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INTRODUCTION 
 
In recent years, with the increasing understanding of the 
immune microenvironment of breast cancer tissues, 
immune escape has come to be considered an important 
marker of breast cancer development [1–4]. After tumor 
occurrence, tumor cells continuously interact with the 
immune microenvironment and gradually acquire the 
capacity for immune escape [5]. Both innate immunity 
(facilitated by macrophages and neutrophils) and 
adaptive immunity (facilitated by T cells and B cells)  
are impaired in patients with breast cancer. These 
impairments alter the immune microenvironment and 
promote the occurrence and development of tumors by  

 

(1) stimulating tumor angiogenesis, (2) altering the 
biological characteristics of tumors, (3) screening for 
tumor cells that are more suitable for survival in the host 
microenvironment and (4) regulating the activity of 
tumor stem cells. Therefore, targeted tumor immune 
microenvironment therapy for breast cancer has become 
a research hotspot [6]. However, such research has 
mostly been limited to preclinical experiments or clinical 
data-mining studies with small sample sizes [7]. 
 
Based on the expression of immune-related genes in The 
Cancer Genome Atlas (TCGA) database, researchers 
have developed a variety of immune scoring methods to 
investigate the interactions between tumor cells and 
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ABSTRACT 
 
In the microenvironment of breast cancer, immune cell infiltration is associated with an improved prognosis. To 
identify immune-related prognostic markers and therapeutic targets, we determined the lymphocyte-specific 
kinase (LCK) metagene scores of samples from breast cancer patients in The Cancer Genome Atlas. The LCK 
metagene score correlated highly with other immune-related scores, as well as with the clinical stage, prognosis 
and tumor suppressor gene mutation status (BRCA2, TP53, PTEN) of patients in the four breast cancer subtypes. 
A weighted gene co-expression network analysis was performed to detect representative genes from LCK 
metagene-related gene modules. In two of these modules, the levels of the co-expressed genes correlated highly 
with LCK metagene levels, so we conducted an enrichment analysis to discover their functions. We also 
identified differentially expressed genes in samples with high and low LCK metagene scores. By examining the 
overlapping results from these analyses, we obtained 115 genes, and found that 22 of them were independent 
predictors of overall survival in breast cancer patients. These genes were validated for their prognostic and 
diagnostic value with external data sets and paired tumor and non-tumor tissues. The genes identified herein 
could serve as diagnostic/prognostic markers and immune-related therapeutic targets in breast cancer. 
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immune cells in tumor tissues [8]. For instance, 
‘Estimation of STromal and Immune cells in MAlignant 
Tumours using Expression data’ (ESTIMATE) is a tool 
that uses gene expression data to predict the purity of 
tumors and the presence of infiltrating stromal/immune 
cells in tumor tissues [9]. Previous ESTIMATE analyses 
have revealed that stromal/immune cell infiltration is 
associated with an improved prognosis in patients with 
various types of tumors, including prostate cancer and 
colorectal cancer [10, 11]. However, similar research has 
not been conducted in breast cancer. 
 
Therefore, in this study, we used a series of bioinformatic 
tools to identify suitable immune scoring methods for 
different clinical subtypes of breast cancer, in order to 

discover diagnostic and prognostic markers of breast 
cancer. 
 
RESULTS 
 
Selection of the lymphocyte-specific kinase (LCK) 
metagene as a representative gene in the breast 
cancer immune microenvironment 
 
We obtained gene expression data from patients with 
different breast cancer subtypes from TCGA, and used 
Spearman correlation coefficients to calculate the 
correlations between different immune-related scores in 
these patients (Figure 1A–1D). With the exception of the 
neoantigen score, all the immune scores exhibited strong 

 

 
 

Figure 1. Correlations between different immune scores in patients with different breast cancer subtypes. (A) Luminal A 
subtype, (B) Luminal B subtype, (C) Her-2-like subtype, (D) TNBC subtype. Spearman correlation coefficients are color-coded to indicate 
positive (red) or negative (green) associations. 
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positive correlations with one another, especially in 
patients with the Her-2-like subtype. In all four subtypes 
of breast cancer, the LCK metagene score exhibited the 
highest mean correlation score with the other types of 
immune-related scores (luminal A: 77.7, luminal B: 
69.4, Her-2-like: 87.7, triple-negative breast cancer 
[TNBC]: 76.7). Thus, we selected the LCK metagene as 
a representative gene in the breast cancer immune 
microenvironment. 
 
