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INTRODUCTION 
 
GBM is one of the most common primary malignant 
tumors of the central nervous system, accounting for 
47.1% of all brain malignant tumors. Information from 
the Central Brain Tumor Registry of the United States 
(CBTRUS) revealed that the incidence of malignant 
brain tumors increases with age (the highest incidence is 
in the over 85 years old age group [85.39 per 100,000 
people]), while the lowest incidence is in children and 
adolescents aged 0–19 years old [5.76 per 100,000]. 
The incidence of GBM in the United States is about 
(3.20 per 100,000) [1] and the age of onset is mostly in 
the range of 45–70 years old. The cause of the disease 
remains unclear [2]. There are two scenarios of GBM 
onset: in the first scenario, existing low-grade gliomas 
evolve over time; in the second, more common 
scenario, GBM is identified at initial diagnosis [3–7]. 
GBM can be subdivided into four subtypes: classical,  

 

mesenchymal, neuronal and proneuronal, based on their 
transcriptional profiles [8, 9]. Standardized treatment 
options for GBM include surgical excision within the 
maximum safe range, post-operative adjuvant 
radiotherapy, and chemotherapy, most commonly with 
temozolomide, a cytotoxic alkylator.  
 
Almost all GBMs eventually recur [10], and despite 
substantial advances in recent years, GBM still has a 
high mortality rate. The one-year survival rate after 
diagnosis is about 35.7% [11] and the survival time of 
more than three years is about 3%–5% [12]. The 
average median survival time is less than 15 months 
[13, 14]. The survival rate of GBM is inversely 
proportional to age. Specifically, about 5% of all GBM 
patients survive five years after diagnosis, while among 
the population over 65 years old, this proportion drops 
to 2% [15, 16]. The median survival time of untreated 
GBM patients is only about 3 months [17].  
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ABSTRACT 
 
Glioblastoma (GBM), a primary malignant tumor of the central nervous system, has a very poor prognosis. 
Analysis of global GBM samples has revealed a variety of long non-coding RNAs (lncRNAs) associated with 
prognosis; nevertheless, there remains a lack of accurate prognostic markers. Using RNA-Seq, methylation, copy 
number variation (CNV), mutation and clinical follow-up data for GBM patients from The Cancer Genome Atlas, 
we performed univariate analysis, multi-cluster analysis, differential analysis of different subtypes of lncRNA and 
coding genes, weighted gene co-expression network analyses, gene set enrichment analysis, Kyoto Encyclopedia 
of Genes and Genomes analysis, Gene Ontology analysis, and lncRNA CNV analyses. Our analyses yielded five 
lncRNAs closely related to survival and prognosis for GBM. To verify the predictive role of these five lncRNAs on 
the prognosis of GBM patients, the corresponding RNA-seq data from Chinese Glioma Genome Atlas were 
downloaded and analyzed, and comparable results were obtained. The role of one lncRNA LINC00152 has been 
observed previously; the others are novel findings. Expression of these lncRNAs could become effective predictors 
of survival and potential prognostic biomarkers for patients with GBM. 
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A better understanding of the genetic and molecular 
pathogenesis of GBM could yield more effective 
therapies. LncRNAs are long transcripts of 200 NT-100 
kb that lack open reading frames (ORFs). They are 
involved in transcription, as well as epigenetic and post-
transcriptional regulation, and play a role in 
tumorigenesis, invasion, metastasis and drug resistance of 
tumors [18–25]. They are usually transcribed by RNA 
polymerase II and controlled by transcriptional activators 
of SWI/SNF complexes. Most generated lncRNA 
transcripts are spliced, capped and polyadenylated in a 
manner similar to that of mRNAs [26–29]. The human 
genome contains more than 50,000 lncRNA genes [30], 
584 of which have been associated with poor prognosis in 
a global analysis of GBM samples; 282 lncRNAs were 
associated with better survival in GBM patients and were 
confirmed to be prognostic biomarkers of GBM [31]. We 
sought to identify lncRNAs associated with the prognosis 
of GBM and to provide potential therapeutic targets for 
treatments by integrating RNA-Seq data, methylation 
data, CNV data, mutation data and clinical follow-up 
information. 
 
