.) 
P-value 

(FWE-corr.) 
P-value 

(FDR-corr.) 
T 

score 
Z 

score 
P-value 
(unc.) 

MNI coordinates 
x, y, z {mm} 

p<0.001 (cluster-level threshold: 0.05 FWE-corrected, Ke: 100 voxels) 
<0.001 1029 <0.001 0.087 0.075 4.59 4.48 <0.001 8  44 -28 
   0.358 0.075 4.14 4.06 <0.001 22  58 -14 
   0.556 0.080 3.96 3.89 <0.001 14  54   0 

p<0.01 (cluster-level threshold: 0.05 FWE-corrected, Ke: 100 voxels) 
<0.001 6743 <0.001 0.077 0.075 4.62 4.51 <0.001 -34  60   8 
   0.087 0.075 4.59 4.48 <0.001 8  44 -28 
   0.324 0.075 4.18 4.09 <0.001 -10  36 -12 

Results are shown at p<0.001 and p<0.01, uncorrected for multiple comparisons (cluster-level threshold: 0.05 FWE-corrected, 
Ke: 100 voxels). Three local maxima more than 8.0mm apart are shown for each cluster. 
 

Table 2. Results of the multivariate ANCOVA on regional metabolism. 

ROI 
BMI - Males BMI -Females Gender x BMI 

Interaction 
F P-value R F P-value R F P-value 

L Dorsolateral Prefrontal Cortex 1.59 0.208 0.11 2.59 0.111 0.17 - - 

R Dorsolateral Prefrontal Cortex 2.86 0.092 0.14 4.22 0.041* 0.19 - - 
L Medial Orbitofrontal Cortex 0.38 0.540 0.04 3.96 0.048* 0.19 - - 
R Medial Orbitofrontal Cortex 1.79 0.182 0.11 4.61 0.033* 0.20 - - 
L Gyrus Rectus 0.77 0.381 0.07 2.60 0.108 0.17 - - 
R Gyrus Rectus 0.55 0.461 0.05 15.79 <0.001** 0.41 3.75 0.054° 
L Anterior Cingulate Cortex 2.03 0.156 0.11 2.04 0.155 0.13 - - 
R Anterior Cingulate Cortex 2.27 0.133 0.11 2.11 0.148 0.12 - - 
L Superior Orbitofrontal Gyrus 0.80 0.373 0.07 8.00 0.005* 0.26 3.62 0.058° 
R Superior Orbitofrontal Gyrus 0.43 0.513 0.04 11.83 0.001** 0.35 6.47 0.012* 
L Middle Orbitofrontal Gyrus 0.18 0.670 0.03 3.58 0.06° 0.18 - - 
R Middle Orbitofrontal Gyrus 0.61 0.434 0.05 7.11 0.008* 0.25 3.49 0.063° 
L Inferior Orbitofrontal Gyrus 1.97 0.162 0.11 1.56 0.214 0.15 - - 
R Inferior Orbitofrontal Gyrus 2.94 0.088 0.13 2.34 0.128 0.17 - - 
L Anterior Insula 0.06 0.814 0.01 0.54 0.462 0.08 - - 
R Anterior Insula 0.42 0.520 0.06 6.50 0.012* 0.22 2.73 0.100 
L Posterior Insula 0.03 0.864 0.00 0.70 0.403 0.13 - - 
R Posterior Insula 1.37 0.244 0.09 5.47 0.020* 0.30 2.32 0.130 
L Ventral Striatum 0.02 0.894 -0.01 1.25 0.265 0.14 - - 
R Ventral Striatum 0.19 0.663 0.02 3.01 0.084 0.23 - - 
L Amygdala 0.44 0.506 0.05 1.85 0.175 0.17 - - 
R Amygdala 0.13 0.717 0.02 1.53 0.217 0.14 - - 

