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INTRODUCTION 
 
Clear cell renal cell carcinoma (ccRCC) accounts for 
70–80% of cases of renal cell carcinoma (RCC), which 
is one of the most common malignant tumors of the 
urinary system [1, 2]. Currently, computed tomography 
(CT) is the main imaging technique used for the 
diagnosis and staging of RCC. The primary treatment for 
localized RCC is surgery, whereas, immunotherapy, 
targeted drugs, and chemotherapy are preferred 
treatments for advanced and metastatic RCC [3]. 
Although the diagnostic and therapeutic methods have 
improved significantly, the incidence and mortality rates  

 

of ccRCC are high and are increasing [1]. Therefore, 
novel biomarkers are necessary for early detection of 
ccRCC in order to reduce mortality rates. 
 
Autophagy is an important biological process that 
maintains cellular homeostasis by degrading aged or 
damaged proteins and organelles within the lysosomes 
[4, 5]. Autophagy plays dual roles in tumorigenesis  
and non-neoplastic diseases [6, 7]. Higher levels of 
autophagy in cardiomyocytes are associated with heart 
failure [8, 9]. Conversely, in ischemic heart disease, 
induction of autophagy is required to maintain energy 
homeostasis and survival of cardiomyocytes [10]. In 
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ABSTRACT 
 
We examined the role of differentially expressed autophagy-related genes (DEARGs) in clear cell Renal Cell 
Carcinoma (ccRCC) using high-throughput RNA-seq data from The Cancer Genome Atlas (TCGA). Cox 
regression analyses showed that 5 DEARGs (PRKCQ, BID, BAG1, BIRC5, and ATG16L2) correlated with overall 
survival (OS) and 4 DEARGs (EIF4EBP1, BAG1, ATG9B, and BIRC5) correlated with disease-free survival (DFS) 
in ccRCC patients. Multivariate Cox regression analysis using the OS and DFS prognostic risk models showed 
that expression of the nine DEARGs accurately and independently predicted the risk of disease recurrence 
or progression in ccRCC patients (area under curve or AUC values > 0.70; all p < 0.05). Moreover, the 
DEARGs accurately distinguished healthy individuals from ccRCC patients based on receiver operated 
characteristic (ROC) analyses (area under curve or AUC values > 0.60), suggesting their potential as 
diagnostic biomarkers for ccRCC. The expression of DEARGs also correlated with the drug sensitivity of 
ccRCC cell lines. The ccRCC cell lines were significantly sensitive to Sepantronium bromide, a drug that 
targets BIRC5. This makes BIRC5 a potential therapeutic target for ccRCC. Our study thus demonstrates that 
DEARGs are potential diagnostic and prognostic biomarkers and therapeutic targets in ccRCC. 
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early stages of many cancers, autophagy suppresses the 
transformation and growth of cancer cells. However, in 
later stages of tumors, autophagy promotes rapid growth 
of malignant cells by degrading and recycling com-
ponents of damaged or aged organelles to meet their 
metabolic demands for rapid growth [11]. Therefore, the 
levels of autophagy proteins can regulate tumor growth 
and progression [12]. 
 
Previous studies have shown that autophagy plays a vital 
role in the growth and progression of ccRCC. Hall et al. 
showed that TRPM3 expression promotes the growth of 
VHL-negative ccRCC cells by enhancing autophagy 
under starvation conditions [13]. Mikhaylova et al. 
reported that LC3B-mediated autophagy promotes the 
growth of VHL-negative ccRCC tumors [14]. The role 
of autophagy in the progression of ccRCC has been 
shown in several studies by following the functional 
status of one or more autophagy proteins [15, 16]. 
However, the role of the entire subset of autophagy 
genes in the prognosis of ccRCC has not been studied. 
 
In the present study, we explored the prognostic 
significance of autophagy-related genes (ARGs) in 
ccRCC tumors using information derived from high-
throughput expression profiles in public databases. We 
identified 38 differentially expressed autophagy-related 
genes (DEARGs) in ccRCC tissues. Furthermore, a 
combination of Lasso regression and Cox regression 
analyses showed that expression of five DEARGs was 
associated with overall survival (OS) and expression of 
four DEARGs correlated with disease-free survival 
(DFS) in ccRCC patients. We constructed two Cox 
regression models (OS model and DFS model) using 
these DEARGs and assessed the specificity and 
sensitivity of these models to determine prognostic 
significance using ROC curve analysis. Our data 
suggests that both the models accurately predict patient 
prognosis. Finally, we analyzed the diagnostic value of 
the DEARGs by assessing the relationship between the 
expression of the DEARGs and the drug sensitivities of 
the ccRCC cell lines. Our data showed a high area under 
the curve (AUC) value for all the DEARGs we analyzed, 
thereby demonstrating their potential significance in 
diagnosing ccRCC. We further identified BIRC5 as a 
promising therapeutic target for ccRCC. 
 