RESULTS 
 
Identification of mutation subtypes correlated to 
survival 
 
A total of 1808 protein-coding genes, 8054 CNV 
regions and 4964 CpG loci were obtained using 
univariate Cox regression (see Methods). We set the 
number of categories for multi-omics cluster analysis to 
3 and obtained three subtypes (Table 1). The sample 
classification for each subtype was relatively uniform. 
Analysis of these three subtypes (Figure 1) revealed 
significant prognostic differences among them (p = 
0.01626). The C2 group had the worst prognosis, and 
the C1 group had the best. The top 20 genes with high 
mutation rates in each subtype were selected, and a total 
of 40 genes were obtained. The intersection of the top 
20 genes with high mutation frequency in the three 
subtypes is shown in Figure 1B. The overlap of these 
genes among the three subtypes was minor. Mutation of 
these 40 genes in each subtype are visualized in Figure 
1C, showing that their mutation frequencies were 
significantly different in each subtype, and the mutation 
frequencies of the samples in each subtype were also 
significantly different. 
 
Differential analysis of lncRNA and coding genes 
among different subtypes 
 
The numbers of differentially expressed genes and 
lncRNAs in each subtype were similar (Table 2). C2 
samples possessed the most differential lncRNAs and 
genes, with a total of 3663 differential lncRNAs and 5057 

Table 1. Sample count in three different GBM 
subtypes. 

Cluster Sample count 
C1 42 
C2 32 
C3 49 

 

coding genes. The volcano plot of differential lncRNAs 
among the subtypes is shown in Figure 2A–2D, 
suggesting that the number of the upregulated lncRNAs 
is generally greater than that of the downregulated 
lncRNAs. The numbers of differentially expressed 
lncRNAs and coding genes in each subtype were 
generally less than that of the coding genes (Figure 2E). 
Then, 611 lncRNAs closely related to the disease were 
downloaded from the database of LncRNA Disease and 
Lnc2Cancer and were compared with our 3663 
lncRNAs with subtype differences (Figure 2F). Of 
these, 82 lncRNAs that were closely related to GBM 
were obtained. Significance was tested using the 
hypergeometric test (p < 0.001). Then, the lncRNAs 
were ranked based on the fold-change of their 
differential expression among various subtypes, and 
GSEA analysis was then performed (Figure 3A–3D). 
Differential lncRNA aggregated in gene sets with large 
multiples of difference. We analyzed intersections of 
lncRNAs, which have differential expression in GBM 
and normal samples and found a significant overlap of 
differential lncRNAs among the three subtypes and 
tumor samples (Figure 3E). 
 
WGCNA analysis of coding genes and lncRNA with 
subtype differences 
 
A cluster analysis of the samples (Figure 4A) eliminated 
outliers with distances greater than 60,000 and 171 
samples were screened out. Then, Pearson correlation 
coefficients were used to calculate the distance between 
each gene and lncRNA. WGCNA analysis revealed a 
co-expression network that conformed to the scale-free 
network. That is, the logarithm of a node with 
connectivity K (log (k)) was negatively correlated with 
the logarithm of the occurrence probability of that node 
(log (P (k)), and the correlation coefficient was greater 
than 0.8. To ensure that the network was scale-free, ß 
was set to 3 (Figure 4B, 4C). Next, hierarchical 
clustering (average-linkage method) was used to cluster 
genes, and a total of 23 modules were obtained (Figure 
4D). It should be kept in mind that the grey module 
could not be aggregated into the gene sets of other 
modules. Statistics of gene/lncRNA in each module are 
shown in Table 3 and Figure 4E, where the p value 
represents the significance of aggregation of a lncRNA 
in a module, and fc indicates the aggregation multiple. 
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Significant enrichment of lncRNAs in black and royal 
blue modules were demonstrated. 
 
The function of modules with significant lncRNA 
enrichment was then analyzed. 247 Pathway and GO 
terms were enriched from the two modules; a minor 
intersection of 10 (4%) was found when analyzing their 
cross talk. They tended to be enriched in different 
pathways, suggesting that different functions might be 
performed by different modules. The first 20 GO Terms 
enriched by black module (Figure 5A) were related to 
transcriptional activation. These 20 enriched pathways 
were related to metabolic and mTOR signaling 
pathways (Figure 5B). The first 20 GO terms enriched 
by royal blue pathway were associated with cAMP 
signal transduction (Figure 5C). Seven KEGG pathways 
were enriched by royal blue pathway and the most 

significant pathways were the cAMP signaling pathway 
and neuroactive ligand-receptor interaction (Figure 5D). 
 
CNV analysis of lncRNA  
 
Distribution of copy deletion and copy amplification of 
lncRNAs in genome is shown in Figure 6A. Copy 
amplification was significantly less frequent than copy 
deletion. The proportion of deletion was the highest in 
chromosome 10 while the proportion of amplification 
was the highest in chromosome 7.  
 
