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INTRODUCTION 
 
Colon cancer is the third most common cancer, with 
increasing morbidity and mortality worldwide [1]. The 
morbidity of colon cancer increases along with the 
increase of age. In fact, more than 60% of people who 
developed cancer are order than 65. Despite the  

 

significant progress in tailored therapy, the high migration 
and invasion capabilities of this tumor have been a 
bottleneck in reducing the mortality, keeping its 5-year 
survival rate under 12% [2, 3]. It has been reported that 
the prognosis of colon cancer mainly depends on the 
clinicopathological features and the tumor stage. 
Nevertheless, due to the remarkable disease heterogeneity, 
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ABSTRACT 
 
Older patients who are diagnosed with colon cancer face unique challenges, specifically regarding to cancer 
treatment. The aim of this study was to identify prognostic signatures to predicting prognosis in colon cancer 
patients through a detailed transcriptomic analysis. RNA-seq expression profile, miRNA expression profile, and 
clinical phenotype information of all the samples of TCGA colon adenocarcinoma were downloaded and 
differentially expressed mRNAs (DEMs), differentially expressed lncRNAs (DELs) and differentially expressed 
miRNAs (DEMis) were identified. A competing endogenous RNA (ceRNA) network was constructed further and 
DEMs related with prognosis in the ceRNA network was screened using Cox regression analysis. Risk score 
models for predicting the prognosis of colon cancer patients were built using these DEMs. A total of 1476 DEMs, 
9 DELs, and 243 DEMis between the tumor and normal samples were identified and functional enrichment 
analyses showed that the DEMs were significantly enriched in the nervous system development, ribosome 
biogenesis pathways in eukaryotes, and drug metabolism cytochrome P450. Twelve DEMs related with 
prognosis were screened from the ceRNA network. Thereafter, the risk score models of prognostic DEMs were 
obtained, involving seven DEMs (SGCG, CLDN23, SLC4A4, CCDC78, SLC17A7, OTOP3, and SMPDL3A). 
Additionally, cancer stage was identified as a prognostic clinical factor. This prognostic signature was further 
validated in two independent datasets. Our study developed a seven-mRNA and one-clinical factor signature 
that are associated with prognosis in colon cancer patients, which may serve as possible biomarkers and 
therapeutic targets in the future.  
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it is difficult to determine the prognosis of patients based 
on these traditional factors [4]. Therefore, a better 
understanding of the pathogenesis and identification of 
new promising prognostic biomarkers are essential for 
development of effective therapies for colon cancer 
patients. 
 
A recent study has reported that the identification of 
prognostic signature based on the genomic or 
transcriptome data can improve our understanding of 
cancer progression and survival rate [5]. Presently, 
many prognostic gene-expression signatures have been 
identified in various human cancers which help in 
predicting the cancer prognosis outcomes [6–8]. 
Among the various gene-expression signatures in 
colon cancer, the six-cluster gene expression ColoPrint 
[9] and Colon OncotypeDx [7] have been widely 
verified in retrospective studies. Recently, a study has 
reported that the protein-coding genes make up less 
than 2% of the whole genome sequences, and the 
noncoding genes are transcribed into noncoding 
RNAs, such as microRNAs (miRNAs) and long 
noncoding RNAs (lncRNAs) [10]. Some of the recent 
studies have demonstrated the competing endogenous 
RNA (ceRNA) activity of lncRNAs, as natural miRNA 
decoys in human pathophysiological conditions, 
including cancer [11]. Therefore, systematic analysis 
of lncRNA-associated ceRNA network may help to 
explore and identify more prognostic gene-expression 
signatures in colon cancer. 
 
In this study, we aimed to screen newer prognostic 
signatures for colon cancer through the analysis of 
RNA-seq expression profile and miRNA expression 
profiles. Based on the differentially expressed mRNAs 
(DEMs), lncRNA (DELs), and miRNA (DEMis) data 
obtained between the tumor and normal samples, a 
ceRNA network was constructed and DEMs involved in 
this network were selected for the construction of 
prognostic risk model. Our study presented some novel 
biomarkers with a potential prognostic value, and 
provided a preliminary bioinformatic evidence for 
understanding the complex mechanism of colon cancer 
progression. 
 