Next, we analyzed the distribution of LCK metagene 
levels in patients of the four breast cancer subtypes at 
different clinical stages (Figure 2A–2D). LCK metagene 
expression was significantly upregulated in stage I in 
TNBC, suggesting that high LCK metagene expression 
may be a positive prognostic factor in TNBC. 
 
We then divided the patients of each breast cancer 
subtype into two groups based on the median LCK 
metagene level, and assessed the prognostic differences 

between patients with high and low LCK metagene 
levels (Figure 3A–3D). The prognosis of the high 
expression group was better than that of the low 
expression group in all four subtypes. We also observed 
significant differences in LCK metagene expression 
among the four subtypes (Figure 3E). The median LCK 
metagene score was significantly higher in the TNBC 
group than in the other groups, suggesting that LCK 
metagene expression can be used as a prognostic marker 
in breast cancer. 
 
Next, we downloaded single-nucleotide polymorphism 
data on BRCA1, BRCA2, TP53 and PTEN [12], and 
divided patients into mutant and wild-type groups. We 
then determined the LCK metagene expression in each 
of these groups (Figure 4A–4D). LCK metagene 
expression was significantly greater in the BRCA2, TP53 
and PTEN mutant groups than in their wild-type 
counterparts, but did not differ significantly between the 
BRCA1 mutant and wild-type groups. 

 

 
 

Figure 2. LCK metagene scores of patients at different clinical stages. (A) Luminal A subtype, (B) Luminal B subtype, (C) Her-2-like 
subtype, (D) TNBC subtype. Data are presented as the mean ± standard error of the mean (SEM). 
 

 
 

Figure 3. Relationship between the LCK metagene score and prognosis. (A) Luminal A subtype, (B) Luminal B subtype, (C) Her-2-like 
subtype, (D) TNBC subtype. Data were analyzed in KM plotter. H: high LCK metagene score; L: low LCK metagene score. The log-rank p values 
are shown. (E) LCK metagene scores of patients with different breast cancer subtypes. Data are presented as the mean ± SEM. 
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Thus, the LCK metagene can be regarded as a 
representative gene in the immune microenvironment of 
breast cancer, and can be explored as a marker for the 
development of drugs to treat breast cancer. 
 
Screening of representative genes in LCK metagene-
related gene modules 
 
We then performed a hierarchical clustering analysis 
(Supplementary Figure 1A). Samples with a distance 
>80,000 were screened as outliers, and 1146 samples 
were ultimately obtained. Then, weighted gene co-
expression network analysis (WGCNA) was used to 
construct a weighted co-expression network, and a β 
value of 8 was used to ensure a scale-free network 
(Supplementary Figure 1B and 1C). This analysis 
yielded 34 modules (Supplementary Figure 1D). Gene 
sets that could not be aggregated into other modules are 
shown as grey modules. In total, 7530 transcripts were 
allocated to 34 co-expression modules, and the 
transcripts of each module are shown in Supplementary 
Table 1. The correlations between the eigenvectors  
of these 34 modules and the LCK metagene score  
were calculated (Supplementary Figure 2). The LCK 
metagene score had a very high correlation with the red 
module (R=0.97), followed by the magenta module 
(R=0.64). 
 
Next, we selected the red and magenta modules for 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 

enrichment analyses (see “module all kegg enrich.txt”). 
The red module was enriched in 52 pathways that were 
associated with various aspects of immunity, including 
the hematopoietic cell lineage, Th1 and Th2 cell 
differentiation and Th17 cell differentiation (Figure 
5A). The magenta module was enriched in 13 pathways 
(Figure 5B), which were mainly associated with lyso-
somes and phagosomes. 
 