Furthermore, correlation distribution between the 
expression profiles of the lncRNAs and copy numbers 
was calculated (Figure 6B). An overall positive 
correlation trend between copy number and lncRNA 
expression was indicated, the distribution of which was

 

 
 

Figure 1. (A) Kaplan-Meier (KM) curves of disease-free survival (DFS) for three subtypes, p = 0.01626; (B) Venn plot of the top 40 genes with 
most frequent mutations in each subtype. 6 genes overlapped in all three subtypes; (C) Heat map of top 40 genes with the highest mutation 
frequency in each subtype. 
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Table 2. Differentially expressed lncRNAs in GBM patients. 

Type C1 C2 C3 All 
PCG_Down 1861 2056 1927 1867 
PCG_Up 2375 2425 2479 2464 
PCG_All 4236 4481 4406 4331 
Lnc_Down 1293 1473 1390 1329 
Lnc_Up 1727 1773 1782 1774 
Lnc_All 3020 3246 3172 3103 

The table shows the differentially expressed lncRNAs (DE-LncRNAs) and PCGs in the GBM patient group and the three GBM 
subtypes. Up and down arrows indicate upregulation and downregulation of differentially expressed genes, respectively. C1-
C3 represent 3 clusters (clusters 1-3) of GBM patients based on integrative clustering of multiple lncRNA-related data in the 
underlying GBM subtypes. 
 

significantly higher than random (p < 1e-16). 
Frequently changing regions in the GBM genome were 
identified using the GISTIC algorithm, and multiple 
regions with significant multicopies or copy deletions of 
lncRNAs were identified. Frequent copy deletions of 
lncRNAs were significantly more abundant than those 

of the amplified regions (Figure 6C), suggesting that the 
deletion of lncRNA copy may be related to the 
occurrence and development of GBM. 
 
To further investigate the relationship between 
expression levels of lncRNAs and copy numbers, fifteen  

 

 
 

Figure 2. (A) Volcano plot shows the upregulated and downregulated lncRNAs in the GBM patients. The horizontal axis represents fold-
change, whereas, the vertical axis represents the P value estimated by edgeR in GBM patient samples. (B–D) Volcano plots for DE-lncRNAs in 
the three GBM subtypes which correspond to three clusters (C1-C3) of GBM patients from integrative clustering of multiple data types. (E) 
Distribution of differential expression lncRNA and differential expression coding genes among groups, orange for genes, green for lncRNA. (F) 
Venn plot of disease-related lncRNA and differential lncRNA, p < 0.01. 
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Figure 3. (A–D) GSEA plots shows the enrichment of all GBM and each subtype according to the fold-change as ranked. It can be seen that 
the DE-lncRNAs are enriched in the gene set with large differential fold. (E) The upset plot shows the intersection of three subtypes of DE- 
lncRNAs. There is a large overlap between the three subtypes and all tumor samples. 

 

 
 

Figure 4. (A) GBM patients were classified into three clusters (C1-C3) which represent the underlying GBM subtypes by integrating multi-
omics data using the iCluster. Differentially expressed lncRNAs and mRNAs in the GBM patients and the subtypes were identified. (B–C) 
Analysis of network topology for various soft-thresholding powers. (D) WGCNA analysis was then performed to identify co-expression lncRNA 
modules (M1−M23) using GBM transcriptome which contain GBM-related lncRNAs and mRNAs followed by functional enrichment analysis of 
the different modules. (E) The relative multiple histogram of lncRNA ratio and PCG ratio in 23 modules, the p value is on the right, the 
horizontal axis represents the multiple of lncRNA ratio and PCG ratio in the module, and the vertical axis represents the modules. 
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Table 3. The genes and lncRNAs of each module. 

Module All Lnc PCG p.value FC 
yellow 458 194 264 0.456169824 1.014504174 
turquoise 2403 986 1417 0.877387079 0.960645383 
purple 174 78 96 0.246399739 1.121706934 
brown 568 248 320 0.216710599 1.069935845 
grey60 52 22 30 0.535556439 1.012412412 
grey 1356 556 800 0.80085116 0.959490854 
magenta 228 84 144 0.953173448 0.805328055 
black 360 168 192 0.038356998 1.207992083 
green 424 176 248 0.602914984 0.979753947 
cyan 96 37 59 0.7862313 0.865776408 
red 385 161 224 0.550523559 0.992279211 
pink 299 138 161 0.078357402 1.183339183 
salmon 110 44 66 0.699306048 0.92037492 
tan 115 48 67 0.559107858 0.989059616 
lightcyan 56 26 30 0.294146357 1.196487396 
blue 1245 530 715 0.342746608 1.023353932 
darkred 38 9 29 0.994428137 0.428450394 
greenyellow 131 50 81 0.837942895 0.852199 
midnightblue 56 27 29 0.208831656 1.285351182 
lightgreen 46 23 23 0.170505202 1.380562381 
royalblue 38 24 14 0.006833389 2.366678367 
darkgreen 37 19 18 0.161718128 1.457260291 
lightyellow 45 15 30 0.910168528 0.69028119 