RESULTS 
 
Differential analysis  
 
The mRNA, lncRNA, and miRNA expression profiles 
obtained were subjected to differential expression 
analysis. The screening thresholds for mRNA and 
miRNA were adjusted P value < 0.01 and |logFC| > 2, 
and for lncRNA was adjusted P value < 0.05 and 
|logFC| > 1. A total of 1476 (323 upregulated and 1153 
downregulated) DEMs, 9 (5 upregulated and 4 

downregulated) DELs, and 243 (113 upregulated and 
130 downregulated) DEMis were identified. Top10 
genes (in ascending order according to the adjusted P 
value) were selected from DEMs, DELs, and DEMis to 
draw the heatmaps, as shown in Figure 1.  
 
GO enrichment analysis of DEMs 
 
With a threshold of adjusted P value < 0.01, 13 BPs, 
14 CCs, and 5 MFs were significantly enriched by the 
DEMs. The top 5 terms for the three categories are 
shown in Figure 2A. The seven most significant terms 
are shown in detail. According to the genes in term, 
the clustering of genes was carried out to construct the 
phylogenetic tree (Figure 2B). In terms of the 
involved BP terms, the DEMs were significantly 
enriched in chemical synaptic transmission, axon 
guidance, nervous system development, cell adhesion, 
and transport. From the perspective of CC terms, the 
encoding proteins were mainly located in an integral 
component of the plasma membrane, plasma 
membrane, and apical plasma membrane.  
 
Pathway enrichment analysis 
 
According to the KEGG pathway enrichment analysis 
of the DEMs obtained above by GSEA, a total of 67 
significantly enriched pathways were identified 
(adjusted P value < 0.05), among which 16 were 
upregulated pathways (normalized enrichment score 
(NES) > 0) and 51 were downregulated pathways 
(NES < 0). KEGG ribosome biogenesis in eukaryotes 
had the largest NES in the significantly upregulated 
pathways (Figure 2C). In addition, DNA replication, 
RNA degradation, IL17 signaling pathway, p53 
signaling pathway, and oxytocin signaling pathway 
were also significantly upregulated. Among the 
significantly downregulated pathways, drug 
metabolism cytochrome P450 had the largest NES 
(Figure 2D). Additionally, chemical carcinogenesis 
and mineral absorption pathways were also 
downregulated. 
 
Co-expression analysis 
 
For the screened DELs and DEMis, the correlation 
coefficients and statistical significance degree between 
them and DEMs were calculated, respectively, and the 
gene pairs with |r| > 0.6 and an adjusted P value < 0.01 
were screened out. There were 193 nodes (199 mRNAs 
and 6 lncRNAs) and 229 edges in the co-expression 
network of mRNA-lncRNA, where lncRNA Pvt1 
oncogene (PVT1) had the highest connectivity degree 
(Figure 3A). In the co-expression network of mRNA-
miRNA, there were 184 nodes (392 mRNAs, 102 
miRNAs) and 1,935 edges (Figure 3B). 
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Figure 1. Heatmaps of differential expression mRNAs (top 10), lncRNAs, and miRNAs (top 10). Red represents high expression 
and green represents low expression. 



www.aging-us.com 8713 AGING 

miRNA prediction  
 
A total of 200 lncRNA-miRNA pairs (3 lncRNAs and 
141 miRNAs) were predicted, based on the lncRNA 
involved in lncRNA-mRNA co-expression pairs using 
starbase (Figure 4A). Additionally, the mRNA involved 
in lncRNA-mRNA co-expression pairs were subjected 
to mRNA-miRNA prediction, and 117,570 pairs of 
miRNA-mRNA (199 mRNAs and 2498 miRNAs) were 
obtained with Score = 1 and Position = CDS. These 
mRNA-miRNA pairs were intersected with the obtained 
mRNA-miRNA co-expression pairs, and 89 mRNA-
miRNA pairs (36 mRNAs and 38 miRNAs) were 
further screened (Figure 4B). 
 
LncRNA and miRNA pathway enrichment analyses 
 
DKFZp779M0652 and PVT1 that had many target 
genes were subjected to functional enrichment. 
DKFZp779M0652 was associated with functions of 
cellular response to tumor necrosis factor and cellular 
response to interleukin-1. PVT1 was related to one-

carbon metabolic process and reciprocal meiotic 
recombination. 
 