RESULTS 
 
Identification of differentially expressed ARGs in 
ccRCC tissue samples 
 
We analyzed the expression of 232 ARGs in 539 ccRCC 
and 72 normal kidney tissue samples using the Wilcoxon 
signed-rank test and identified 38 differentially 
expressed ARGs (DEARGs). This included 31 

upregulated DEARGs and 7 downregulated DEARGs 
(FDR < 0.05, |log2FC| > 1; Figure 1). 
 
Identification of prognostic risk DEARGs in the 
training group ccRCC patients 
 
Next, we performed univariate Cox regression analysis of 
the expression of the 38 DEARGs in the training group 
ccRCC patients to identify prognostic DEARGs. The data 
showed that expression of 19 DEARGs each significantly 
correlated with the OS (p < 0.05) and the DFS (p < 0.05) 
of ccRCC patients (Supplementary Figure 1). We 
performed Lasso regression analysis to eliminate false-
positive DEARGs. Subsequently, our analysis showed 
that the expression of 12 DEARGs correlated with the OS 
of ccRCC patients, and the expression of 6 DEARGs 
correlated with the DFS of ccRCC patients 
(Supplementary Figure 2). We used these 18 DEARGs 
(12 for OS and 6 for DFS) to construct models for 
predicting the prognosis of ccRCC patients. 
 
To determine the optimal model for predicting 
prognosis, we performed multivariate Cox proportional 
hazards regression analysis using forward and backward 
selection algorithms. We identified PRKCQ, BID, 
BAG1, BIRC5, and ATG16L2 as risk genes in the OS 
model and EIF4EBP1, BAG1, ATG9B, and BIRC5 as 
risk genes in the DFS model. The high-risk DEARGs 
negatively correlated with patient prognosis, whereas 
the low-risk DEARGs positively correlated with patient 
prognosis. We identified BID, BIRC5, and ATG16L2 as 
high risk genes and BAG1 and PRKCQ as low risk 
genes in the OS model; similarly, we identified 
EIF4EBP1, ATG9B, and BIRC5 as high risk and BAG1 
as a low risk gene in the DFS model (Figure 2A–2B and 
Table 1). 
 
Testing the prognostic risk models in the training 
group 
 
We used the following formula to calculate the 
prognostic risk scores for the training groups using the 
gene expression values and the regression coefficients of 
the risk genes: Training group risk score for OS = (-
0.1504 × expression value of PRKCQ) + (0.1673 × 
expression value of BID) + (-0.0944 × expression value 
of BAG1) + (0.1141 × expression value of BIRC5) + 
(0.0727 × expression value of ATG16L2); Training group 
risk score for DFS= (0.0103 × expression value of 
EIF4EBP1) + (0.1197 × expression value of ATG9B) + 
(-0.0923 × expression value of BAG1) + (0.2991 × 
expression value of BIRC5). 
 
Patients in the training group were subdivided into high 
and low risk groups for OS (n = 133 each) and DFS 
(n=108 each) based on the median risk scores. Kaplan-
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Meier survival curve analysis using the log-rank test 
showed that the high-risk groups exhibited worse 
prognosis than the low-risk groups (Figure 3A–3B; all p 
< 0.05). The 3-year and 5-year OS rates for the high-
risk patients were 63.3% and 46.0%, respectively, 
whereas, the 3-year and 5-year OS rates for the low-risk 
patients were 87.4% and 80.1%, respectively. The 3-
year and 5-year DFS rates for the high-risk patients 
were 58.3.7% and 44.6.8%, respectively. The 3-year 
and 5-year DFS rates for the low-risk training group 
patients were 91.0% and 85.6%, respectively. 
 
We then measured the predictive performance of the 
prognostic risk models for the 3-year and 5-year OS and 
DFS using the time-dependent receiver operating 
characteristic (ROC) curves. The area under the ROC 
(AUC) values for the two prognostic models were 0.718 

(OS) and 0.779 (DFS) at 3 years, and 0.752 (OS) and 
0.783 (DFS) at 5 years (Figure 3C–3D). We then ranked 
the risk scores of patients for OS and DFS and analyzed 
their distribution (Figure 4A–4B). The dot plots show 
the OS and DFS status of individual ccRCC patients in 
the training groups (Figure 4C–4D). The heat maps 
show the expression patterns of the risk genes in the 
high- and low-risk patient groups (Figure 4E–4F). As 
shown, patients with high-risk scores in the OS group 
showed upregulation of BID, BIRC5, and ATG16L2 
(high risk genes) and downregulation of PRKCQ and 
BAG1 (protective gene), whereas, patients with low-risk 
scores showed downregulation of BID, BIRC5, and 
ATG16L2 and upregulation of PRKCQ and BAG1. 
Moreover, patients with high-risk groups in the DFS 
group showed upregulation of EIF4EBP1, ATG9B, and 
BIRC5 (high risk genes) and downregulation of BAG1 