 

 
 

Figure 5. (A) The bubble plot shows the results of GO enrichment of top 20 of Black Module. (B) Results of KEGG enrichment of top20 of 
Black Module. (C) Results of GO enrichment of top20 of Royal blue Module. (D) Results of KEGG enrichment of top7 of Royal blue Module. 
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Figure 6. (A) CIRCOS plot shows the genome-wide view of CNV in lncRNA genes. The outer ring sections represent the chromosomes. Each 
section/chromosome size is relative to each other. The CIRCOS plot is divided into three tracks. The histogram in the outer track displays the 
CNV of the GBM-related lncRNAs. The two inner tracks display amplification and deletion of chromosome. (B) The distribution of Pearson 
correlation coefficients between copy number and expression profiles of lncRNAs. (C) The lncRNAs located in the focal CNA peaks are GBM-
related. FDRs (q values) and scores from GISTIC 2.0 for alterations (x-axis) are plotted against genome positions (y-axis); dotted lines indicate 
the centromeres. The amplifications and deletions of lncRNAs are also shown. 
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lncRNAs with a copy ratio of more than 10% in each 
sample were selected. Expression differences of each 
lncRNA in the samples with amplified, deleted and 
normal copy numbers were analyzed. No fewer than ten 
samples with expression levels greater than zero in each 
group were selected and thus ten lncRNAs were 
obtained (Figure 7). Eight (80%) showed significantly 
higher expression in the copy-amplified samples than in 
the normal ones. Two reached significant differences, 
and another three had marginally significant 
differences. Two lncRNAs (20%) showed significantly 
lower expression in the copy-deleted samples than in 
the normal ones, suggesting that CNV was closely 
related to the expression of lncRNAs. 
 
LncRNA-based prognostic biomarkers in GBM 
patients 
 
We found a total of 172 differentially expressed lncRNAs 
with co-expression module of the gene expression. A total 
of 13 (59%) lncRNAs showed differences of expression 
among the three subtypes (Table 4). 
 
Based on expression levels of these 22 lncRNAs in each 
sample, their efficacies in prognostic classification were 
analyzed; the corresponding ROC curves are shown in 
Figure 8A–8V. Most had higher AUCs in their 
prognostic classifications, with an average of 0.727. 
Thirteen lncRNAs with AUCs greater than the average 
were selected. Multivariate survival analysis revealed 
substantial interaction among the 13. Using stepwise 
multivariate regression, five lncRNAs were screened 
out as independent prognostic factors (Table 5). A risk 
score for each sample was calculated according to the 

multivariate regression model composed of the five 
lncRNAs (Risk Score=0.01*ENSG00000222041+0.36* 
ENSG00000248859+0.3*ENSG00000224596+0.09*E
NSG00000261801+0.07*ENSG00000263400). Then, 
all samples were divided into high-risk and low-risk 
groups based on the score. The ROC curves of the risk 
models for the five lncRNAs had AUC of 0.93 (Figure 
8W). All cases were divided into the high- and low-
expression groups according to the median of the risk 
score. Survival analysis with Kaplan-Meier curves 
suggested that the prognosis of the high-risk group was 
significantly worse than that of the low-risk group 
(Figure 8X). 
 
Enrichment analysis was performed using the KEGG 
pathways and GO terms of each sample using gene 
expression profiles and ssGSEA. The top 20 KEGG 
pathways and GO terms correlating with risk scores 
were screened out. The average correlation coefficient 
of the top 20 KEGG pathways was 0.37 (Figure 9A). 
Nine had negative correlations, several of which were 
associated with cancer. Another 11 pathways positively 
correlated with metabolic processes. The average 
correlation coefficient of the top 20 GO terms was 0.5 
(Figure 9B). Of these, 13 were negatively correlated and 
7 were positively correlated. Conclusively, the 
prognostic risk score predicted by these five lncRNAs 
was closely related to the development of cancer. 
 
Validation of external data sets 
 
Five lncRNAs were compared with the CGGA dataset, 
and we determined expression profiles for three of 
these. Prognosis was predicted based on expression 

 

 
 

Figure 7. The expression of 10 lncRNAs with deletions and amplifications of genes in GBM patients. The P values show the 
significant level of the correlation coefficients between copy number  variation and lncRNA expression. 
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Table 4. 22 GBM-related, differentially-expressed and potentially prognostic lncRNAs. 