The mRNAs in the miRNA-mRNA relation pairs 
obtained above were used as the target genes of miRNAs. 
Since there were few target genes and enrichment 
analysis could not be carried out, thus the functions of 
each target gene were inquired on the genecards to obtain 
the functions of all miRNA (data not shown). 
 
ceRNA network construction 
 
A total of 8,353 lncRNA-miRNA-mRNA pairs were 
obtained, involving 197 mRNAs, 135 miRNAs, and 3 
lncRNAs. The constructed ceRNA network is shown 
in Figure 5A. After further screening of the network, 
only the aforementioned co-expressed mRNA-miRNA 
pairs were retained in the mRNAs-miRNA relation 
pairs. Finally, a total of 21 lncRNA-miRNA-mRNA 
pairs were obtained, including 7 miRNAs, 2 lncRNAs, 
and 10 mRNAs. The network is depicted in  
Figure 5B.  

 

 
 

Figure 2. Gene Ontology (GO) and gene set enrichment analysis (GSEA) enrichment analysis.  (A) Bubble diagram of GO 
enrichment analysis (top 7). The circle size indicates the number of enriched genes. Green represents biological process, red represents 
molecular function, and blue represents cellular component. (B) Cluster diagram of GO enrichment analysis. (C) The upregulated pathway 
(KEGG_RIBOSOME_BIOGENESIS_IN_EUKARYOTES) of GSEA analysis with the highest enrichment score. (D) The downregulated pathway 
(KEGG_DRUG_METABOLISM_CYTOCHROME_P450) with the highest enrichment score.  



www.aging-us.com 8714 AGING 

 
 

Figure 3. Co-expression network analysis. (A) mRNA-lncRNA co-expression network. (B) mRNA-miRNA co-expression network. Red node 
was mRNA, yellow node was lncRNA, and blue node was miRNA. The line thickness indicates the relative size of correlation coefficient. 
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Figure 4. Prediction of common miRNAs. (A) LncRNA-miRNA pairs predicted by lncRNA. (B) The obtained common mRNA-miRNA. Red 
node was mRNA, yellow node was lncRNA, and blue node was miRNA. 
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Figure 5. Construction of ceRNA network. (A) The ceRNA network constructed by 197 mRNAs, 135 miRNAs, and 3 lncRNAs. (B) The ceRNA 
network constructed by 7 miRNAs, 2 lncRNAs, and 10 mRNAs. Red node was mRNA, yellow node was lncRNA, and blue node was miRNA. 
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Establishment of mRNA prognostic risk model 
 
A total of 277 samples (68 deceased and 209 living) 
with clinical information of overall survival time were 
selected. 197 mRNAs from ceRNA network were 
used as candidate mRNAs. The expression level of 
mRNA in the sample set was screened, and 
univariable Cox regression analysis was conducted 
based on the clinical prognosis information of the 
sample. The regression threshold of P value was set at 
0.05 to screen the prognostic mRNAs, as shown in 
Table 1. The risk score models of prognostic mRNAs 
are shown in Table 2. The drawn survival curves are 
shown in Figure 6A. All models were significantly 
correlated, and the ROC curves were drawn based on 
the risk scores of all the models and survival 
information (Figure 6B). AUC values were calculated 
(Table 3), and the time periods were 1, 3, and 5 years, 
respectively. The largest AUC of 5-year prognosis 
scoring model was used as the final risk score model: 
Risk score = 0.58343 * exp (SGCG) + (-0.11860) * 
exp (CLDN23) + (-0.09726) * exp (SLC4A4) + 
0.18416 * exp (CCDC78) + 0.13586 * exp (SLC17A7) 
+ 0.40269 * exp (OTOP3) + (-0.23459) * exp 
(SMPDL3A). The parameters of mRNAs (SGCG, 
CLDN23, SLC4A4, CCDC78, SLC17A7, OTOP3, and 
SMPDL3A) associated with the optimal prognosis are 
shown in Table 4. 
 