We then analyzed the correlations between the genes  
of these two modules and determined the correlation 
distribution of these genes in breast cancer patients  
from TCGA (Supplementary Figure 3). The correlation 
coefficients were bimodally distributed. We selected 
162 genes with maximum correlation coefficients >0.79 
between the two modules (see “Module.gene.cor.txt”), 
reasoning that these genes could be associated with 
members of the LCK metagene. 
 
Identification of differentially expressed genes 
(DEGs) in the high and low LCK metagene 
expression groups 
 
Next, we used the DESeq2 function in the R software 
package [13] to analyze the genetic differences between 
the high and low LCK metagene expression groups,  
and obtained 403 DEGs. The volcano plot is shown in 
Figure 6. There were significantly more upregulated 
genes than downregulated genes in the high LCK meta-
gene expression group. 

 

 
 

Figure 4. Correlation between the LCK metagene score and gene mutations. (A) BRCA1, (B) BRCA2, (C) TP53, (D) PTEN. Mut: 
mutant; WT: wild-type. Data are presented as the mean ± SEM. 
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Figure 5. Gene KEGG pathway enrichment analysis. (A) Red module, (B) magenta module. 
 

 
 

Figure 6. Volcano maps of DEGs. Red represents genes that were upregulated in patients with high LCK metagene scores, while green 
represents genes that were upregulated in patients with low LCK metagene scores. 



www.aging-us.com 9333 AGING 

Exploration of prognostic markers related to the 
immune microenvironment of breast cancer 
 
We then integrated the 162 genes from the two most 
relevant modules of the LCK metagene and the 403 
DEGs between the high and low LCK metagene 
expression groups. From this integration, 143 genes 
were selected, but 28 genes from the known immune-
related metagenes were excluded, resulting in 115 genes 
(Figure 7A) (last.genes.deg.txt). We used the R software 
package clusterProfiler for KEGG enrichment analysis 
of these genes, employing a false discovery rate <0.05 as 

the threshold value (Figure 7B) (last.genes.deg.kegg.txt). 
Forty-two genes were enriched in 26 pathways, most of 
which were associated with immune diseases. 
 
We used the R software package STRINGdb to analyze 
the protein network interactions of these 115 genes. 
When the genes were mapped into the STRING database, 
a relationship network containing 526 edges and 102 
nodes was obtained (Figure 7C). We analyzed the degree 
distribution of the nodes in the network (Figure 7D), and 
found that the degree of each node was high (10.3, on 
average), suggesting that the genes were closely related. 

 

 
 

Figure 7. Prognostic markers related to the immune microenvironment of breast cancer. (A) Co-expressed genes that significantly 
correlated with gene members of the LCK metagene in terms of their mRNA levels. (B) KEGG enrichment analysis of the 115 genes.  
(C) Protein interaction networks of the 115 genes. (D) The degree distribution of nodes in the network. 
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Next, we performed a univariate survival analysis to 
determine the relationship between the expression of 
these 115 genes and prognosis in breast cancer patients 
from TCGA. Using a p value <0.05 as a threshold, we 
selected 28 genes for which high expression was 
associated with a good prognosis. In order to exclude the 
influence of the clinical stage, we subsequently included 
the clinical stage as a covariable in the analysis, and 
ultimately obtained 22 independent prognostic factors, as 
shown in Table 1. We then used the online analysis tool 
g:profiler to analyze the Gene Ontology (GO) Terms of 
these 22 genes (Table 2) [14]. Thirteen genes were 
enriched for eight GO Terms associated with immunity, 
while the remaining nine genes (ACAP1, SEPT1, 
MAP4K1, TRAC, CXCR6, TRBC2, TRAF1, PTPN7 and 
TRBV28) were not enriched for any GO Terms. 
 
Breast cancer patient samples from TCGA were then 
divided into two groups based on the median levels of 
the 22 prognosis-related genes. The prognostic 
differences between the high and low expression groups 
for each of these 22 genes were analyzed. As shown  
in Supplementary Figure 4, high expression of these  
22 genes was associated with a significantly better 
prognosis than low expression. Thus, these 22 genes 
could be used as new prognostic markers or therapeutic 
targets related to the immune microenvironment of 
breast cancer. 
 