LncRNA p.value HR Low 
95%CI 

High 
95%CI CNV.Rate DECount Module Symbol 

ENSG00000186056 0.030317 1.49 1.038648 2.137489 0.005034 4 brown MATN1-AS1 

ENSG00000236268 0.044121 1.582918 1.01216 2.475527 0.001678 4 turquoise LINC01361 

ENSG00000228203 0.019549 1.15539 1.023464 1.304322 0.005034 4 turquoise RNF144A-AS1 

ENSG00000222041 0.015702 1.011345 1.002131 1.020644 0.001678 4 black LINC00152 

ENSG00000225539 0.047346 5.01846 1.019074 24.71356 0.003356 4 turquoise LOC101927406 

ENSG00000240875 0.035074 1.095223 1.006388 1.1919 0.003356 2 magenta LINC00886 

ENSG00000234111 0.043678 239.1842 1.168031 48979.07 0.003356 4 turquoise LOC340017 

ENSG00000248859 0.000137 1.395472 1.175857 1.656105 0.005034 4 turquoise LINC01574 

ENSG00000224596 3.19E-05 1.505299 1.241456 1.825217 0.006711 2 yellow ZMIZ1-AS1 

ENSG00000221949 0.009864 1.215273 1.048005 1.409238 0.011745 1 lightcyan LINC01465 

ENSG00000251301 0.017577 1.328054 1.050768 1.678512 0.025168 3 tan LOC100507195 

ENSG00000246363 0.018556 1.784352 1.101855 2.88959 0.003356 4 turquoise LOC728084 

ENSG00000238121 0.04526 2.387149 1.018536 5.594775 0.006711 3 yellow LINC00426 

ENSG00000259062 0.045396 1.415307 1.007143 1.988889 0.001678 4 lightcyan ACTN1-AS1 

ENSG00000261801 0.00024 1.120072 1.054312 1.189934 0.001678 1 cyan LOXL1-AS1 

ENSG00000259234 0.036685 3.588288 1.082273 11.89701 0.001678 4 turquoise ANKRD34C-
AS1 

ENSG00000277639 0.016627 1.046485 1.008285 1.086132 0.001678 4 magenta LOC105371267 

ENSG00000179219 0.026907 0.491178 0.261676 0.921963 0.005034 4 purple LINC00311 

ENSG00000267532 0.020133 1.030549 1.004723 1.057038 0.001678 2 lightcyan MIR497HG 

ENSG00000263400 0.030058 1.064975 1.006094 1.127303 0.001678 1 magenta TMEM220-
AS1 

ENSG00000264235 0.012691 1.219032 1.043212 1.424484 0.003356 2 magenta LOC104968399 

ENSG00000231290 0.00454 1.123154 1.036584 1.216955 0.005034 4 cyan APCDD1L-
AS1 

 

levels of these three lncRNAs. Only three of five 
lncRNAs that are detected in CGGA database due to 
technical limitations. The ROC curve showed  
that all three lncRNAs had high AUCs, similar to  
that of the training set (Figure 10A–10C). 
All cases were divided into groups according to the 
median of the expression level. Differences of prognosis 
between high- and low-expression groups were 
analyzed. As shown in Figure 10D–10F, there were 
significant prognostic differences between these two 
group (p <0.05) in two lncRNAs and the other one 
showed a marginally significant difference (p = 
0.05337), consistent with the training set. Based on the 
expression profiles of these three lncRNAs, a risk 
prediction model was established using multivariate 
Cox regression and a prognostic risk score of each 

sample was calculated. The AUC of the ROC curve was 
0.87 (Figure 10G). Then, all patients were divided into 
high- or low-risk groups based on the median of the risk 
score. Prognostic differences among them suggested 
that the prognosis of the high-risk group was 
significantly worse than that of the low-risk group (p < 
0.0001) (Figure 10H). 
 
Comparison with other known prognostic 
biomarkers 
 
In order to evaluate whether our prediction model has a 
stable and reliable performance advantage, we 
compared two recent studies on gene markers related to 
the survival and prognosis of GBM. The ROC curves of 
1 year, 3 years and 5 years data were analyzed. The
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AUC of our model in 3 years was 0.85, the highest was 
0.93, the smallest AUC was 0.75 such as Figure 11A, 
and the highest AUC of 8 immune gene signature 
(Cheng et al) was 0.64 such as Figure 11B [32]. The 
highest AUC of 4 gene panel of Guo et al was 0.79 
(Figure 11C) [33]. On the other hand, comparing the C-
index of the three models, our model has the highest C-
index, 0.66, and our model is better than the other two 
models in all aspects. All of these results provide an 
exciting revelation that our study provides a better 
predictive model for predicting overall survival (OS) in 
patients with GBM. 
 