F and p-values denote results of the multivariate ANCOVA on regional metabolism. 
R values denote partial correlations between BMI and mean regional glucose consumption, factoring out the effects of age, 
cognitive status (as measured by MMSE) and years of education 
**Significant correlations at p<0.05, after correction for multiple comparisons (N=22 ROIs) using Bonferroni correction 
*Significant correlations at p<0.05, uncorrected for multiple comparisons 
°Trend towards significance 
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Figure 2. Gender-specific ROI-based correlations between 
BMI levels and regional metabolism. Graph shows significant 
correlations between BMI levels (x axis) and average SPM-T 
values of glucose metabolism in a series of a priori selected ROIs 
(y axis), in the female cohort. Positive SPM-T values indicate 
higher-than-average brain glucose metabolism in each ROI, as 
obtained through comparison with a reference control sample 
[see text]. Higher BMI levels are associated with increased 
glucose metabolism. Only ROIs where correlation is significant 
after Bonferroni correction are shown. Gray shaded areas 
represent confidence intervals for the regression line slope. 

Brain metabolic connectivity patterns in subjects 
with normal vs. high BMI  
 
Results of the data-driven metabolic connectivity 
analysis are shown in Figure 3. Since a significant 
correlation between BMI and brain metabolism was 
found in females only, this metabolic connectivity 
analysis was restricted to this group. The metabolic 
networks seeding from the orbitofrontal cluster 
described above were remarkably different in females 
with normal vs. high BMI levels. Notably, in females 
with high BMI levels, the BMI-related cluster described 

above (i.e. right lateral orbitofrontal cortex, and rostro-
polar portions of the right middle and superior frontal 
gyri) was significantly connected with the medial 
orbitofrontal cortex and gyrus rectus, bilaterally, and 
with the nucleus accumbens; this was not the case for 
females with normal BMI levels, where the BMI-related 
orbitofrontal cluster was significantly connected with 
large portions of the dorsolateral prefrontal cortex (more 
limited in females with high BMI levels) (p<0.001 at the 
voxel-level, p<0.05 FWE-corrected at cluster-level). 
Assessment of seed by BMI interactions confirmed that 
females with high BMI, compared to females with 
normal BMI, had significantly decreased connectivity in 
a cluster encompassing the right dorsolateral prefrontal 
cortex (cluster extent - Ke: 241 voxels) and significantly 
increased connectivity in a cluster encompassing the left 
medial orbitofrontal cortex (Ke: 334 voxels) (p<0.01 at 
the voxel-level, p<0.05 at cluster-level) (Figure 3). 
 
Note that all the analyses described above included age, 
education and Mini-Mental State Examination (MMSE) 
as nuisance covariates. We did not correct for glycaemia 
levels, as no correlation was observed between BMI and 
fasting blood glucose in our case series (R=0.13, 
p=0.051; partial R=0.12, p=0.087), and no difference 
was observed also when comparing subjects with normal 
vs. high BMI, neither in the whole sample (T=0.836, 
p=0.404), nor in males (T=0.20, p=0.842) and females 
(T=0.884, p=0.379). 
 
DISCUSSION 
 
Here, we report a female-specific effect of high BMI on 
brain metabolism and connectivity in the aged 
population. Specifically, high BMI was associated only 
in females with abnormally increased frontal metabolism 
and altered connectivity in executive, salience and 
reward systems, at consistence with the major neuro-
cognitive theories of obesity [15]. On the contrary, in 
males, BMI was not correlated with focal brain 
metabolism changes. The present results are in line with 
previous data obtained in patients with Alzheimer’s 
disease, where high BMI was associated with altered 
connectivity in frontal and limbic brain networks in 
female patients, but not in males [16]. 
 
Our results indicate a major frontal dysfunction in 
overweight elderly female participants, as shown by a 
metabolic over-activation in brain regions specifically 
related to top-down control (dorsolateral prefrontal 
cortex and medial orbitofrontal cortex) and salience 
attribution and reward (lateral orbitofrontal cortex), that 
notably was reported in association with both overeating 
and obesity [17, 18] (Figures 1–2, Table 2). This effect 
was lateralized involving regions in the right 
hemisphere. Notably, only disruption of the activity of 
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the right dorsolateral prefrontal cortex (and not the left), 
promotes disregard for choices with long-term adverse 
consequences [19]. Similarly, disruption of decision-
making, and emotion processing was reported with 
damage to the right (but not the left) ventromedial 
prefrontal cortex [20]. This is also consistent with 
previous functional imaging studies reporting the right 
dorsolateral and ventromedial prefrontal cortex as 
involved in regulation of eating behavior [21].  
 