Association of the 22 immune-related prognostic 
genes with LCK metagene members 
 
To examine the relationship between the LCK metagene 
and the 22 newly discovered prognostic genes related to 
the immune microenvironment, we extracted the 
expression profiles of the 42 gene members of the LCK 
metagene and the 22 genes related to immune 
microenvironment from breast cancer patients in TCGA. 
A clustering analysis was performed on the expression 
profiles, and the Euclidean distance was adopted 
(Supplementary Figure 5A). The expression patterns of 
the 22 immune-related prognostic genes were very 
similar to those of the 42 members of the LCK 
metagene. The samples formed three obvious clusters, so 
we further analyzed the expression distribution of the 
three groups of samples (Supplementary Figure 5B). The 
expression order was Cluster2>Cluster1>Cluster3. Then, 
we analyzed the prognostic differences among the three 
groups, and found a significant difference in the five-
year survival rate, as follows: Cluster2>Cluster1> 
Cluster3 (Supplementary Figure 5C). 
 
External data validation 
 
To verify the prognostic value of these 22 genes, we 
used the breast cancer dataset from the online tool 

Kaplan-Meier (KM) plotter [15] (http://kmplot.com) to 
analyze the relationship between the expression of these 
genes and the overall survival of breast cancer patients. 
We assessed the 18 genes with available data on the KM 
plotter platform, and divided the samples into high and 
low expression groups according to the median mRNA 
level of each gene. The KM curves of the 18 genes are 
shown in Figure 8. High expression of these 18 genes 
was associated with a good prognosis, consistent with 
our earlier analysis results. 
 
Specimen verification results 
 
We then analyzed the expression of the 22 prognosis-
related genes in tumor and non-tumor tissues from five 
breast cancer patients. The fold-changes in these 22 
genes between tumor and non-tumor tissues (T/N) are 
shown in Supplementary Figure 6. In most cases, the 
fold-change (T/N) was less than 0.05, indicating that the 
gene was downregulated in breast cancer tumors (all 
data are available upon request). 
 
DISCUSSION 
 
In recent years, breast cancer treatment has included 
surgery, chemotherapy, endocrine therapy, targeted 
therapy and radiotherapy. However, traditional therapies 
have failed to save some refractory patients [16–18]. In 
this context, increasing attention has been paid to the 
tumor microenvironment and tumor immunity [19]. 
Stimulating the immune system and enhancing the  
anti-tumor function of the tumor microenvironment may 
be a novel way to kill tumor cells [20]. Therefore, 
screening genes related to the immune environment of 
breast cancer is an important step towards predicting the 
prognosis of patients and identifying new therapeutic 
targets. In this study, we used the database of TCGA  
to search for immune microenvironmental markers 
associated with the overall survival of breast cancer 
patients. We found that the expression of 22 genes 
correlated significantly with overall survival, and verified 
these results in KM plotter. 
 
We first demonstrated that the LCK metagene score 
correlated highly with various other immune-related 
scores, along with the tumor clinical stage, the prognosis 
and the mutation status of multiple tumor suppressor 
genes (BRCA2, TP53 and PTEN) in patients with the 
four subtypes of breast cancer (luminal A, luminal B, 
Her-2-like and TNBC). BRCA1 and BRCA2 have been 
described as “breast cancer susceptibility genes,” so 
failure to properly repair mutations in these genes 
increases the risk for breast cancer [21]. Our data 
indicated that BRCA2 mutations, but not BRCA1 
mutations, correlated highly with LCK metagene 
expression. It is worth noting that BRCA1 and BRCA2 

http://kmplot.com/
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Table 1. Genes with prognostic value. 