DISCUSSION 
 
LncRNAs have become new biomarkers for the 
diagnosis and prognosis of various human cancers  
[34–37]. We speculated that differential expression and 
CNV of lncRNAs may serve as prognostic biomarkers 
for patients with GBM. Therefore, we identified 
lncRNAs indicating potential risk of GBM patients using 
a multi-omics approach and by integrating the expression 
and CNV of lncRNAs. Several lncRNAs, including 
MEG3, H19 and Gas5, were abnormally expressed in all 

GBM patients [38–41]. Some GBM-specific lncRNAs 
were expressed differentially in various GBM subtypes. 
A lncRNA-PCG co-expression module was identified in 
GBM patients. These differentially expressed lncRNAs 
are involved in the regulation of critical biological 
functions associated with cancer. For example, 
ENSG00000231327 (LINC01816) in the black module is 
related to transcriptional activation, metabolism and 
mTOR signaling pathways. In addition, two differentially 
expressed lncRNAs in the royal blue  
module ENSG00000266088 (Rp5-1028K7.2) and 
ENSG00000234184 (LINC01781) were associated with 
cAMP signaling and interactions with the neuroactive 
ligand-receptor. 
 
We identified five lncRNA biomarkers associated with 
prognosis of GBM patients, LINC00152, LINC01574, 
ZMIZ1-AS1, LOXL1-AS1 and TMEM220-AS1, all of 
which were highly expressed in GBM and correlated 
with lower OS (p = 0). The association between 
LINC00152 and GBM is supported by previous studies 
[38, 39]. LINC00152 has become a powerful prognostic 
biomarker in GBM patients. Although previous studies 
found no direct association with GBM, the remaining 

 

 
 

Figure 8. (A–V) ROC curves of 22 lncRNAs with significant prognostic value for GBM. (W) ROC curves of five-lncRNA model. (X) Patients of 
High-Risk and Low-Risk group. Survival analysis showed that the prognosis of the high-risk group was worse than that of the low-risk group, p 
< 0.01.  
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Table 5. Five independent prognostic CNV-related lncRNAs. 

lncRNA Symbol exp(coef) lower .95 upper .95 z Pr(>|z|) 

ENSG00000222041 LINC00152 1.009198434 0.998988854 1.019512355 1.764959658 0.077570546 
ENSG00000248859 LINC01574 1.438491798 1.200262175 1.724005551 3.93600151 8.29E-05 
ENSG00000224596 ZMIZ1-AS1 1.356509194 1.056254919 1.742114673 2.388718419 0.016907255 
ENSG00000261801 LOXL1-AS1 1.095661366 1.020034879 1.176894882 2.503570315 0.012294725 
ENSG00000263400 TMEM220-AS1 1.067615892 1.001915016 1.137625123 2.019001738 0.043487039 
 

four lncRNAs regulate several GBM-related genes. For 
example, ZMIZ1-AS1 regulates several GBM-related 
genes, including CPEB4 and RNF43 [42, 43]. LOXL1-
AS1 has been suggested to promote medulloblastoma 
proliferation and metastasis by activating the PI3K-
AKT pathway [44]. KEGG pathways related to all five 

lncRNAs are shown in Supplementary Figure 1. Some 
studies have shown decreased RNF43 expression 
correlated with poor prognosis in GBM and low grade 
glioma (LGG) patients, while high expression of 
CPEB4 was associated with shorter OS rates. The 
differential expression of these five lncRNAs 

 

 
 

Figure 9. (A) The top curve shows Risk Score distribution of GBM patients. (B) The heat map of Risk Score-related top 20 KEGG Pathway and 
top 20 GO Terms.  
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Figure 10: (A–C) ROC curves of three lncRNAs: LINC00152, LOXL1-AS1 and TMEM220-AS1. (D–F) KM Curves of these three lncRNAs.  (G) ROC 
curves of this three-lncRNA model/panel. (H) The prognostic difference KM curve of the samples predicted by three lncRNA-models. 
Prognostic differences among them suggested that the prognosis of the high-risk group was significantly worse than that of the low-risk 
group (p < 0.0001). 
 