Cox regression analysis of prognostic clinical factors 
 
The clinical factors of gender, age at initial pathologic 
diagnosis anatomic neoplasm subdivision, and 
pathologic stage were selected for univariable Cox 
regression analysis combining with the survival 
information, and the influence factor of pathologic 
stage (P < 0.0001) was selected. The samples without 
pathologic stage were removed from 277 samples in 
the previous step, and the remaining 268 samples were 
used for subsequent analysis. Pathologic stage 
contained the following types: “Stage I”, “Stage IA”, 
“Stage II”, “Stage IIA”, “Stage IIB”, “Stage IIC”, 
“Stage III”, “Stage IIIA”, “Stage IIIB”, “Stage IIIC”, 
“Stage IV”, “Stage IVA”, and “Stage IVB”. These 
types were converted into stage “1”, “2”, “3”, and “4”, 
and were denoted as “stage n” which was added into 
the model above for multivariable Cox regression 
analysis (p = 0.00026) to obtain the new scoring model 
as follows: Risk score = 0.51396 * exp (SGCG) + (-
0.16881) * exp (CLDN23) + (-0.08028) * exp 
(SLC4A4) + 0.11820 * exp (CCDC78) + 0.09786 * exp 
(SLC17A7) + 0.44172 * exp (OTOP3) + (-0.22250) * 
exp (SMPDL3A) + 0.66818 * stage_n. The parameters 
of scoring model are shown in Table 5. The survival 
curve and ROC curve of survival rate at 1, 3, and 5 
years are shown in Figure 7. 

Table 1. Prognostic mRNAs obtained from univariate 
Cox regression. 

mRNA HR (95% CI for HR) Beta P value 

SGCG 1.8 (1.3-2.4) 0.57 0.00019 
CLDN23 0.73 (0.57-0.92) -0.32 0.0078 
SLC4A4 0.89 (0.81-0.97) -0.12 0.0085 
CCDC78 1.2 (1-1.4) 0.2 0.011 
SLC17A7 1.4 (1.1-1.8) 0.33 0.011 
OTOP3 1.4 (1-2) 0.36 0.027 
SMPDL3A 0.74 (0.56-0.97) -0.3 0.029 
TCEAL5 1.3 (1-1.6) 0.23 0.033 
MAB21L1 1.2 (1-1.5) 0.22 0.033 
CDH10 1.7 (1-2.6) 0.5 0.036 
CA2 0.88 (0.78-0.99) -0.13 0.036 
SLC17A8 0.67 (0.46-0.98) -0.4 0.037 

 

Model validation using independent datasets 
 
Risk score values of all the samples in two 
independent validation datasets were calculated based 
on the above risk score model.  All samples were 
divided into high risk group and low risk group 
according to the median score of risk score. Kaplan-
Meier survival curve analysis showed that the 
developed prognostic signature could well distinguish 
high-risk and low-risk groups; the survival time of 
patients in low-risk group was significantly longer 
than that of patients in high-risk group (P = 0.00083 
and P < 0.0001) (Figure 8A and 8B). The AUCs of 
this prognostic signature in predicting 1/3/5 survival 
rate of patients in GSE17538 were 0.755, 0.799 and 
0.758, respectively (Figure 8C).  
 
DISCUSSION  
 
Enhanced migration and invasion potential of the colon 
cancer cells have led to a significant low 5-year survival 
rate for the colon cancer patients. Thus, an accurate 
prediction of prognosis is crucial for the personalized 
treatment of these patients. Nowadays, gene expression 
profiling has become a commercial adjunct to cancer 
therapy. For instance, a six-lncRNA expression 
signature is utilized as an indicator to evaluate the 
prognosis of colorectal cancer patients [12]. However, 
the prognostic tools available for patients with colon 
cancer usually do not include clinical factors. In this 
study, we identified a seven mRNAs and one clinical 
factor-based prognostic signature for colon cancer, 
which was proved to predict colon cancer reliably. 
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Table 2. Risk score model.  

Score 
number Risk score model 

Score1 0.5700*exp(SGCG) 
Score2 0.5700*exp(SGCG)+(-0.3194)*exp(CLDN23)  
Score3 0.57915*exp(SGCG)+(-0.23856)*exp(CLDN23)+(-0.10073)*exp(SLC4A4)  
Score4 0.66751*exp(SGCG)+(-0.16306)*exp(CLDN23)+(-0.09054)*exp(SLC4A4) +0.19449*exp(CCDC78)  
Score5 0.56759*exp(SGCG)+(-0.15242)*exp(CLDN23)+(-0.10090)*exp(SLC4A4) 

+0.18517*exp(CCDC78)+0.18698*exp(SLC17A7)  
Score6 0.57012*exp(SGCG)+(-0.13823)*exp(CLDN23)+(-0.11492)*exp(SLC4A4) 

+0.18897*exp(CCDC78)+0.13280*exp(SLC17A7)+0.39265*exp(OTOP3)  
Score7 0.58343*exp(SGCG)+(-0.11860)*exp(CLDN23)+(-0.09726)*exp(SLC4A4) 