 

 
 

Figure 1. Differential expression of autophagy-related genes in ccRCC tissue samples. The differential expression of 238 autophagy 
related genes (ARGs) in ccRCC tissue samples (n=539) compared with normal healthy kidney samples (n=72) is shown in the –log (FDR) vs. log 
(FC) plot. The red dots represent 31 upregulated DEARGs, the green dots represent 7 downregulated DEARGs, and the remaining black dots 
represent ARGs that are not differentially expressed in ccRCC tissue samples. 
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(protective gene), whereas, patients with low-risk groups 
showed downregulation of EIF4EBP1, ATG9B, and 
BIRC5 and upregulation of the BAG1. 
 
Verification of the prognostic models in the testing 
group 
 
We validated the accuracy of the two prognostic risk 
models by analyzing the patients in the testing group. 
We calculated the risk scores of each patient based on 
the expression of the risk genes for the OS model, 
namely, PRKCQ, BID, BAG1, BIRC5, and ATG16L2, 
and the risk genes for the DFS model, namely, 
EIF4EBP1, BAG1, ATG9B, and BIRC5. We subdivided 
the testing group patients into high-risk (n = 130) and 
low-risk (n = 134) groups in the OS model, and high-
risk (n = 113) and low-risk (n = 102) groups in the DFS 
model. Kaplan-Meier survival curve analysis showed 
significant differences between the high- and the low-
risk groups for OS (p < 0.05) and DFS (p < 0.05), 
respectively (Figure 5A–5B). Our analysis showed that 
the 3-year and 5-year OS rates for the high-risk group 
were 66.8% and 50.2%, respectively, and 89.0% and 
81.0%, respectively, for the low-risk groups. The 3-year 
and 5-year DFS rates for the high-risk group were 
65.1% and 58.1%, respectively, and 90.3% and 87.1%, 

respectively, for the low-risk group. We further 
performed ROC curve analyses of OS and DFS at 3 
years and 5 years for the testing patients based on the 
two prognostic risk models. The AUC values for the OS 
model at 3 years and 5 years were 0.695 and 0.709, 
respectively, whereas, the AUC values for the DFS 
model at 3 years and 5 years were 0.731 and 0.734, 
respectively (Figure 5C–5D). The distribution of risk 
score, survival status, and the expression of risk genes 
in the testing group patients are shown in Figure 6A–6F. 
 
Our data showed that for both OS and DFS, the 
protective genes were upregulated and the risk genes 
were downregulated in the low-risk groups, whereas, 
the protective genes were downregulated and the risk 
genes were upregulated in the high-risk groups. These 
results confirmed that both the risk models accurately 
predicted the prognosis of ccRCC patients 
 
Both prognostic risk models are independently 
associated with OS and DFS of ccRCC patients from 
the TCGA group 
 
We further analyzed the relationship between the risk 
scores of the two models and clinical parameters such as 
age, gender, histological grade, and the pathological. 

 

 
 

Figure 2. Characteristics of risk DEARGs in the prognostic risk models. Regression coefficients and hazard ratios of the risk DEARGs 
for the (A) Overall survival (OS) and (B) Disease-Free Survival (DFS) models are shown. 
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Table 1. List of the risk DEARGs associated with ccRCC patient prognosis. 

Gene name Gene ID Protein name Location Expression status 
PRKCQ 5588 Protein kinase C theta Chromosome 10 Downregulated 
BID 637 BH3 interacting domain death agonist  Chromosome 22 Upregulated 
BAG1 573 BCL2 associated athanogene 1  Chromosome 9 Downregulated 
BIRC5 332 Baculoviral IAP repeat containing 5 Chromosome 17 Upregulated 
ATG16L2 89849 Autophagy related 16 like 2 Chromosome 11 Upregulated 
EIF4EBP1 1978 Eukaryotic translation initiation factor 4E 

binding protein 1 
Chromosome 8 Upregulated 

ATG9B 285973 Autophagy related 9B Chromosome 7 Upregulated 
 

stage. As shown in Table 2, univariate Cox regression 
analysis showed that age, histological grade, pathological 
stage, and the risk score correlated with OS of ccRCC 
patients (p < 0.05). Similarly, histological grade, 
pathological stage, and risk score associated with DFS of 
ccRCC patients (p < 0.05). Next, we performed multi-
variate Cox regression analysis using age, gender, 
histological grade, pathological stage, and the risk scores 
obtained from the prognostic models as explanatory 

variables. As shown in Table 2, both the prognostic 
models independently correlated with OS and DFS of all 
patients from the TCGA group (p < 0.05). Furthermore, 
multivariate analysis showed that histological grade and 
pathological stage significantly correlated with OS and 
DFS (p < 0.05). Moreover, age of the patients significantly 
correlated with OS (p < 0.05). These results demonstrate 
that both prognostic models can be independently used to 
predict OS and DFS in ccRCC patients. 