 
 

Figure 11. The ROC curves of of 1 year, 3 years and 5 years in studies. (A) Our study. C-index = 0.66. (B) Cheng's study. C-index= 0.57. 
(C) Guo's Study. C-index = 0.62. Our Signatures is better than the other two signatures in ROC and C-index. 
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significantly correlated with CNV in GBM patients. The 
differential expression of another three prognostic-
related lncRNAs might be caused by epigenetic changes 
in GBM patients, including DNA methylation, histone 
modification, dysregulation of transcription and/or 
biological defects of lncRNAs [45]. We also explored 
the relationship between CNV of lncRNAs and the OS 
rate of GBM patients using a univariate Cox regression 
model. All five lncRNAs may pose risk by disrupting 
important cancer-related biological processes that 
contribute to positive GBM outcomes. In order to 
evaluate the prognostic value of these five lncRNAs, 
RNA-seq data and clinical information were obtained 
from the CGGA database. Data derived from CGGA 
were set as the validation set, and we confirmed this 
positive correlation between expression levels of the 
three lncRNAs and prognosis. 
 
The purpose of this study was to systematically identify 
lncRNAs that serve as prognostic biomarkers for GBM 
by measuring the expression of lncRNAs in GBM and 
their CNV. The prognostic potential of lncRNAs was 
evaluated, ranging from alterations at the DNA 
sequence level to dysregulation at the transcriptional 
level. We found five lncRNAs that can be used as 
prognostic biomarkers for GBM. Our methodology 
relies on the availability of multidimensional data, but. 
there are few large-scale multi-omics and clinical data 
sets for GBM. Getting more large-scale multi-omics and 
clinical data of GBM will further improve the predictive 
power of our approach. 
 
In summary, we identified five prognostic lncRNAs 
associated with survival in GBM patients through a 
comprehensive analysis of the expression of lncRNA 
and their CNV. Expression of lncRNAs and/or CNA are 
both effective indicators for predicting survival of GBM 
patients and may become potential biomarkers for 
prognosis of GBM. 
 
MATERIALS AND METHODS 
 
RNA-Seq data 
 
Fragments Per Kilobase of transcript per Million 
mapped reads (FPKM) and counts data from 167 GBM 
and 5 normal samples were downloaded from TCGA 
(https://tcga-data.nci.nih.gov/tcga/). FPKM data were 
converted into Transcripts Per Kilobase Million (TPM). 
The mRNAs with genotypes belonging to “lincRNA”, 
“sense_intronic”, “sense_overlapping”, “antisense”, 
“processed_transcript”, and “3prime_overlapping_ 
ncRNA” were classified as lncRNAs. Then, the FPKM 
expression profiles of the lncRNAs were extracted. 
Coding genes were determined based on their genotype 

classification as protein-coding, and FPKM expression 
profiles of coding genes were also extracted. 
 
TCGA data analysis 
 
The 450k methylation profile data from 153 GBM and 2 
normal tissue samples were downloaded from TCGA. 
Probe data of CpG-expressing NA in each sample were 
deleted. Cross-reactive CpG sites that were discovered by 
cross-reactive probes and polymorphic CpGs in the 
Illumina Infinium Human- Methylation 450k microarray 
were eliminated. Unstable genomic methylation sites 
were further removed. The CpGs and single nucleotide 
sites from sex chromosomes were eliminated. 
Methylation profiles of 288 GBM samples from 27k 
were then downloaded. Similarly, CpG probes expressing 
NA in each sample were removed. Methylation profiles 
of the CpG probes from 27k and 450k were combined 
and batch effects were removed using the combat 
function of the R package sva [46, 47]. 
 
CNV data from 418 GBM samples without species 
differences were downloaded from TCGA. Single 
nucleotide mutation data from 393 GBM samples 
processed using Mutect software were downloaded 
from TCGA [48]. Clinical follow-up data from 
patients associated with 599 GBM samples were 
downloaded from TCGA. 
 
Univariate survival analysis 
 
To better classify the samples, we analyzed the effects 
of coding genes, CNV and methylation on the 
prognosis. We selected samples with a follow-up of 
more than 30 days and established a model using 
univariate Cox proportional risk regression. The 
threshold of p value was defined as 0.05. 
 
Multi-omics cluster analysis 
 
Prognostic-related coding genes, CNV and methylation 
sites were utilized for the analysis. A total of 123 
samples, covered by the three omics databases were 
selected. The R software package of iCluster Plus was 
applied to perform a multi-omics cluster analysis [49]. 
The iCluster Plus package can be downloaded from the 
Bioconductor, an open source software framework 
(http://www.bioconductor.org/). 
 