Genes Symbol P value HR Low 95%CI High 95%CI 
ENSG00000015285 WAS 0.040077 0.984523 0.969971 0.999294 
ENSG00000072818 ACAP1 0.041169 0.96313 0.929017 0.998495 
ENSG00000137078 SIT1 0.046466 0.977609 0.956059 0.999646 
ENSG00000180096 SEPT1 0.02709 0.967847 0.9402 0.996306 
ENSG00000104814 MAP4K1 0.045689 0.97372 0.948614 0.99949 
ENSG00000186810 CXCR3 0.022463 0.97858 0.960553 0.996945 
ENSG00000277734 TRAC 0.027988 0.996204 0.99283 0.999589 
ENSG00000153563 CD8A 0.021632 0.984938 0.972265 0.997777 
ENSG00000172215 CXCR6 0.025982 0.950541 0.909031 0.993947 
ENSG00000211772 TRBC2 0.013298 0.99403 0.989328 0.998753 
ENSG00000056558 TRAF1 0.042017 0.972292 0.946311 0.998986 
ENSG00000143851 PTPN7 0.038225 0.967811 0.938323 0.998226 
ENSG00000198851 CD3E 0.018692 0.991008 0.983575 0.998497 
ENSG00000175463 TBC1D10C 0.023773 0.963748 0.933385 0.995099 
ENSG00000239713 APOBEC3G 0.012421 0.966283 0.940647       0.992619 
ENSG00000160593 JAML 0.034375 0.946377 0.899269 0.995953 
ENSG00000211753 TRBV28 0.022437 0.989539 0.980646 0.998514 
ENSG00000278030 TRBV7-9 0.048429 0.975 0.950792 0.999825 
ENSG00000223865 HLA-DPB1 0.011418 0.998766 0.997812 0.999722 
ENSG00000125910 S1PR4 0.039385 0.9641 0.931142 0.998224 
ENSG00000013725 CD6 0.036304 0.971208 0.945004 0.998138 
ENSG00000077984 CST7 0.010964 0.988294 0.979369 0.997301 

HR: hazard ratio; CI: confidence interval. 
 

Table 2. GO enrichment of 22 immune-related genes. 

GO.ID Description P value FDR Genes 

GO:0050852 T cell receptor signaling 
pathway 1.79E-02 1.79E-02 WAS, CD3E, HLA-DPB1, TRBV7-9, 

GO:0002376 immune system process 3.91E-03 3.91E-03 
CD6, WAS, CST7, S1PR4, SIT1, CD8A, JAML, 

TBC1D10C, CXCR3, CD3E, HLA-DPB1, 
APOBEC3G, TRBV7-9 

GO:0006955 immune response 7.97E-04 7.97E-04 CD8A, JAML, TBC1D10C, CD3E, HLA-DPB1, 
APOBEC3G, TRBV7-9 

GO:0002682 regulation of immune 
system process 1.96E-04 1.96E-04 

CD6, WAS, SIT1, CD8A, JAML, TBC1D10C, 
CXCR3, CD3E, HLA-DPB1, APOBEC3G,  

TRBV7-9 

GO:0045321 leukocyte activation 4.93E-02 4.93E-02 CD6, WAS, SIT1, CD8A, JAML, TBC1D10C, 
CD3E, HLA-DPB1 

GO:0046649 lymphocyte activation 6.51E-04 6.51E-04 CD6, WAS, SIT1, CD8A, JAML, TBC1D10C, 
CD3E, HLA-DPB1 

GO:0042110 T cell activation 5.91E-04 5.91E-04 CD6, WAS, SIT1, CD8A, JAML, CD3E,  
HLA-DPB1 

GO:0042101 T cell receptor complex 2.15E-03 2.15E-03 CD6, CD8A, CD3E 

FDR: false discovery rate. 
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are unrelated proteins that were discovered separately 
[22]. Until now, little has been reported about the 
relationship between the LCK metagene and BRCA1/2. 
Based on the current evidence, BRCA1 and LCK 
metagene expression may be independent markers of 
breast cancer. 