In addition to the metabolic increases in the dorsolateral 
prefrontal cortex and orbitofrontal cortex, we also found 
increases in the frontopolar cortex and right insula 

(Figures 1–2, Tables 1–2). While the first is a key region 
for motivation, high-demand executive control, goal-
directed behavior and reward monitoring [22], the latter 
is associated to food-related reward processes, all 
cognitive functions that have been reported as impaired 
in obesity [15]. Thus, dysfunction involves brain regions 
crucially involved in the top-down regulation of  appetite 
(hedonic hunger), which is modulated by the 
dopaminergic reward system and is responsible for 
regulatory control over food intake, as opposed to the 
bottom-up regulation of appetite (metabolic hunger) 
underlying homeostatic metabolic regulation [23]. To this 
regard, a previous study on healthy adults (13 women 

 

 
 

Figure 3. Results of the data-driven metabolic connectivity analysis in females. Figure shows results of the data-driven metabolic 
connectivity analysis, seeding from the BMI-related orbitofrontal cluster identified through whole-brain correlation analysis (see Figure 1 and 
text). The pattern of connectivity of the orbitofrontal cluster in females with normal BMI (upper panel) remarkably differs from the one 
observed in females with high BMI (lower panel) (A). In females with high BMI, loss of connectivity is evident between orbitofrontal cortex 
and high-order cortical regions, notably the dorsolateral prefrontal cortex (red arrows). Interconnections with reward-related brain circuits 
are also present (lacking in females with normal BMI), specifically involving the medial orbitofrontal cortex and nucleus accumbens (red 
arrows). Threshold for statistical significance was set at p<0.001 (uncorrected for multiple comparisons), minimum cluster extent k:100 
voxels. Only clusters surviving SPM cluster-level FWE-correction (p<0.05) are shown Significant differences in connectivity strength between 
females with high BMI and females with normal BMI are also shown (p<0.01, uncorrected for multiple comparisons; p<0.05 at cluster-level; 
Ke: 100 voxels) (B). A high-resolution MRI anatomical template in MRIcron was used for rendering. 
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and 10 men, age: 32.6±7.5 (22–48) years old, with 
BMI<30kg/m2) reported gender differences in brain 
metabolic activity related to top-down cognitive. inhibi-
tion of hunger during food presentation [11]. In adult men, 
but not in women, brain metabolism was modulated in 
limbic and paralimbic regions following active cognitive 
inhibition of hunger feelings [11]. The authors speculated 
that this might indicate a lack of inhibitory control of 
hunger and food-related behavior in women [11].  
 
The second main finding concerns a large-scale 
reconfiguration of the executive and reward resting state 
networks in overweight/obese elderly females. 
Specifically, in females with high BMI, we found a loss 
of prefrontal-orbitofrontal connectivity, coupled with 
abnormal orbitofrontal interconnections with nucleus 
accumbens (Figure 3). This finding further contributes to 
previous evidence in obesity [24], suggesting that a 
long-lasting enhanced responsiveness and motivation for 
food stimuli may lead to a dysregulation of the 
prefrontal and orbitofrontal inhibitory control towards 
subcortical reward structures, in particular the nucleus 
accumbens [15]. All these interconnected regions are 
involved in the regulation of food intake, through the 
integration of both internal signals (i.e. homeostatic and 
cognitive state) and external factors (i.e. social 
environment) and have been found altered in obese/ 
overweight individuals [25–27]. In particular, 
dysfunctions in the connectivity between these regions 
may reflect obesity-related defects in inhibitory control 
and attention processes involved in food intake behavior, 
and an increased motivation to internal signals, such as 
appetite or food-related reward [28]. Accordingly, 
previous studies have reported that women with obesity 
are characterized not only by increased resting-state 
activity in reward and salience brain regions [29] but 
also by enhanced functional connectivity between 
nucleus accumbens, anterior cingulate cortex and 
ventromedial prefrontal cortex [30]. In addition, in the 
fasting state, obese women as compared with lean 
female subjects, showed increased functional con-
nectivity between the medial prefrontal cortex and other 
regions involved in cognitive control, motivation, and 
reward [31]. Considering this evidence, our results in 
elderly females suggest that high BMI levels affect 
metabolic connectivity between regions that are crucial  
for monitoring of internal and external stimuli, and that 
mediate emotional and affective control functions.  
 