+0.18416*exp(CCDC78)+0.13586*exp(SLC17A7)+0.40269*exp(OTOP3)+(-0.23459)*exp(SMPDL3A)  
Score8 0.53201*exp(SGCG)+(-0.13415)*exp(CLDN23)+(-0.10341)*exp(SLC4A4) 

+0.18600*exp(CCDC78)+0.09211*exp(SLC17A7)+0.39503*exp(OTOP3)+(-
0.22168)*exp(SMPDL3A)+0.10713*exp(TCEAL5)  

Score9 0.52245*exp(SGCG)+(-0.13418)*exp(CLDN23)+(-0.10215)*exp(SLC4A4) 
+0.18929*exp(CCDC78)+0.08428*exp(SLC17A7)+0.39404*exp(OTOP3)+(-
0.22316)*exp(SMPDL3A)+0.09120*exp(TCEAL5)+0.03316*exp(MAB21L1)  

Score10 0.50527*exp(SGCG)+(-0.14585)*exp(CLDN23)+(-0.10778)*exp(SLC4A4) 
+0.19778*exp(CCDC78)+0.06656*exp(SLC17A7)+0.40789*exp(OTOP3)+(-
0.21657)*exp(SMPDL3A)+0.04899*exp(TCEAL5)+(-0.02491)*exp(MAB21L1)+0.41369*exp(CDH10)  

Score11 0.51080*exp(SGCG)+(-0.14221)*exp(CLDN23)+(-0.09733)*exp(SLC4A4) 
+0.19483*exp(CCDC78)+0.07246*exp(SLC17A7)+0.41640*exp(OTOP3)+(-
0.20729)*exp(SMPDL3A)+0.03954*exp(TCEAL5)+(-0.02730)*exp(MAB21L1)+0.41328*exp(CDH10)+(-
0.02849)*exp(CA2)  

Score12 0.46042*exp(SGCG)+(-0.08915)*exp(CLDN23)+(-0.09846)*exp(SLC4A4) 
+0.19869*exp(CCDC78)+0.08603*exp(SLC17A7)+0.50655*exp(OTOP3)+(-
0.16637)*exp(SMPDL3A)+0.02671*exp(TCEAL5)+(-
0.05120)*exp(MAB21L1)+0.54879*exp(CDH10)+(0.01309)*exp(CA2)+(-0.36081)*exp(SLC17A8)  

 

Among the seven prognosis-related mRNAs, two were 
from solute carrier family, including solute carrier 
family 4 member 4 (SLC4A4) and SLC17A7. The 
members of solute carrier family have been identified as 
tumor suppressors. For instance, methylation in the 
CpG islands of the SLC25A43 gene has been suggested 
to be a possible mechanism of gene silencing in breast 
cancer without loss of heterozygosity [13]. SLC5A8 is 
another tumor suppressor gene, which is often 
downregulated by promoter hypermethylation in 
pancreatic cancer [14]. Lin et al. [15] recently identified 
SLC17A7 as a tumor suppressor gene in glioblastoma, 
which inhibited cell proliferation and invasion of the 
cancer cells. SLC4A4 was found to be significantly 
downregulated in the clear cell renal cell carcinoma 
tissues, low expression of which was corelated with 
poor prognosis [16]. Although their roles in colon 
cancer have not been clearly elucidated, we speculated 
that the two solute carrier family genes may server as 
key prognostic factors of colon cancer pathogenesis.  
 
Claudin 23 (CLDN23) belongs to the claudin family, 
encoding proteins with four transmembrane domains 

associated with the formation of tight junctions among 
adjacent cells [17]. Our study also revealed that 
CLDN23 was involved in the pathway of cell adhesion 
molecules and GO associated with plasma membrane, 
suggesting that it may play a role in the communication 
and interaction between cells. Previously, a study had 
reported that CLDN23 is downregulated in tumors of 
colorectal cancer and the downregulated level is 
correlated with the prognosis of colorectal cancer 
patients [18].  
 
For the other four genes (SGCG, CCDC78, OTOP3, and 
SMPDL3A) in the predicted scoring model, their roles 
in human cancers have not yet been fully investigated. 
Nevertheless, the present results showed that all the 
seven mRNAs had interactions with PVT1. PVT1 
encodes a lncRNA, which maps to chromosome 8q24 
(8q24) [19]. It is known that 8q24 amplification is a 
frequent event in various malignant diseases, including 
colorectal cancer. For instance, the oncogene MYC has 
been mapped to 8q24 [20]. Shtivelman and Bishop et al. 
[21] have reported that PVT1 and MYC are co- 
amplified in colorectal cancer cell lines. A recent study
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Figure 6. Survival curve (A) and receiver operation characteristic curve (B) of each scoring model. 
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Table 3. The Area Under The Curve (AUC) of 1 year, 3 year and 5year, with 95% confidence interval (CI). 