 

 
 

Figure 3. Analysis of OS and DFS prognostic risk models in training group ccRCC patients. (A) Kaplan-Meier survival curve analysis 
of OS in the high-risk (red line) and low-risk (green line) ccRCC patients in the training group. (B) Kaplan-Meier survival curve analysis of 
disease-free survival (DFS) in the high-risk (red line) and low-risk (green line) ccRCC patients. (C) Time-dependent ROC curves show area 
under curve (AUC) values at 3-year (blue) and 5-year (red) OS in the training group ccRCC patients. (D) Time-dependent ROC curves show AUC 
values at 3-year (blue) and 5-year (red) DFS in the training group ccRCC patients. 
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To better predict prognosis at 3- and 5-years post-
surgery for ccRCC patients, we constructed two new 
nomograms using variables associated with OS (age, 
histological grade, pathological stage, and risk score) 
and DFS (histological grade, pathological stage, and risk 
score), respectively (Figure 7A–7B). We then assessed 
the accuracy of the nomograms using the ROC curve 
analysis to determine the area under ROC curve (AUC) 
values. The AUC values for 3-year OS and DFS were 
0.812 and 0.871, respectively, whereas the AUC values 
for 5-year OS and DFS were 0.774 and 0.844, 
respectively (Figure 7C–7D). These data suggested that 
both nomograms accurately predicted the 3-year and 5-
year OS and DFS rates after surgery in the ccRCC 
patients. 
 
Diagnostic value of risk DEARGs in ccRCC 
 
We then assessed the diagnostic values of the risk genes 
for OS (PRKCQ, BID, BAG1, BIRC5, and ATG16L2) 
and DFS (EIF4EBP1, BAG1, ATG9B, and BIRC5) using 
ROC curve analysis of gene expression data from 535 

ccRCC patients from the TCGA database and 28 healthy 
individuals from the Genotype-Tissue Expression 
project. The AUC values for PRKCQ, BID, BAG1, 
BIRC5, ATG16L2, EIF4EBP, and ATG9B genes were 
0.649, 0.727, 0.955, 0.868, 0.942, 0.909 and 0.619, 
respectively (Figure 8). This demonstrated that risk 
DEARGs are potential diagnostic markers. 
 
Drug sensitivities of ccRCC cell lines 
 
Next, we used the GDSC database to analyze the 
relationship between the drug sensitivity of several 
ccRCC cell lines and the expression of BAG1 and 
BIRC5, which are risk DEARGs for OS and DFS, 
respectively. Initially, we analyzed the relationship 
between the expression of these two genes and the IC50 
(natural log half maximal inhibitory concentration) 
values of several targeted drugs in the ccRCC cell lines. 
We hypothesized that positive correlation between the 
risk DEARG expression and the IC50 value would 
imply increased drug resistance in the ccRCC cell lines. 
Conversely, negative correlation between the risk 

 

 
 

Figure 4. Prognosis of high-risk and low-risk training group ccRCC patients. (A) Risk score distribution of high-risk (red) and low-risk 
(green) ccRCC patients in the OS model. (B) Risk score distribution of high-risk (red) and low-risk (green) ccRCC patients in the DFS model.  
(C) Scatter plot shows the survival status of ccRCC patients in the OS model. Red dots denote patients that are dead and green dots denote 
patients that are alive. (D) Scatter plot shows survival status of ccRCC patients in the DFS model. Red dots denote patients that are dead and 
green dots denote patients that are alive. (E) Expression of risk genes in the high-risk (blue) and low-risk (pink) training group ccRCC patients 
in the OS model. (F) Expression of risk genes in the high-risk (blue) and low-risk (green) training group ccRCC patients in the DFS model. The 
color code for gene expression in E and F shows green denoting lowest expression and red denoting highest expression. 
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DEARG expression and IC50 value would suggest 
increased drug sensitivity in the ccRCC cell lines. Our 
results indicated that high expression of BAG1 increased 
the resistance of ccRCC cell lines to drugs such as 
Bortezomib, Idelalisib, Shikonin, YM201636, 
Cabozantinib, and NG-25 (p < 0.05), and increased 
sensitivity of ccRCC cell lines to other drugs such as 
Erlotinib, AZ628, Lapatinib, A-770041, and HG-5-88-
01(p < 0.05; Figure 9A). On the other hand, high 
expression of BIRC5 expression increased resistance of 
ccRCC cell lines to drugs such as Salubrinal, PHA-
665752, GNF-2, Imatinib, Nilotinib, and Selumetinib (p 
< 0.05), and increased sensitivity of ccRCC cell lines to 

other drugs such as CGP-60474, BMS-536924, JW-7-
52-1, Panobinostat, Dasatinib, WH-4-023, Rapamycin, 
Saracatinib, and Bryostatin 1(p < 0.05; Figure 9B). 
 