Overall, our and previous findings suggest that in 
women with obesity, the food-related behavior may be 
led more by an imbalance in brain circuits related to 
reward-seeking and cognitive control, than by energy 
regulation and homeostasis maintenance. Notably, our 
results indicate that this dysfunctional obesity-related 
reconfiguration is also maintained  in aging.  

The gender difference demonstrated here in the 
association between BMI and brain metabolism brings 
several considerations for medical practice and health 
policy, considering that the neurophysiological 
mechanism(s) via which the reward circuits are different 
in males and female. It is conceivable that the difference 
relies on genetic and/or environmental factors. Genetic 
determinants for a gender difference in brain connec-
tivity are likely to be mainly linked to sex chromosome 
variance. fMRI studies on girls with Turner syndrome 
and attention deficit hyperactivity disorder suggest a role 
of X-monosomy in affecting brain attention networks and 
cognitive function [32]. Furthermore, women with 
Complete Androgen Insensitivity Syndrome (CAIS), i.e. 
having a male karyotype (46, XY) but no functional 
androgen receptors, show lack of masculinization of the 
human brain [33]. Concerning phenotypical charac-
teristics, administration of testosterone to middle-aged 
women diminished orbitofrontal cortex activity and its 
effective connectivity with the amygdala [33]. Vice 
versa, administration of estrogens to middle-aged 
postmenopausal women, is reported to increase the 
amygdala-prefrontal cortex connectivity [34] and 
enhance prefrontal cortex activity during cognitive 
control tasks [35]. Estrogen levels have also been 
shown to modulate response of brain regions that 
process emotion and reward signals, as measured by 
fMRI, in pre-menopausal women [36]. The 
development of central resistance to the effect of 
insulin, leptinas well as other hormones effective on 
energy metabolism and chronically altered in obesity 
may also explain the BMI-related differences in brain 
glucose metabolism [37, 38]. 
 
Theoretically, the association between obesity and frontal 
lobe dysfunction in the female elderly population may be 
partially also explained by the effect of aging on these 
regions. In late life, aging-related changes in frontal 
metabolic activity have been suggested to be at the basis of 
age-related impairment in executive functions [39]. This 
may lead to a major dysregulation in impulse control and 
eating behavior in elderly people, which may contribute to 
enhance the risk of overweight and obesity in late life. At 
consistence with this evidence, we indeed found that age 
was a significant predictor of metabolism in the 
orbitofrontal BMI-related cluster in the female cohort 
(F=6.446, p=0.012) (Figure 1C), as also confirmed by the 
ROI-based analysis. By performing an ANCOVA, to 
exclude a major effect of age per se on these results 
(namely that altered metabolism in females significant 
and independent predictors of metabolic function in 
orbitofrontal regions, and that their effects on 
metabolism combine in an additive fashion. Overall, 
these results confirm that BMI levels per se correlate 
with metabolism in brain regions that are also, and 
independently, affected by age. 
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Glycaemia level should also be taken into account as a 
possibly confounding factor on current results. It must be 
noted that no correlation was observed between BMI and 
fasting blood glucose (R=0.13, p=0.051; partial R=0.12, 
p=0.087) and that all individuals underwent [18F]FDG-
PET examination with fasting blood glucose <160 mg/dL, 
at consistence with international guidelines [40]. 
Crucially, no difference in blood fasting glucose was 
observed in males vs. females (T=0.11, p=0.916), thus 
excluding glycaemia levels as underlying the gender-
specific effects here reported. In addition, no difference 
was observed when directly comparing subjects with 
normal vs. high BMI, neither in the whole sample 
(T=0.84, p=0.404), nor in males (T=0.20, p=0.842) or 
females (T=0.88, p=0.379). 
 