Score number 1 year (95% CI) 3 year (95% CI) 5 year (95% CI) 
score2 0.729 (0.641-0.802) 0.679 (0.631-0.751) 0.724 (0.652-0.805) 
score3 0.765 (0.715-0.817) 0.725 (0.679-0.790) 0.762 (0.669-0.836) 
score4 0.755 (0.690-0.820) 0.746 (0.681-0.815) 0.754 (0.688-0.849) 
score5 0.766 (0.726-0.831) 0.753 (0.677-0.825) 0.762 (0.686-0.878) 
score6 0.775 (0.733-0.837) 0.751 (0.700-0.809) 0.758 (0.685-0.886) 
score7 0.746 (0.695-0.837) 0.744 (0.720-0.808) 0.772 (0.705-0.833) 
score8 0.744 (0.689-0.839) 0.741 (0.698-0.809) 0.769 (0.678-0.838) 
score9 0.746 (0.690-0.842) 0.741 (0.693-0.812) 0.77 (0.675-0.837) 
score10 0.753 (0.712-0.838) 0.738 (0.684-0.800) 0.751 (0.671-0.825) 
score11 0.746 (0.705-0.833) 0.734 (0.691-0.792) 0.754 (0.676-0.829) 
score12 0.744 (0.701-0.833) 0.726 (0.660-0.808) 0.734 (0.637-0.824) 

 

Table 4. The parameters of mRNAs associated with the optimal prognosis 

mRNA Coef Hazard ratio Pr(>|z|) Signif. 
SGCG 0.58343 1.79217 0.00128 ** 
CLDN23 -0.1186 0.88816 0.37088  
SLC4A4 -0.09726 0.90732 0.07544 . 
CCDC78 0.18416 1.2022 0.02445 * 
SLC17A7 0.13586 1.14552 0.33808  
OTOP3 0.40269 1.49584 0.02125 * 
SMPDL3A -0.23459 0.7909 0.12177  

Coef is the coefficient value obtained by Cox-PH regression model (positive value means positive correlation with survival 
time, negative value means negative correlation with survival time); Hazard Ratio is the risk score, and p value is the 
significance threshold of the test. 
 

Table 5. The parameters of scoring model. 

mRNA Coef Hazard ratio Pr(>|z|) Signif. 
SGCG 0.51396 1.67189 0.00706 ** 
CLDN23 -0.16881 0.84467 0.20849  
SLC4A4 -0.08028 0.92285 0.14911  
CCDC78 0.1182 1.12547 0.14434  
SLC17A7 0.09786 1.10281 0.51499  
OTOP3 0.44172 1.55538 0.00821 ** 
SMPDL3A -0.2225 0.80052 0.14536  
stage_n 0.66818 1.95069 1.91E-05 *** 
 

demonstrated that PVT1 can generate antiapoptotic 
activity in colorectal cancer cells and abnormal 
expression of this gene could be a prognostic factor in 
colorectal cancer patients [22]. Yu et al. [23] also 
suggested that PVT1 functions as an oncogene to 
promote proliferation and metastasis of colon cancer 
cells in humans through the miR-30d-5p/RUNX2 axis. 
Taken together, we speculated that these prognosis-

related mRNAs may play roles in colon cancer by 
interacting with PVT1. 
 
In addition to these gene signatures, our study also 
identified a clinical factor (stage) associated with the 
prognosis of colon cancer patients. It is well known that 
The American Joint Committee on Cancer TNM staging 
system is currently the gold standard for determining
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Figure 7. Survival curve (A) and receiver operation characteristic curve (B) of scoring model with clinical factor of stage. 
 

 
 

Figure 8. Validation of obtained scoring model. Survival curve of patients in high-risk group and low-risk group divided according to 
prognostic signature for UCSC Xene database (A) and GSE17538 (B). (C) Area under receiver operation characteristic curve (AUC) for 1/3/5 
survival rate of patients in GSE17538. FPR, false positive rate; TPR, true positive rate. 
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the prognosis of colon cancer patients. The 5-year 
survival rate for patients with stage I is about 93%, for 
patients with stage II decreases to 80%, and for 
patients with stage III is only 60% [24]. Therefore, the 
identification of clinical prognostic factor of stage in 
this study further suggested the reliability of our 
results. 
 