We also compared the sensitivity of ccRCC cell lines to 
a BIRC5-targeted drug (Sepantronium bromide) against 
conventional targeted drugs (Axitinib and Cabozantinib). 
Our data suggested that the sensitivity of ccRCC cell 
lines to the BIRC5-targeted drug, Sepantronium 
bromide, was significantly higher than the sensitivity to 
conventional targeted drugs (Figure 10A–10C; Table 3; 
p < 0.05). These results indicate that BIRC5 is a potential 
therapeutic target for ccRCC. 

 

 
 

Figure 5. Validation of the OS and DFS prognostic risk models in the testing group ccRCC patients. (A) Kaplan-Meier survival 
curve analysis of OS in the high-risk (red line) and low-risk (green line) ccRCC patients in the testing group. (B) Kaplan-Meier survival curve 
analysis of DFS in the high-risk (red line) and low-risk (green line) ccRCC patients in the testing group. (C) Time-dependent ROC curve analyses 
shows AUC values for 3-year (blue) and 5-year (red) OS in the testing group ccRCC patients. (D) Time-dependent ROC curve analyses shows 
AUC values for 3-year (blue) and 5-year (red) DFS in the testing group ccRCC patients. 
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DISCUSSION 
 
Previous studies have reported that ccRCC is a malignant 
disease that involves reprogramming of mechanisms 
involved in energetic metabolism, such as aerobic 
glycolysis, over-utilization of amino acids like 
tryptophan, glutamine, and arginine, tricarboxylic acid 
(TCA) cycle, and dysfunctional mitochondrial bio-
energetics and oxidative phosphorylation [17, 18]. 
Several studies have previously shown that inhibition or 
upregulation of autophagy modulates metabolic 
reprogramming of cancer cells [19, 20]. Currently, the 
role of autophagy in ccRCC is controversial. Studies 
suggest that autophagy suppresses cancer initiation, but, 
promotes cancer progression and modulates cancer 
responses to various therapies [11, 21]. Therefore, 
investigating the expression patterns of ARGs is essential 
for understanding the role of autophagy in ccRCC. 
Although the correlation between individual ARGs and 
ccRCC has been explored in previous studies [13, 14, 
22], in-depth analysis of all the ARGs has not been 
analyzed. Furthermore, the correlation between the 
expression of ARGs and prognosis of ccRCC patients has 
not been established. 

In the present study, we analyzed the high-throughput 
RNA-seq data from the TCGA database to identify key 
ARGs that are relevant for diagnosis, treatment, and 
prognosis predictions in ccRCC patients. We found that 
38 out of 232 ARGs were differentially expressed in 
ccRCC patient tumor samples, including 31 up-regulated 
and 7 down-regulated genes. Then, we used Cox 
regression and Lasso regression analyses and identified 
5 risk DEARGs (PRKCQ, BID, BAG1, BIRC5, and 
ATG16L2) that were associated with OS and 4 risk 
DEARGs (EIF4EBP1, BAG1, ATG9B, and BIRC5) that 
correlated with DFS. We further constructed two 
prognostic risk models (OS model and DFS model) 
using the risk DEARGs and demonstrated that they 
could provide an accurate prognosis of ccRCC patients. 
Multivariate Cox regression analysis of the two 
prognostic models and other clinical parameters 
suggested that the expression of risk DEARGs 
independently predicted the prognosis of ccRCC 
patients. Furthermore, ROC curve analysis showed that 
the expression of the risk DEARGs accurately 
distinguished healthy individuals from ccRCC patients 
suggesting diagnostic significance. Finally, we analyzed 
the relationship between the expression BIRC5 and 

 

 
 

Figure 6. Prognostic analyses of high-risk and low-risk ccRCC patients in the testing group. (A) Risk score distribution of high risk 
(red) and low-risk (green) ccRCC patients from the testing group using the OS model. (B) Risk score distribution of high risk (red) and low-risk 
(green) ccRCC patients from the testing group using the DFS model. (C) Scatter plots show survival status of testing group ccRCC patients 
using the OS model. (D) Scatter plots show survival status plots of testing group ccRCC patients using the DFS model. (E) Expression of risk 
genes in the high-risk (blue) and low-risk (pink) testing group ccRCC patients in the OS model. (F) Expression of risk genes in the high-risk 
(blue) and low-risk (pink) testing group ccRCC patients in the DFS model. The color code for gene expression in E and F shows green denoting 
lowest expression and red denoting highest expression. 
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Table 2. Univariate and multivariate cox regression analyses of OS and DFS in the TCGA group ccRCC patients. 