Secondly, taking the gene members of the LCK metagene 
as the research object, we used a WGCNA to detect 
representative genes from the relevant gene modules of 
the LCK metagene. We also analyzed the DEGs between 
samples with high and low LCK metagene scores to 
identify co-expressed genes that correlated significantly 

 

 
 

Figure 8. Relationship between immune microenvironment-related genes and breast cancer patient prognosis. Data were 
analyzed with KM plotter. Probabilities indicate overall survival; HR: hazard ratio. 
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with members of the LCK metagene in terms of their 
mRNA levels. Then, we assessed the overlap between 
these gene sets, and performed a survival analysis to 
determine which of these co-expressed genes were 
significantly associated with the prognosis of breast 
cancer patients. We explored the functions of these genes 
through an enrichment analysis, and further verified our 
findings with external data sets. We ultimately found 22 
potential immune-related diagnostic and prognostic 
markers: WAS, ACAP1, SIT1, SEPT1, MAP4K1, CXCR3, 
TRAC, CD8A, CXCR6, TRBC2, TRAF1, PTPN7, CD3E, 
TBC1D10C, APOBEC3G, JAML, TRBV28, TRBV7-9, 
HLA-DPB1, S1PR4, CD6 and CST7. 
 
The CD8 antigen is a cell-surface glycoprotein found on 
most cytotoxic T lymphocytes, and facilitates efficient 
cell-cell interactions within the immune system. CD8A 
encodes the CD8 alpha chain, and was one of the 22 
immune-related genes identified in this study. Cytotoxic 
T lymphocytes can recognize and eliminate infected 
cells and tumor cells. CD8A homodimers on the surface 
of natural killer cells enable these cells to conjugate with 
and lyse multiple target cells, thus promoting survival 
[23]. Higher CD8A expression has been associated with 
a better prognosis in breast cancer patients [24]. Thus, 
therapeutically inducing CD8A could enhance the 
function of cytotoxic T lymphocytes, enabling them to 
kill more cancer cells. 
 
CXCR3, another one of the 22 genes we identified, 
encodes a G protein-coupled receptor that is selective 
for three chemokines: CXCL9, CXCL10 and CXCL11. 
Binding of chemokines to CXCR3 induces cellular 
responses that are involved in leukocyte trafficking, 
most notably integrin activation, cytoskeletal changes 
and chemotactic migration [25]. In mice, CXCR3 
deficiency was reported to promote the development of 
breast cancer by stimulating the M2 polarization of 
macrophages [26]. Higher CXCR3 expression was 
found to predict favorable outcomes in breast cancer 
patients treated with tamoxifen [27]. 
 
Another immune-related prognostic gene detected in this 
study was CXCR6. This gene is expressed by activated 
natural killer cells. In a previous study, irradiation was 
reported to induce CXCL16 chemokine expression in 
cancer cells and to enhance the migration of CXCR6+ 
natural killer cells to breast cancer cells for their 
destruction [28]. 
 
Among the 22 genes we identified, 15 (ACAP1, 
MAP4K1, CXCR3, TRAC, CD8A, CXCR6, TRBC2, 
TRAF1, CD3E, APOBEC3G, TRBV28, TRBV7-9, HLA-
DPB1, CD6 and CST7) have previously been reported to 
be involved in the occurrence, development, malignant 
transformation and pathology of breast cancer, and to be 

associated with the survival and prognosis of patients 
[29–33]. This emphasizes the reliability and accuracy of 
our biological information mining results based on 
TCGA database screening and KM plotter database 
verification. The same gene expression trends were 
detected in matched tumor and non-tumor tissues, further 
validating our results. However, the remaining seven 
genes (S1PR4, SIT1, AML, PTPN7, WAS, TBC1D10C 
and SEPT1) have not been reported to be associated with 
breast cancer in experimental or clinical studies. Among 
these genes, SIT1 and JAML are of the greatest interest to 
us. SIT1 regulates the proliferation, activation and 
survival of memory T cells, thus affecting the generation 
of regulatory T cells, the immune escape of tumors and 
the resistance of tumors to immunotherapy [34]. JAML is 
involved in the proliferation and survival of T cells, as 
well as the production and release of cytokines and 
growth factors; thus, JAML regulates the sensitivity of 
tumor cells to relevant vaccines [35]. 
 