There are some limitations to our study. First, we 
acknowledge that, although average BMI did not differ 
between males and females included in our case series, 
as shown by both parametric and non-parametric tests 
(T=1.09, p=0.279; U=5423, p=0.127), the prevalence of 
overweight subjects was higher in males than in females 
(χ2=8.87, p<0.05). Second, we have not applied partial 
volume correction to our metabolic imaging data, 
assuming also that these changes are still relatively 
limited in healthy elderly subjects; however, age was 
included as covariate in our analyses to exclude age-
related brain changes from our results. Third, the cross-
sectional nature of the study did not allow to define a 
direct causality between obesity and brain metabolic 
changes in aging. Last, BMI is the most widely 
established and used index for obesity, but it does not 
report any information on percent of body fat and its 
distribution, which may be additional characteristics to 
take into account by future studies. 
 
In conclusion, for the first time we report BMI-related 
effects on brain metabolism in a healthy elderly 
population. Notably, in healthy elderly females high BMI 
correlates with glucose metabolism in brain areas involved 
in the executive network and reward system. Although  
our results cannot be generalizable to lifespan obesity-
related effects, our findings seem to suggest gender-related 
differences in BMI effects on brain functioning in old  
age. Additional studies are needed to demonstrate a  
cause-effect relationship between high BMI and increased 
brain glucose metabolism, as well as the relevance of this 
finding to the management of elderly adults with obesity. 
 
MATERIALS AND METHODS 
 
Participants 
 
Two hundred and twenty-two cognitively normal 
healthy elderly controls were retrospectively collected 
from the ADNI database. The ADNI was launched in 

2003 as a public-private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal 
of ADNI has been to test whether serial magnetic 
resonance imaging, PET, other biological markers, and 
clinical and neuropsychological assessment can be 
combined to measure the progression of mild cognitive 
impairment and early Alzheimer’s disease.  
 
The group comprised 115 males and 107 females, with a 
mean age of 74.03±5.88 [61.2-85.9] years. Each subject 
underwent [18F]FDG-PET scan for the assessment of 
brain metabolism and a full neurological and 
neuropsychological evaluation. All subjects underwent a 
medical history revision and a psychiatric evaluation, 
and the presence of both diabetes and eating disorders 
were reported in medical notes. There was no record of 
eating disorders for the subjects included in our case 
series, while 14 out of 222 cases presented with diabetes 
type II. In all subjects, the glycaemia at the time of PET 
scan was less than 160 mg/dl, as recommended by the 
international guidelines [40]. Cognitive status, as 
evaluated by means of the MMSE, was reported normal 
in all subjects (mean ± SD=29.03±1.23[26-30]). BMI 
(calculated measuring height and body weight) data 
were collected concurrently with the [18F]FDG-PET 
scan. Average BMI was 27.00±4.02 [19.21-38.79] 
kg/m2, with 35.1% of subjects having a normal BMI, 
43.7% being overweight and 21.2% being obese. There 
were no significant differences in mean (T=1.09, 
p=.279) and median BMI (U=5423, p=0.127) values 
between males and females. In females, 43% (N=46) 
were normal-weight, 33.6% (N=36) were overweight, 
23.4% (N=25) were obese. Correspondingly, in males 
27.8% (N=32), 53% (N=61), and 19.1% (N=22) were 
normal, overweight or obese, respectively. World Health 
Organization cut-offs points were used for subject 
classification into normal-weight (18.50≤BMI≤24.99), 
overweight (25≤BMI≤29.99) and obese (BMI≥30) 
categories (http://www.euro.who.int). Demographic and 
clinical characteristics are reported in Table 3. All 
subjects provided written informed consent; the 
protocols conformed to the Ethical standards of the 
declaration of Helsinki for protection of human 
subjects. 
 
[18F]FDG-PET acquisition and pre-processing 
 
[18F]FDG-PET acquisition procedure is described in  
the “ADNI PET technical procedures manual, version 
9.5” (http://adni.loni.usc.edu/wp-content/uploads/2010/ 
09/PET-Tech_Procedures_Manual_v9.5.pdf). First, a 
sequence of three 5-minute frames, starting at 45 
minutes after radio-ligand injection, was combined into a 
single averaged image. As for pre-processing, each 
[18F]FDG-PET image was spatially normalized to a 
specific [18F]FDG-PET template in the MNI space [41].  

http://www.euro.who.int/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/PET-Tech_Procedures_Manual_v9.5.pdf
http://adni.loni.usc.edu/wp-content/uploads/2010/09/PET-Tech_Procedures_Manual_v9.5.pdf
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Table 3. Demographic and clinical characteristics (mean ± standard deviation; range) for the whole group and male 
and female groups, and significance of one-sample chi-square and independent samples t-tests for males vs. females 
comparisons. 