Variables 
Univariate analysis Multivariate analysis 

HR (95% CI) p-Value HR (95% CI) p-Value 
Overall survival (OS) 

Risk model (high/low) 1.10 (1.07-1.13) 2.13E-11 1.06 (1.03-1.10) 5.68E-06 
Age 1.02 (1.01-1.04) 2.16E-05 1.02 (1.01-1.04) 6.03E-05 
Gender 0.96 (0.70-1.31) 0.797   
Histological grade 2.27 (1.85-2.78) 3.00E-15 1.47 (1.17-1.85) 0.000 
Pathological stage 1.87 (1.64-2.13) 1.10E-20 1.65 (1.42-1.91) 6.06E-11 

Disease free survival (DFS) 
Risk model (high/low) 1.43 (1.23-1.66) 1.41E-06 1.28 (1.01-1.62) 0.033 
Age 1.00 (0.99-1.02) 0.251   
Gender 1.46 (0.97-2.18) 0.062   
Histological grade 2.96 (2.28-3.82) 1.38E-16 1.68 (1.28-2.20) 0.000 
Pathological stage 2.63 (2.21-3.14) 2.78E-27 2.33 (1.93-2.81) 9.84E-19 
 

 
 

Figure 7. Construction of nomograms and ROC curve analysis of prognosis for ccRCC patients from the TCGA database. (A–B) 
The nomograms for (A) OS and (B) DFS are shown. (C–D) ROC curve analysis shows 3-year (blue) and 5-year (red) OS and the corresponding 
AUC values for the ccRCC patients from the TCGA database. (D) ROC curve analysis shows 3-year (blue) and 5-year (red) DFS and the 
corresponding AUC values for the ccRCC patients from the TCGA database. 
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Figure 8. ROC curve analysis to determine potential diagnostic value of the risk DEARGs in ccRCC. The ROC curve plots for  
(A) PRKCQ (AUC = 0.649), (B) BID (AUC = 0.727), (C) BAG1 (AUC = 0.955), (D) BIRC5 (AUC = 0.868), (E) ATG16L2 (AUC = 0.942), (F) EIF4EBP1 
(AUC = 0.909), and (G) ATG9B (AUC = 0.619) genes in ccRCC are shown. 
 

 
 

Figure 9. Correlation between the expression status of risk DEARGs and drug sensitivity of ccRCC cell lines. The plot shows the 
correlation between the expression status of (A) BAG1 and (B) BIRC5 genes relative to the sensitivity of several ccRCC cell lines to various 
drugs. The green dots represent drugs that negatively correlate with the expression of the risk genes (p < 0.05) based on their IC50 values; 
red dots indicate positive correlation of the corresponding drugs with the expression of risk genes (p < 0.05) based on their IC50 values; and 
black dots represent drugs that do not show any significant correlation based on their IC50 values with the expression of risk genes (p > 0.05). 
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BAG1 genes and drug sensitivity in ccRCC cell lines. 
Our results suggest that level of BIRC5 and BAG1 
expression correlates with drug sensitivity in ccRCC cell 
lines. Several ccRCC cell lines were sensitive to the 
BIRC5-targeted drug, Sepantronium bromide, thereby 
suggesting that BIRC5 is a potential therapeutic target 
for ccRCC patients. 
 
Previous studies have shown that over-expression of 
PRKCQ, a member of the novel PKC family significantly 
enhances growth, migration and drug resistance of breast 
cancer cells; furthermore, silencing of PRKCQ inhibits 
breast cancer cell growth by promoting apoptosis [23]. 
PRKCQ promotes breast cancer progression by enhancing 
the transcriptional activity via phosphorylation of the AP-
1 transcription factor, Fra-1 [24]. In contrast, PRKCQ is 
significantly down-regulated in ccRCC and chromophobe 
renal cell carcinomas (ChRCCs), [25, 26]. Our study 
found that PRKCQ was down-regulated in ccRCC tissues 
and its down-regulation correlated with worse prognosis 
in the ccRCC patients. 
 
BID is found on chromosome 22q11.21 and encodes 
an apoptosis-related protein that heterodimerizes with 

BAX, an activator of apoptosis, or BCL2, a negative 
regulator of apoptosis. BID is over-expressed in 
thyroid cancer and associated with patient prognosis 
[27]. The role of BID in ccRCC is unclear. In this 
study, we found that overexpression of BID is 
associated with poor prognosis of ccRCC patients. 
 
BAG1 is located on chromosome 9 in humans and 
encodes a membrane protein that regulates apoptosis or 
programmed cell death. In gastric cancer, over-
expression of BAG1 is associated with tumor prog-
ression and its silencing promotes gastric cancer cell 
apoptosis [28]. BAG1 expression is up-regulated in 
acute myeloid leukemia (AML), and its silencing 
promotes AML cell apoptosis [29]. In RCC, 
downregulation of BAG1 correlates with poor patient 
prognosis [30]. In this study, we found that upregulation 
of BAG1 in ccRCC correlates with poor patient 
prognosis. 
 