Differential analysis of lncRNA and coding genes 
among various subtypes 
 
Differentially expressed lncRNAs and coding genes in 
various subtypes were further analyzed using the R 
package of DEseq2 [50]. First, genes whose average 
count numbers were less than one were deleted. Second, 

https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
http://www.bioconductor.org/
http://www.bioconductor.org/
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differential lncRNAs and coding genes in each  
subtype were screened out based on the criteria of fold-
change greater than two and false discovery rate (FDR) 
less than 0.05 as the threshold. After ranking by  
the absolute values of difference multiples in each 
subtype, the screened lncRNAs underwent GSEA 
analysis [51]. 
 
WGCNA analysis of coding genes and lncRNA with 
subtype differences 
 
Using the WGCNA co-expression algorithm, we 
identified co-expression modules of coding genes and 
lncRNAs based on their differential expression profiles 
[51–54]. Initially, data from FPKM were converted into 
TPM, and the expression profiles of lncRNAs and 
protein-coding genes were extracted. Next, a cluster 
analysis was performed on these samples via 
hierarchical clustering. The distances between each 
gene and lncRNA were calculated using Pearson 
correlation coefficients [55] and a weighted co-
expression network was constructed using the WGCNA 
R package [52]. The soft threshold was set at 3 to screen 
co-expression modules. The next step was to convert an 
expression matrix into an adjacency matrix, and then to 
convert it into a topological matrix. Based on 
Topological Overlap Matrix (TOM), the genes clustered 
using a hierarchical clustering method (average-linkage 
method) [56]. According to the criteria of Dynamic 
Tree Cut, the minimum gene number of the network 
module for each gene (lncRNA) was set at 30. After 
determining the gene module in the Dynamic Tree Cut, 
we calculated eigengenes of each module in turn, 
applied a cluster analysis to the modules and merged the 
nearer modules into a new one. The values of  
height, deepSplit and minModuleSize were set to 0.25, 
2 and 30, respectively. Finally, the functionality of the 
modules with significant enrichment of lncRNAs was 
further analyzed. KEGG and GO analysis was 
conducted using the Cluster Profiler R package [57–60]. 
 
CNV analysis of lncRNA  
 
We analyzed the copy number changes of each gene from 
596 cases of glioma downloaded from TCGA using 
GISTIC 2.0 [61, 62]. First, we extracted lncRNA copy 
number profiles. Copy number no less than 1 was 
regarded as the threshold for multicopy; no more than -1 
was the threshold of copy deletion. Based on these 
principles, we calculated the proportion of multicopy and 
copy deletion of each lncRNA and investigated their 
distribution in the genome. Then, correlation distributions 
among the expression profiles of lncRNAs and copy 
numbers were calculated. Finally, frequent changing 
regions of the GBM genome were identified using the 
GISTIC algorithm. 

LncRNA-based prognostic biomarkers in GBM 
patients 
 
To systematically identify lncRNAs with prognostic 
value, we analyzed copy numbers of lncRNAs with 
differential expression in each subtype. LncRNAs were 
selected only if the proportion of their CNV were more 
than 0.1% in each sample and differences in expression 
occurred among at least three subtypes. The 
relationships among the lncRNAs and overall survival 
time were analyzed using univariate survival analysis. 
The threshold value was set at p < 0.05, and 22 
lncRNAs with significant prognostic value were 
eventually obtained. The efficacy of prognostic 
classification was analyzed and receiver operator 
characteristic (ROC) curves were drawn based on the 
expression of these 22 prognostic lncRNAs in each 
sample. LncRNAs with areas under the curve (AUC) 
greater than the average were screened out. Therefore, 
independent prognostic factors were screened using 
stepwise multivariate Cox regression. KEGG Pathway 
and GO Term enrichment analysis for each sample were 
conducted using gene expression profile and ssGSEA 
[63, 64]. The top 20 KEGG pathways and GO terms 
with high correlation with risk scores of the samples 
were further screened out. 
 
Validation of external data sets 
 
To verify the prognostic roles of these CNV-related 
lncRNAs, RNA-seq data were downloaded from CGGA 
and compared with datasets from CGGA. We 
determined the expression profiles of lncRNAs with 
analyses that matched between TCGA and CCGA. We 
further analyzed the relationships between expression 
levels and prognosis.  Prognosis was determined based 
on expression levels of the three lncRNAs. 
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SUPPLEMENTARY MATERIAL 

Supplementary Figure 

 

 
 

 

 
 

Supplementary Figure 1. The figure shows 10 most relevant pathways of the five lncRNAs. The dark block on the left is the most 
relevant pathway, the right heatmap shows the correlation coefficient. 
 
 

 