Strength of this study is that we identified a prognostic 
signature consisting of 7 DEMs and one clinical factor 
and this prognostic signature could predict the 1/3/5-
year survival rate with relatively higher AUC in both 
training dataset and validation dataset. However, there 
are some limitations in this study. First, the differential 
expression of the 7 DEMs were identified from RNA-
seq data and lack of experimental validation. Though 
the RNA-seq data of TCGA are of high quality, further 
experimental validation is still warranted. Besides, 
further in vitro and in vivo investigations of the 
functions of these 7 DEMs in colon cancer are also 
needed.  
 
In conclusion, our study reveals a seven-mRNA and 
one-clinical factor signature that is associated with 
prognosis in colon cancer patients. This signature may 
serve as a possible candidate biomarker and therapeutic 
target for colon cancer patients. Pre-clinical studies 
followed by clinical trials are needed to validate our 
findings in the future. 
 
METHODS 
 
Public data processing 
 
RNA-seq expression profile, miRNA expression data, 
and clinical phenotype information of all the samples of 
TCGA colon adenocarcinoma were downloaded from 
the University of California Santa Cruz (UCSC) Xene 
database [16] on May 27th, 2019. RNA-seq data from 
329 samples, including 288 tumor tissues and 41 normal 
tissues and miRNA expression data from 261 samples, 
including 253 tumor tissues and 8 normal tissues were 
downloaded. Besides, clinical information of 551 
patients, including age, gender, tumor histological 
grading, survival time and survival status, were also 
downloaded. 
 
LncRNA/mRNA re-annotation 
 
GENCODE database is a scientific project in genome 
research which was used to identify and map all 
protein-coding genes within the ENCODE regions [24]. 
The gtf gene annotation file (Release 26, GRCh38.p10) 
provided by GENCODE database was downloaded, and 
the downloaded RNA-seq expression data were re-
annotated with mRNA and lncRNA to obtain the 

mRNA expression profile and lncRNA expression 
profile, respectively. The gene with annotation 
information of “protein coding” was retained as mRNA, 
and with annotation information of “antisense”, “sense 
intronic”, “lincRNA”, “sense overlapping”, “processed 
transcript”, “3prime overlapping ncRNA”, or “non-
coding” was retained as lncRNA. The clinical 
phenotype information corresponding to the gene 
expression profile of the samples were screened. 
 
Differential analysis 
 
The log2(count+1) data were transformed into raw 
count data and normalized into distribution of same 
mean value and equal variance for each sample using 
betaqn function in R package. The differences between 
tumor and normal samples in the three expression 
profiles were analyzed using the Bayesian method in 
limma package (version 3.40.0) [12]. Significance test 
was performed using the paired t-test to obtain the P 
values of all the genes. The P values were then adjusted 
for multiple test using Benjamini & Hochberg (BH) 
method to obtain the adjusted P values. Log2 fold 
change (FC) and adjusted P values were used to select 
the differentially expressed mRNAs (DEMs), and the 
final DEMs, DELs, and DEMis were screened out. 
 
Function and pathway enrichment analyses of DEMs 
 
Using the enrichment analysis tool DAVID [25] 
(version 6.8, https://david.ncifcrf.gov/), Gene Ontology 
(GO) (biological process (BP), cellular component (CC) 
and molecular function (MF)) analysis was performed, 
and the results were visualized using GOplot (version 
1.0.2) [26]. Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis was conducted based on 
the KEGG database [27] using the gene set enrichment 
analysis (GSEA, version 3.0) [28]. 
 
Co-expression analysis 
 
For DELs and DEMis, the Pearson correlation 
coefficients between them and with the DEMs were 
calculated, and correlation tests were performed using 
the corr.test method in R package psych [29] (ci = F, 
adjust = “BH”). Multiple test was performed using the 
BH method. The co-expression pairs were obtained 
according to the correlation coefficient and significance 
degree, and the co-expression network was constructed 
using Cytoscape software (version 3.7.1) [30]. 
 