 Whole group Males Females Test statistic P-value 
N 222 115 107 0.29 0.59 

Age (years) 
74.03 ± 5.88 
(61.2-85.9) 

74.83 ± 6.19 
(61.2-85.6) 

73.17 ± 5.44 
(62.0-85.9) 2.11 0.04* 

MMSE 
29.03 ±1.23 

(26-30) 
28.95 ± 1.31 

(26-30) 
29.11 ± 1.14 

(26-30) 0.99 0.32 

Education(years) 
16.34 ± 2.74 

(8-20) 
17.10 ± 2.75 

(8-20) 
15.52 ± 2.50 

(10-20) 4.45 <0.001** 

Blood fasting 
glucose (mg/dL) 

100.98 ± 15.71  
(59-154) 

100.63 ± 15.18  
(66-152) 

101.35 ± 16.32  
(59-154) 0.34 0.74 

BMI (kg/m2) 
27.00 ± 4.02 
(19.22-38.79) 

27.28 ± 3.49 
(19.22-37.35) 

26.69 ± 4.52 
(19.75-38.79) 1.09 0.28 

Abbreviations: MMSE: Mini Mental State Examination; BMIL body mass index. 
* = p<0.05, **= p<0.001 Significant difference at the two-sample t-test comparing males and females 
 

Normalized images were written with an isotropic voxel 
size of 2 mm, and spatially smoothed with an isotropic 
3D Gaussian kernel (FWHM: 8-8-8 mm). Intensity 
normalization was achieved by dividing each image by 
its global mean, in order to reduce inter-subject and 
inter-scanner variability. Image pre-processing was 
performed using SPM5 software (http://www.fil.ion. 
ucl.ac.uk/spm/software/spm5/), running in Matlab 
(MathWorks Inc., Sherborn, MA, USA). 
 
Different analyses were performed with the following 
rationale: first, we used an exploratory whole-brain 
approach to test the correlation between BMI level and 
voxel-wise brain metabolism. Subsequently, we 
performed a hypothesis-driven ROI-based analysis, 
testing for the correlations between BMI levels and 
specific brain regions, selected on the basis of previous 
neuroimaging evidence in obesity [42, 43]. Finally, 
considering that high BMI levels might be associated 
not only to altered local metabolism, but also to long-
distance connectivity dysfunctions, we tested for 
differences in metabolic connectivity in the BMI-
related brain regions identified in the previous 
analysis. 
 
Association between brain metabolism and BMI 
 
Voxel-based analysis 
First, we adopted an exploratory whole-brain approach, 
to test, without any a priori assumption, for gender-
specific associations between BMI and voxel-wise brain 
glucose metabolism, as measured by [18F]FDG-PET. 
An ANCOVA model was implemented in SPM to 
assess the association between brain glucose 

metabolism and BMI, in females and males. Age, 
MMSE scores and years of education were entered as 
nuisance covariates. Statistical thresholds of p<0.001 at 
the voxel-level, p<0.05 FWE-corrected at cluster-level 
(minimum cluster extent Ke:100 voxels), were deemed 
as a reasonable trade-off between statistical robustness 
and sensitivity [44]. Post-hoc analyses were run to 
further characterize the results obtained in the first 
round of analysis, testing whether the correlation 
between BMI and average glucose metabolism in the 
BMI-related clusters (identified with the voxel-wise 
analysis described above) was modulated by gender and 
by age. This was done by implementing an ANCOVA 
model in SPSS, including a gender x BMI and age x 
BMI interaction as predictors of average metabolism in 
the BMI-related clusters. 
  