ATG16L2 is located on chromosome 11 and has not been 
studied in relation to cancer. In this study, we found that 
high expression of ATG16L2 in ccRCC tissues 
associated with poor patient prognosis 

 

 
 

Figure 10. Drug sensitivity analyses of ccRCC cell lines. The AUC versus IC50 plots show sensitivity of several ccRCC cell lines to 
treatment with (A) Sepantronium bromide, (B) Axitinib, and (C) Cabozantinib. The cell lines with IC50 values that are greater than the 
maximum screening concentrations used for the targeted drugs are considered to be resistant to the corresponding drugs. The green dots 
denote drug-sensitive ccRCC cell lines and red dots denote drug-resistant ccRCC cell lines. IC50 =half maximal inhibitory concentration; AUC: 
Area under the dose-response curve. 
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Table 3. Drug sensitivity analysis of ccRCC cell lines. 

Sepantronium bromide vs. Axitinib Sepantronium bromide vs. Cabozantinib 
Drug Total (N) Sensitive Resistant χ2 p-Value Drug Total (N) Sensitive Resistant χ2 p-Value 
Sepantroniu
m bromide 

29 25 4 
35.78 2.209E-09 

Sepantronium 
bromide 

29 25 4 
35.353 2.75E-09 

Axitinib 24 0 24 Cabozantinib 31 2 29 
 

The EIF4EBP1 gene is located at Ch.8p11.23 and 
encodes a translation repressor protein. High 
expression of EIF4EBP1 in hepatocellular carcinoma 
tissues correlates with poor patient prognosis [31]. 
Rutkovsky et al. showed that over-expression of 
EIF4EBP1 in breast cancer was associated with poor 
patient prognosis, and it’s silencing significantly 
inhibited breast cancer cell proliferation by promoting 
G1 cell cycle arrest [32]. In this study, we found that 
high expression of EIF4EBP1 was associated with 
worse patient prognosis. 
 
ATG9B is located on chromosome 7 in humans, and is 
involved in the regulation of autophagy. Wang et al. 
reported that ATG9B expression was downregulated in 
hepatocellular carcinoma and suppression of ATG9B 
expression in hepatocytes promoted tumorigenesis 
[33]. A previous study showed that upregulation of 
ATG9B expression correlated with ccRCC progression 
[34]. Our study demonstrates that overexpression of 
ATG9B in ccRCC tissues is associated with worse 
patient prognosis. 
 
High BIRC5 expression is associated with tumor 
progression in lung adenocarcinoma and poor patient 
prognosis [35]. In acute myelocytic leukemia (AML), 
knock-down of BIRC5 induces apoptosis and is therefore 
regarded as a potential therapeutic target for AML 
patients [36]. In this study, we demonstrate that high 
BIRC5 expression is associated with worse prognosis in 
ccRCC patients and elevated drug resistance in ccRCC 
cell lines. Therefore, we postulate that BIRC5 is a 
potential therapeutic target for ccRCC patients. 
 
The main limitation of our findings is that our study was 
conducted using data already available from patients in 
several public databases. These findings need to be 
validated in prospective clinical trials. Moreover, the 
mechanisms through which ARGs modulate the 
initiation and progression of ccRCC requires further 
investigation. 
 
In summary, our study demonstrates that differentially 
expressed ARGs have great potential as diagnostic and 
prognostic biomarkers and therapeutic targets in 
ccRCC. Further investigations are necessary to confirm 
the findings of our study. 

MATERIALS AND METHODS 
 
Patient information and databases 
 
We obtained a list of 232 human autophagy-related 
genes from the Human Autophagy Database (HADb; 
http://autophagy.lu/clustering/index.html). The gene 
expression profiles (HTSeq - FPKM) of 611 patients 
with ccRCC were downloaded from the TCGA database 
(https://portal.gdc.cancer.gov/), and the patient clinical 
data was obtained from the cBioPortal database 
(https://www.cbioportal.org/). The data was analyzed 
using the R software (https://www.r-project.org/). First, 
we matched the ID numbers of the patients with their 
corresponding gene expression profile and clinical data 
and excluded patients whose ID numbers did not match. 
We obtained complete gene expression profiles and 
overall survival (OS) data from 530 patients and 
complete gene expression profiles and disease-free 
survival (DFS) data from 431 patients (Table 4). We 
used the UCSC database (https://xena.ucsc.edu/) to 
download gene expression profiles (RNA-seq) from the 
normal kidney tissues of healthy individuals from the 
Genotype-Tissue Expression project (n=28) and ccRCC 
tissues from the TCGA database (n = 535). To ensure a 
unified standard, the RNA-seq profiles were transformed 
using the formula log2(x+1) and normalized. The drug 
sensitivity data for the ccRCC cell lines was downloaded 
from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database (https://www.cancerrxgene.org/). 
 