Online prediction of miRNA 
 
Using starbase (version 3.0, http://starbase.sysu.edu.cn/) 
[31], the lncRNAs involved in the obtained lncRNA-
mRNA co-expression pairs were subjected to lncRNA-
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miRNA prediction, thus acquiring the lncRNA-miRNA 
relation pairs. Additionally, the mRNA-miRNA relation 
pairs were also predicted based on the mRNAs involved 
in the obtained lncRNA-mRNA co-expression pairs, 
using the online tool mirwalk (version 3.0) [32]. 
Moreover, the intersection of these mRNA-miRNA 
relation pairs with the above mRNA-miRNA co-
expression pairs was screened to obtain the final 
mRNA-miRNA pairs. 
 
LncRNA and miRNA pathway enrichment analyses 
 
The mRNAs that had co-expression relations with 
lncRNAs were considered as the target genes of 
lncRNAs. The lncRNAs with the maximum target genes 
were subjected to pathway and function enrichment 
analyses using DAVID [25], and for the lncRNAs with 
fewer target genes, their functions were searched in 
genecards (https://www.genecards.org/) [33]. 
Furthermore, the mRNAs in the mRNA-miRNA pairs 
were used as the target genes of miRNAs, and the 
related functions of each miRNA were analyzed in the 
same way as described above. 
 
ceRNA relation integration and network 
construction 
 
From the lncRNA-mRNA pairs with co-expression 
relations, we selected the lncRNA-mRNA pairs 
regulated by the same miRNA, which were then 
integrated with miRNAs to construct the ceRNA 
network. Cytoscape software (version 3.7.1) [30] was 
used for network construction. 
 
Establishment of mRNA prognostic risk model 
 
The mRNAs in the ceRNA network were used as 
candidate mRNAs, and the univariable Cox regression 
analysis in R survival package (version 2.44-1.1) [34] 
was used to analyze the regression coefficient and P 
value of each candidate mRNA in relation to survival 
time and status. The mRNAs with P value < 0.05 were 
initially considered as the mRNAs related to 
prognosis. 
 
To further screen the prognostic mRNAs, the 
calculation model of risk score was defined as follows: 
Risk score = β gene1*expr (gene 1) + β gene2 * expr 
(gene 2) + ... + β genen * expr (gene n), Where, β is the 
prognostic correlation coefficient beta estimated by Cox 
analysis which equals to log (Hazard Ratio), and expr 
represents the expression value of corresponding gene. 
 
Thereafter, based on the P values of mRNAs in Cox 
regression analysis ranking in ascending order, the mRNA 
with the minimum P value was used as the starting point, 

followed by adding the other mRNAs (Table 2). The 
samples were divided into high-risk and low-risk groups 
according to the median value of risk core. Survival 
analysis for high-risk and low-risk groups was performed 
by log-rank test after the addition of a certain mRNA. 
Then, the receiver operation characteristic (ROC) curves 
of 1, 3, and 5 years were calculated using the R survival 
ROC package (version 1.0.3) [35]. The risk score model 
with the highest Area Under the Curve (AUC) was taken 
as the best scoring model. 
 
Cox regression analysis of prognostic clinical 
factors 
 
Important clinical factors (gender, age at initial 
pathologic diagnosis, anatomic neoplasm subdivision, 
and pathologic stage) were selected from the phenotypic 
information corresponding to the samples. Thereafter, 
an univariable Cox regression analysis was performed 
by combining the survival information, and regression 
coefficient, and statistical P value between each clinical 
factor, and survival time and state were calculated. The 
influencing factors with threshold of P < 0.05 were 
further subjected to multivariable Cox regression 
analysis to obtain the final risk score model. 
 
Model validation using independent datasets 
 
The prognostic signatures developed were further 
validated in two independent datasets. The first dataset 
was the RNA-seq expression profile of colon cancer 
from the UCSC Xene database. This dataset included 
HTSeq-FPKM data of 512 samples, clinical phenotype 
information of 570 samples and survival data of 546 
samples. The samples in the training dataset or samples 
without corresponding survival information or tumor 
stage information were excluded. At last, 164 samples 
were included for the validation.  
 
The second dataset was GSE17538 downloaded from 
Gene Expression Ominibus (GEO), which included 213 
colon cancer samples with complete information of 
survival time and survival status [36, 37].  
 
Risk score was calculated for each individual, and the 
samples in validation datasets were divided into high-
risk group and low-risk group according to the median 
score of risk score. Kaplan-Meier survival curve 
analysis was then performed to calculate the difference 
in the survival prognosis time between the samples of 
the high and low risk groups. 
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