For results interpretation and visualization purposes, 
[18F]FDG-PET metabolism values were then converted 
into T-score values, by performing a two-sample T-test 
between each single subject in our case series and a 
reference sample of healthy controls (see for example 
[45]). T-score values provide a measure of the degree of 
metabolic alteration at the single-subject level, as 
obtained from the head-to-head comparison of the 
subject with a large database (N=112) of elderly healthy 
controls (age= 64.68±9.35 (28-83) years; gender (M/F)= 
59/53). Each [18F]FDG-PET image scan was tested for 
relative hyper- and hypo-metabolism by comparison 
with the reference group of 112 controls on a voxel- 
by-voxel basis using the general linear model, by means 
of the two-sample t-test design, in SPM5. Age was 
included as a covariate. A T-score of 1.65 (or -1.65) 
equals to the critical T value for hypermetabolism  

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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(or hypometabolism) at a liberal threshold of 0.05 
(uncorrected for multiple comparison) with ν≥30. T-
score values greater than 1.65 can be considered as 
hyper-metabolic, whereas T-score values under -1.65 
can be considered as hypo-metabolic. 
 
Regions of interest (ROI-based analysis 
Second, we performed a hypothesis-driven ROI-based 
analysis, testing for gender-specific effects of BMI on 
brain glucose metabolism in a series of brain regions, a 
priori selected based on well-established neuroimaging 
evidence in obesity [15]. Specifically, we considered the 
following ROIs: the dorsolateral prefrontal cortex and 
medial orbitofrontal cortex, including the gyrus rectus 
(involved in control-decision making processes), the 
lateral orbitofrontal cortex, including the superior, middle 
and inferior orbitofrontal gyri (salience attribution), the 
anterior cingulate cortex (control-decision making 
processes/salience attribution), the insula, in its anterior 
and posterior portions (interoception and gustatory 
integration), ventral striatum (reward processing), and 
amygdala (emotional learning) (see Table 2). We used 
the Automated Anatomical Labelling (AAL) Atlas to 
derive the aforementioned ROIs [46], plus, in order to 
properly address specific sub-regions, the Sallet’s Dorsal 
Frontal Parcellation Atlas [47] for the dorsolateral 
prefrontal cortex, the Jülich histological atlas [48] for the 
anterior and posterior insula, and the boundaries provided 
by Tziortzi and colleagues (2011) [49] for the ventral 
striatum. A multivariate ANCOVA model was run, 
entering average brain glucose metabolism in the selected 
ROIs as dependent variables. Age, MMSE scores and 
years of education were entered as nuisance covariates. A 
post-hoc analysis was run, testing for gender x BMI and 
age x BMI interactions in the regions where a significant 
correlation between BMI and glucose metabolism was 
found. For results interpretation and visualization 
purposes, T-score values were also computed and used 
for visualizing significant results (see above). 
 
Brain metabolic connectivity analysis  
 
In order to evaluate whether high BMI is coupled to 
defects in brain networks, we investigated the 
association between BMI levels (normal vs. high) and 
brain metabolic connectivity, by means of seed-based 
interregional correlation analysis [50]. This method, 
specifically validated for [18F]FDG-PET data [50], 
builds on the core principle that brain regions whose 
metabolism is correlated at rest are functionally 
interconnected [51]. Specifically, it allows to investigate 
patterns of connectivity at the group-level, by testing for 
the correlation between [18F]FDG-PET regional mean 
uptake of a priori selected seeds and voxel-wise 
[18F]FDG-PET glucose metabolism in the whole-brain. 
We consider, as seeds, the significant BMI-related 

clusters resulting from the voxel-based correlation 
analysis reported above, to evaluate the brain 
connectivity alterations stemming from core BMI-
related regions. The averaged cluster uptake was set as 
variable of interest in an ANCOVA model in SPM, 
entering BMI level (normal vs. high) as fixed factor, and 
age, MMSE scores and years of education as nuisance 
covariates. Statistical threshold was set at p<0.001 at the 
voxel-level, and p<0.05 FWE-corrected at cluster-level 
(minimum cluster extent k:100 voxels). In order to 
investigate differences in connectivity strength between 
normal vs. high BMI groups, a post-hoc analysis was run 
to test for significant seed by BMI interactions within 
the BMI-related network estimated above. A more 
liberal threshold of p<0.01 at the voxel-level, and p<0.05 
at cluster-level (minimum cluster extent k:100 voxels) 
was selected for this analysis. 
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