This study had several limitations. Firstly, our 
prognostic analyses of genes were based on overall 
survival, but information on relapse-free survival was 
lacking. Secondly, although most of the genes we 
identified could be verified in external databases and 
patient samples, the KM plotter platform could only 
verify 18 genes. Thirdly, the data from TCGA came 
from tissues; thus, although we identified 22 genes that 
could be therapeutic targets in breast cancer, we could 
not determine which cells highly expressed these genes. 
However, using an online tool (http://biogps.org), we 
were able to determine which types of cells typically 
express certain genes. For instance, CD19+ B cells 
highly express HLA-DBP1, and CD8+ T cells highly 
express CD8A. Single-cell sequencing can now be used 
to explore which cells highly express specific genes 
[36]; thus, our data could provide a reference for future 
single-cell sequencing analyses. 
 
Although many studies have described the correlation 
between gene expression and survival in breast cancer 
patients, the results of most of these studies have been 
verified in animal tumor models, in vitro cell models or 
small numbers of human samples. The infiltration of 
immune cells (regulatory T cells, M2 tumor-related 
macrophages and CD20+ B cells) in the micro-
environment of breast cancer is an important predictor of 
prognosis [37–39]. Retrospective studies have indicated 
that higher expression of immune checkpoint molecules 
(PD-L1, PD-1, CTLA-4 and LAG3) is associated with a 
higher survival rate in TNBC patients [40]. However, the 
complexity of the breast cancer microenvironment 
requires more comprehensive analyses in larger study 
populations. Fortunately, the rapid development of 
whole-genome sequencing and the development of high-
throughput tumor databases such as TCGA have made it 

http://biogps.org/
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possible to analyze ‘big data’ from large-scale breast 
cancer populations. Furthermore, the ESTIMATE 
method can be applied to detect the infiltration of 
stromal and immune cells into tumor samples based on 
gene expression data [10]. In this study, we focused on 
immune microenvironment-related genes that were 
involved in the occurrence, development and malignant 
transformation of breast cancer and the overall survival 
of patients. Our results have helped to decode the 
complex microenvironment of breast cancer, and can be 
used as a source of potential immune-related 
diagnostic/prognostic markers or therapeutic targets for 
breast cancer. 
 
MATERIALS AND METHODS 
 
Data sources and pre-processing 
 
Counts data (see TCGA-BRCA counts.txt; all materials 
are available upon request), single-nucleotide 
polymorphism data (see TCGA.mutect.somatic.maf)  
and clinical follow-up information (see Merge 
clinilcal.txt) were downloaded from the database of 
TCGA. RNA-Seq data (reads per kilobase million) were 
downloaded from TCGA and converted into transcripts 
per kilobase million (TPM) expression profiles (see 
Merge TCGA-BRCA TPM.txt). Thirteen metagenes  
(see ImmuneScore.genes.ids.txt) corresponded to various 
immune cell types and reflected the corresponding 
immune functions [41]. The median mRNA levels of 
these immune metagenes were used for scoring (see 
meta.score.txt). The scores of immune cells in samples 
(six categories) were calculated through the Tumor 
Immune Estimation Resource (https://cistrome. 
shinyapps.io/timer/) (immu.score.txt) [42]. The immune 
and stromal scores of samples were calculated with the 
ESTIMATE function of the R software package 
(est.score.txt). The immune neoantigen score was 
calculated by a previously reported method [43] 
(Neoantigen.txt). 
 
Screening representative genes in the breast cancer 
immune microenvironment 
 
We used Spearman correlation coefficients to calculate 
the correlations between different immune-related scores 
in different breast cancer subtypes. Based on the results, 
the LCK metagene was selected as a representative  
gene in the breast cancer immune microenvironment. 
Next, we analyzed the relationship between LCK 
metagene expression and clinical stage. We also 
classified samples into high and low expression groups 
according to the median mRNA level of the LCK 
metagene, and performed KM analysis to determine  
the prognostic differences between the groups. In 
addition, we analyzed the relationship between LCK 

metagene expression and BRCA1, BRCA2, TP53 and 
PTEN mutations. 
 
Analysis of LCK metagene-related modules by 
WGCNA 
 
We used the R software package WGCNA [44] to 
construct a weighted co-expression network. A dynamic 
shearing method was used to generate gene modules, 
and a cluster analysis was carried out on the modules. 
Closely spaced modules were merged into a new 
module, and the height, deepSplit and minModuleSize 
were set at 0.25, 2 and 30, respectively. We used the R 
software package clusterProfiler for KEGG enrichment 
analysis (false discovery rate <0.05) of genes from two 
modules of interest. We then explored the genes 
associated with the LCK metagene, and calculated the 
correlations in gene expression between the two modules 
of interest. We selected genes with the maximum 
correlation coefficients from the modules. 
 