Identification of DEARGs 
 
We identified the differentially expressed ARGs 
(DEARGs) using the Wilcoxon signed-rank test. The 
cut-off values were determined according to the 
parameters, false discovery rate (FDR) < 0.05 and |log2 
fold change (FC)| > 1. 
 
Construction of OS and DFS risk prognostic models 
 
We randomly divided the 530 patients with complete 
OS information into two groups, namely, a training 
group of OS (n = 266) and a testing group of OS (n = 
264; Table 5). We also randomly divided the 431 
patients with complete DFS information into two 
groups, namely, a training group of DFS (n = 216) and a  

http://autophagy.lu/clustering/index.html
https://portal.gdc.cancer.gov/
https://www.cbioportal.org/).
https://www.r-project.org/
https://xena.ucsc.edu/
https://www.cancerrxgene.org/
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Table 4. Clinical data of 530 ccRCC patients. 

Clinical parameters Variable Total (530) Percentages (%) 
Age <60 245 46.0% 
  ≥60 285 54.0% 
Gender Female 186 35.1% 
 Male 344 64.9% 
Histological grade G1 14 2.6% 
 G2 227 42.8% 
 G3 206 38.9% 
 G4 75 14.2% 
 GX 5 1.0% 
 Unknown 3 0.5% 
Pathological stage Stage I 265 50.0% 
 Stage II 57 10.8% 
 Stage III 123 23.2% 
 Stage IV 82 15.5% 
 Unknown 3 0.5% 
Disease-free Status Recurred/Progressed 123 23.2% 
 Disease free 308 58.1% 
 Unknown 99 18.7% 
Survival status Dead 173 32.6% 
 Alive 357 67.4% 
 

Table 5. Survival and disease-free status of ccRCC patients from different groups. 

Clinical parameters Variables Training 
group  

Testing group  TCGA group  

Survival status Dead 96 (18.1%) 77 (14.5%) 173 (32.6%) 
Alive 170 (32.1%) 187 (35.3%) 357 (67.4%) 

Disease free Status Recurred/Progressed 74 (17.2%) 49 (11.3%) 123 (28.5%) 
Disease-free 142 (33.0%) 166 (38.5%) 308 (71.5%) 

testing group of DFS (n = 215; Table 5). We 
constructed the Cox regression models for OS and DFS 
using the data from the training group and validated its 
accuracy using the testing group. Initially, the potential 
prognostic genes were selected using the univariate Cox 
regression analysis. Lasso regression analysis was used 
to eliminate false positives because of over-fitting. 
Finally, Cox proportional hazards regression was used 
to construct the OS and DFS prognostic risk models. 
 
Risk score calculation 
 
The risk score for each patient was calculated using the 
regression coefficients of the individual genes obtained 
from the multivariate Cox regression model and the 
expression value of each of the selected genes. The 
computational formula used for this analysis was 

1,2,...,
Risk score(patient) coefficient (genei) expression

i n=

= ×∑
)(gene of value i where genei represents the identifier of 

the ith selected genes and coefficient (genei) value is the 
estimated regression coefficient of the genei derived 
from the Cox proportional hazards regression analysis. 
The risk score is a measure of prognostic risk for each 
ccRCC patient. We classified the ccRCC patients into 
high-risk and low-risk groups using the median risk 
score of the training group as the cutoff. A high-risk 
score indicates poor prognosis for the ccRCC patients. 
 
Statistical analysis 
 
All statistical analyses were performed using the R 
software, and p < 0.05 was regarded as statistically 
significant. The distribution differences among the 
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variables were assessed using the chi-square test or the 
Fisher’s exact test. The Kaplan-Meier survival curve 
analysis and the log-rank test were used to analyze OS 
and DFS. The Cox regression model was used to 
analyze the factors that affect the survival of ccRCC 
patients. Univariate and multivariate analyses were 
performed using the Cox proportional hazards 
regression model. Time-dependent ROC analysis was 
used to evaluate the accuracy of the models that 
predicted prognosis. ROC curve analysis was also used 
to estimate the diagnostic value of gene expression. An 
area under the curve (AUC) value of 0.75 or greater was 
considered a significant predictive value, and values 
equal to or greater than 0.6 were regarded as acceptable 
for predictions. 
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SUPPLEMENTARY MATERIALS 
 
 
 
 

 
 

Supplementary Figure 1. Univariate Cox regression analyses of DEARGs with prognostic potential in the training group ccRCC 
patients. (A) Correlation analysis of DEARGs using the OS model. (B) Correlation analysis of using the DFS model. Genes with p-values less 
than 0.05 are considered prognostic genes.  
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Supplementary Figure 2. Lasso regression analysis of DEARGs with prognostic potential in the training group ccRCC patients. 
(A–B) Lasso regression analyses of DEARGs using the OS model. (C–D) Lasso regression analyses of DEARGs using the DFS model.  