Screening immune microenvironment genes related 
to prognosis 
 
According to their LCK metagene scores, samples were 
divided into two groups: the high LCK group and the 
low LCK group. Then, the DESeq2 function in the R 
software package [14] was used to analyze the genetic 
differences between the two groups of samples. First, we 
extracted 15,268 transcripts with TPM values >1 in more 
than 75% of the samples and a median absolute 
deviation greater than the median. Then, we screened the 
DEGs to obtain those with a false discovery rate <0.05 
and a |log2(Foldchange)|>1), and used the R software 
package clusterProfiler for KEGG enrichment analysis 
of these genes. To identify genes with prognostic value 
in the immune microenvironment, we performed a 
univariate survival analysis, as shown in “lst.cox.txt”. 
We also used the online analysis tool g:profiler to 
analyze the GO Terms of these genes. Then, we used the 
online tool KM plotter to analyze the relationship 
between the expression of these genes and the overall 
survival of breast cancer patients. 
 
Specimen verification 
 
We collected five paired tumor and non-tumor samples 
from breast cancer patients. Then, we used a 
PrimeScript™ RT reagent Kit (Cat#RR037A, Takara, 
Japan) to extract RNA from these samples and to 
reverse-transcribe the RNA to cDNA. Gene expression 
was detected by quantitative polymerase chain reaction 
experiments (TB Green™ Premix Ex Taq™ II, 
Cat#RR820A, Takara, Japan). Transcription products 
were quantified relative to beta-actin. The tumor and 
non-tumor tissues were collected with informed consent. 

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/


www.aging-us.com 9339 AGING 

This study was approved by the Ethics Committee of the 
Obstetrics and Gynecology Hospital of Fudan 
University. 
 
Ethical statement 
 
Samples from patients in this study were used with 
approval from the Ethics Committee of the Obstetrics 
and Gynecology Hospital of Fudan University and with 
consent from all the patients. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 

Supplementary Figure 1. LCK metagenes-related gene modules mined through WGCNA. (A) Sample clustering analysis. (B, C) 
Analysis of network topology under various soft-thresholding powers. (D) Gene dendrogram and module colors. 

 

 
 

Supplementary Figure 2. Correlation between eigenvectors of 34 gene modules and LCK metagenes. 
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Supplementary Figure 3. Screening of module-related genes. 



www.aging-us.com 9345 AGING 

 
 

Supplementary Figure 4. Relationship between 22 immune microenvironment-related genes and prognosis. Kaplan-Meier 
survival curve between high expression and Low expression group of breast cancer patients. 
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Supplementary Figure 5. Correlations of 22 immune microenvironment-related prognostic genes and LCK metagenes.  
(A) Expression profiles of 22 immune microenvironment-related prognostic genes and 42 gene members in LCK metagenes. (B) LCK 
metagenes scores in the three clusters. (C) Kaplan-Meier survival curves for the three clusters. 

 

 
 

Supplementary Figure 6. Fold change of 22 genes. Data are represented as mean +/- SD. 
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Supplementary Table 
 
 
Supplementary Table 1. The number of genes corresponding to each module. 

Module Number 
black 174 
blue 848 
brown 755 
cyan 106 
darkgreen 54 
darkgrey 47 
darkolivegreen 32 
darkorange 43 
darkred 56 
darkturquoise 51 
green 674 
greenyellow 138 
grey 7437 
grey60 63 
lightcyan 64 
lightgreen 62 
lightyellow 60 
magenta 155 
midnightblue 66 
orange  45 
paleturquoise  39 
pink  169 
purple  139 
red  355 
royalblue  59 
saddlebrown  41 
salmon  127 
skyblue  41 
steelblue 41 
tan  127 
turquoise  2076 
violet  37 
white  42 
yellow  744 

 


